22.04.2014 Views

Term Symbol-I - Cobalt

Term Symbol-I - Cobalt

Term Symbol-I - Cobalt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lecture 21: <strong>Term</strong> <strong>Symbol</strong>s-I<br />

The material in this lecture covers the following in Atkins.<br />

The Spectra of Complex Atoms<br />

13. 9 <strong>Term</strong>symbols and selection rules<br />

(a) The total orbital angular momentum<br />

(b) The multiplicity<br />

(c) The total angular momentum<br />

Lecture on-line<br />

<strong>Term</strong> <strong>Symbol</strong>s (PowerPoint)<br />

<strong>Term</strong> <strong>Symbol</strong>s (PDF)<br />

Handouts for this lecture


The <strong>Term</strong> <strong>Symbol</strong> Total orbital angular momentum<br />

For a single electron<br />

r<br />

moving around a nuclei Since F is a central force<br />

r r<br />

L=r ×p<br />

working in the same direction<br />

as r<br />

r<br />

r<br />

p<br />

The angular momentum<br />

r r r<br />

L = × p is conserved<br />

with time<br />

r<br />

dL<br />

dt = dr r r<br />

r dp<br />

× p+r×<br />

dt<br />

r<br />

dt<br />

1 dp r r<br />

= × p+r×<br />

F=0<br />

m dt<br />

e<br />

0 0<br />

r r r<br />

L=r ×p<br />

r<br />

F<br />

r<br />

p


The <strong>Term</strong> <strong>Symbol</strong><br />

Consider next two<br />

independent<br />

(non - interacting)<br />

electrons in the<br />

same atom where<br />

we neglect the<br />

electron - electron<br />

repulsion<br />

r<br />

p 2<br />

r<br />

r 2<br />

L 1 r<br />

r 1<br />

r<br />

L 2<br />

Angular momentum<br />

preserved for each<br />

electron !!!<br />

Total orbital angular momentum<br />

When we allow the<br />

elctrons to interact this is<br />

no longer the case<br />

r<br />

electron L 1 r<br />

repulsion<br />

L<br />

r<br />

2<br />

p 2 p<br />

r<br />

1<br />

r 2<br />

r<br />

r 1<br />

p 1<br />

electron<br />

repulsion<br />

However the total angular<br />

momentum L T will still be<br />

conserved<br />

It can be used to label a state


The <strong>Term</strong> <strong>Symbol</strong><br />

For a configuration<br />

n<br />

1 1 1 2 2 2<br />

( nlm ) ( nl m ) ,...,( n l m )<br />

n<br />

1 2 m<br />

m m<br />

m n<br />

We have a number of different states<br />

(eigenfunctions to the Schrödinger<br />

equations)<br />

They are characterized by different<br />

TERM SYMBOLS :<br />

Total spin angular quantum<br />

2s + T<br />

1<br />

number sT<br />

with spin - multiplicity<br />

2s T + 1<br />

L(l T<br />

)<br />

Total orbital angular<br />

momentum quantum<br />

j T number l T<br />

Total angular momentum quantum<br />

number j T


The <strong>Term</strong> <strong>Symbol</strong><br />

As an example 2s<br />

1 2<br />

2p<br />

Total orbital angular<br />

momentum quantum<br />

number l T<br />

l T : 0 1 2 3 4<br />

S P D F G<br />

Total spin angular quantum<br />

number sT<br />

with spin - multiplicity<br />

2s + 1<br />

T<br />

Total angular momentum quantum<br />

number j T


The <strong>Term</strong> <strong>Symbol</strong><br />

We must now find<br />

Total orbital angular momentum<br />

quantum number l T<br />

Total spin - angular momentum<br />

number s T<br />

Total angular momentum<br />

quantum number j T


The <strong>Term</strong> <strong>Symbol</strong><br />

Total orbital angular momentum<br />

For the orbital - angular momentum<br />

l(i) z<br />

r<br />

L(i)<br />

We have seen that we can find common eigenfunctions to<br />

L(i) ˆ 2<br />

and L(i) ˆ with eigenvalues<br />

2 2<br />

L(i) ˆ : h l( i) l(<br />

i) + 1<br />

z<br />

L(i) ˆ : hmi<br />

( ); mi ( ): - l( i), l( i) - 1, l( i) - 2,...., l( i) - 1, l(<br />

i)<br />

z<br />

( )


The <strong>Term</strong> <strong>Symbol</strong> Total orbital angular momentum<br />

r r<br />

Consider next two angular momenta L(i) and L(j) with the<br />

lquantum numbers l(i) and l(j)<br />

L(j)<br />

r<br />

L(i)<br />

r<br />

r<br />

Their sum is a new angular momentum L<br />

with the possible l quantum numbers<br />

T<br />

T<br />

r<br />

L T<br />

hm T<br />

Z<br />

r<br />

L T<br />

l : l( i) + l( j); l( i) + l( j) −1;.....,| l( i) − l( j) |<br />

T<br />

For each lT<br />

quantum number the allowed m<br />

values are : - l ; l −1;....., l −1,<br />

l<br />

T T T T<br />

T<br />

r 2<br />

(L T ) = h<br />

2 lT (l T + 1)


