13.01.2015 Views

Lecture 3: The Time Dependent Schrödinger Equation The ... - Cobalt

Lecture 3: The Time Dependent Schrödinger Equation The ... - Cobalt

Lecture 3: The Time Dependent Schrödinger Equation The ... - Cobalt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> 3: <strong>The</strong> <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

<strong>The</strong> material in this lecture is not covered in Atkins. It is required to understand<br />

postulate 6 and<br />

11.5 <strong>The</strong> informtion of a wavefunction<br />

<strong>Lecture</strong> on-line<br />

<strong>The</strong> <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong> (PDF)<br />

<strong>The</strong> time <strong>Dependent</strong> Schroedinger <strong>Equation</strong> (HTML) <strong>The</strong> time dependent<br />

<strong>Schrödinger</strong> <strong>Equation</strong> (PowerPoint)<br />

Tutorials on-line<br />

<strong>The</strong> postulates of quantum mechanics (This is the writeup for Dry-lab-II<br />

( This lecture coveres parts of postulate<br />

6)<br />

<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

<strong>The</strong> Development of Classical Mechanics<br />

Experimental Background for Quantum mecahnics<br />

Early Development of Quantum mechanics<br />

Audio-visuals on-line<br />

review of the <strong>Schrödinger</strong> equation and the Born postulate (PDF)<br />

review of the <strong>Schrödinger</strong> equation and the Born postulate (HTML)<br />

review of <strong>Schrödinger</strong> equation and Born postulate (PowerPoint **,<br />

1MB)<br />

Slides from the text book (From the CD included in Atkins ,**)


setting up equation<br />

Consider a particle of mass m that is moving in one<br />

dimension. Let its position be given by x<br />

V<br />

<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

O<br />

V(X,t 1 ) V(X,t 2 )<br />

X<br />

Let the particle be<br />

subject to the<br />

potential V(x,t)<br />

O<br />

All properties of such a particle is in quantum mechanics<br />

determined by the wavefunction Ψ(x,t) of the system


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

Vxt ( , ) setting up equation<br />

X


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

setting up equation<br />

A system that changes with time<br />

is described by the time -<br />

dependent <strong>Schrödinger</strong> equation<br />

h δΨ( xt , )<br />

− =<br />

i δt<br />

Hˆ Ψ( x, t)<br />

Where Hˆ<br />

is the Hamiltonian of<br />

the system :<br />

Hˆ h 2 δ<br />

2 = − + Vxt ( , )<br />

2m δx<br />

2<br />

for<br />

1D - particle<br />

according to postulate 6


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

setting up equation<br />

2 2<br />

− hδΨ( xt , ) = − h δ Ψ( xt , )<br />

i δt<br />

2m<br />

2<br />

+<br />

δx<br />

Vxt ( , ) Ψ( xt , )<br />

<strong>The</strong> time dependent <strong>Schrödinger</strong> equation<br />

<strong>The</strong> wavefunction Ψ(x,t) is also referred to as<br />

<strong>The</strong> statefunction<br />

Our state will in general change with time due to V(x,t).<br />

Thus Ψ is a function of time and space


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

Probability from wavefunction<br />

<strong>The</strong> wavefunction does not have any physical interpretation.<br />

However :<br />

*<br />

P(x,t) = Ψ(x,t)<br />

Ψ(x,t) dx<br />

Probability density<br />

Is the probability at time t to find the particle<br />

between x and x + ∆x.<br />

Ψ( x,t)Ψ * ( x,t)dx<br />

will