The <strong>Term</strong> <strong>Symbol</strong><br />

For the spin - angular momentum<br />

Total spin angular momentum<br />

S(i) z<br />

r<br />

S(i)<br />

We have seen that we can find common eigenfunctions to<br />

S(i) ˆ 2<br />

and S(i) ˆ with eigenvalues<br />

2 2<br />

S(i) ˆ : h S( i) S(<br />

i) + 1<br />

z<br />

S(i) ˆ : hm ( i); m ( i): - S( i), S( i) - 1, S( i) - 2,...., S( i) - 1, S(<br />

i)<br />

z<br />

S<br />

( )<br />

S


The <strong>Term</strong> <strong>Symbol</strong><br />

Total spin angular momentum<br />

v s<br />

Consider next two angular momenta S(i) and S(j) with the<br />

S quantum numbers S(i) and S(j)<br />

r<br />

S(j)<br />

v<br />

r<br />

Their sum is a new angular momentum S<br />

S(i)<br />

with the possible S quantum numbers<br />

T<br />

T<br />

r<br />

S T<br />

Z<br />

S : S( i) + S( j); S( i) + S( j) −1;.....,| S( i) −S( j) |<br />

T<br />

m S T<br />

r<br />

S T<br />

For each ST<br />

quantum number the allowed m<br />

values are : - S ; S −1;....., S −1,<br />

S<br />

T T T T<br />

S T<br />

r 2<br />

(S T )<br />

= h 2 S T (S T + 1)


The <strong>Term</strong> <strong>Symbol</strong><br />

Total angular momentum<br />

v<br />

Consider finally a spin angular momenta S(i) with the<br />

S quantum numbers<br />

r<br />

S(i) and an orbital angular<br />

momentum L(i) with the lquantum number l<br />

v<br />

Their sum is a new angular momentum J<br />

with the possible J quantum numbers<br />

T<br />

J : S( i) + l( i); S( i) + l( i) −1;.....,| S( i) − l( i) |<br />

T<br />

r<br />

S(i)<br />

r<br />

J T<br />

r<br />

L(i)<br />

T


The <strong>Term</strong> <strong>Symbol</strong><br />

Total angular momentum<br />

Z<br />

m J T<br />

r<br />

J T<br />

r 2<br />

(J T )<br />

= h 2 J T (J T + 1)<br />

For each JT<br />

quantum number the allowed m<br />

values are : - J ; J −1;....., J −1,<br />

J<br />

T T T T<br />

J T


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m1) ( nl 2 2m2) ........(<br />

nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1 m<br />

n<br />

2<br />

Ex. He : 1s ; He 1s3d;<br />

2 2 4<br />

O 1s 2s 2p<br />

2 2 6<br />

Cl:1s 2s 2p<br />

;<br />

2 5<br />

3s<br />

3p


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m 1( 2 2 (<br />

m<br />

1) nl m2) ........ nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1. Add orbital - angular momenta<br />

of electrons pair - wise<br />

# 1+# 2 → # I # I +# 3 →# II<br />

# II+# 4 → ..., L T<br />

Note : add electrons in same shell first<br />

A closed shell contributes zero to l T<br />

n


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m1) ( nl 2 2m2) ........(<br />

nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1 m<br />

Total orbital angular<br />

momentum quantum<br />

number l T is indicated<br />

by letters<br />

l T : 0 1 2 3 4<br />

S P D F G<br />

n


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m 1( (<br />

m<br />

1) nl 2 2m2) ........ nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1. Add spin - angular<br />

momenta<br />

of electrons<br />

pair - wise<br />

# 1+# 2 →# I # I +# 3 →# II<br />

# II+# 4 → ..., s T<br />

Note : add electrons in same shell first<br />

A closed shell contributes zero to s T<br />

n


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m1) ( nl 2 2m2) ........(<br />

nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1 m<br />

The s T value of a<br />

state is<br />

indicated by its<br />

spin multiplicity<br />

Spin multiplicity :<br />

2 sT<br />

+1=<br />

Number of different<br />

m values<br />

ST<br />

n


The <strong>Term</strong> <strong>Symbol</strong> General procedure for adding the orbital<br />

and spin angular momenta in many<br />

-electron atoms<br />

Consider a multi - electron<br />

atom with the<br />

electron configuration<br />

n<br />

n2<br />

( nl 1 1m1) ( nl 2 2m2) ........(<br />

nml mm m )<br />

Shell 1 Shell 2 Shell n<br />

1 m<br />

r<br />

S<br />

r<br />

J T<br />

ˆ 2 2<br />

J T ; h ( j T + 1)<br />

j T<br />

where :<br />

j T = sT + l T,<br />

s + l - 1,.. | s - l |<br />

T<br />

r<br />

L<br />

T T T<br />

n<br />

r<br />

Finally add L<br />

v<br />

and S<br />

T<br />

T


The <strong>Term</strong> <strong>Symbol</strong><br />

Example He : 2p<br />

1 1<br />

3d<br />

We have l (1) = 1; s( 1) = 1 2<br />

We have l (2) = 2; s( 2) = 1 2<br />

There is (2l(1) + 1)(2s(1) + 1) =<br />

3 x 2 = 6<br />

2p spin orbitals<br />

The total Hamiltonian is<br />

2<br />

2<br />

h h Z Z<br />

Ĥ=- ∇ - ∇ − − +<br />

2m 2m r r r<br />

e<br />

1 2 2 2 1<br />

e 1 2 12<br />

Omitting at the moment<br />

electron - electron repulsion<br />

2<br />

2<br />

h h Z Z<br />

Ĥ o = - ∇1 2 - ∇2 2 − −<br />

2m 2m r r<br />

e<br />

e 1 2<br />

There is (2l(2) + 1)(2s(2) + 1) =<br />

5 x 2 = 10<br />

3d spin orbitals<br />

They can be combined in<br />

6x10 = 60 ways<br />

1 1<br />

The 2p 3d configuration<br />

has 60 different states<br />

Without electron - electron<br />

repulsion all 60 states<br />

would have the same energy<br />

ε + ε<br />

E= 2p 3d


The <strong>Term</strong> <strong>Symbol</strong><br />

Example He : 2p<br />

1 1<br />

3d<br />

We have l (1) = 1; s( 1) = 1 2<br />

We have l (2) = 2; s( 2) = 1 2<br />

Thus combining orbital<br />

angular momenta<br />

l T = 2+<br />

1; l T = 2+ 1−1;<br />

l T = 2−1;<br />

3 2 1<br />

The total Hamiltonian is<br />

2<br />

2<br />

h h Z Z<br />

Ĥ=- ∇ - ∇ − − +<br />

2m 2m r r r<br />

e<br />

1 2 2 2 1<br />

e 1 2 12<br />

When electron - electron<br />

repulsion is included<br />

states with different L<br />

and S T will have different<br />

energy<br />

T<br />

Next combining spin -<br />

angular momenta<br />

1 1<br />

s T = +<br />

2 2 ; s 1 1<br />

T = −<br />

2 2 ;<br />

1<br />

0


The <strong>Term</strong> <strong>Symbol</strong><br />

Example He : 2p<br />

1 1<br />

3d<br />

We have l (1) = 1; s( 1) = 1 2<br />

We have l (2) = 2; s( 2) = 1 2<br />

Thus combining orbital<br />

angular momenta<br />

l T = 2+<br />

1; l T = 2+ 1−1;<br />

3 2<br />

l T = 2−1;<br />

1<br />

Next combining spin -<br />

angular momenta<br />

1 1<br />

s T = +<br />

2 2 ; s 1<br />

T = −<br />

2<br />

1 0<br />

1<br />

2 ;<br />

+ 1<br />

( LT, ST) 2S T<br />

L( LT) (2ST<br />

+ 1)<br />

×<br />

(2L<br />

T + 1)<br />

Number of<br />

States<br />

3<br />

(3,1) F 21<br />

1<br />

(3, 0) F 7<br />

3<br />

(2,1) D 15<br />

1<br />

(2, 0) D 5<br />

3<br />

(1,1) P 9<br />

1<br />

(1, 0) P 3<br />

Total 60


The <strong>Term</strong> <strong>Symbol</strong><br />

States with different spin -<br />

( T, T 2S T + 1<br />

L S ) L( LT) (2ST<br />

+ 1)<br />

× multiplicity will differ in energy.<br />

(2L<br />

T + 1)<br />

The state withthe higher<br />

Number of spin - multiplicity will<br />

States be lower in energy. The energy<br />

3<br />

(3,1) F 21 willdecrease with increasing<br />

1<br />

(3, 0) F 7 spin - multiplicity<br />

3<br />

(2,1) D 15<br />

1<br />

(2, 0) D 5 States with different L T<br />

3<br />

(1,1) P 9 quantum numbers will<br />

1<br />

(1, 0) P 3 have differentenergies.<br />

Total 60<br />

The higher the L T<br />

quantum number the<br />

lower the energy


What you must learn from this lecture<br />

For a configuration<br />

n n<br />

( nlm) 1( n l m ) 2,...,( nmm<br />

l mm)<br />

n m<br />

11 1 2 2 2<br />

Be able to construct<br />

term symbols :<br />

be able to evaluate :<br />

1. Total spin angular quantum<br />

number sT<br />

and spin - multiplicity<br />

2s<br />

+ 1<br />

T<br />

2.<br />

Total orbital angular<br />

momentum quantum<br />

number l<br />

T<br />

2s T<br />

+ 1<br />

L(l T<br />

)<br />

j T<br />

3.<br />

Total angular momentum quantum<br />

number j<br />

T<br />

NB : remember closed shell adds<br />

up to S = 0 and L = 0<br />

T<br />

T

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!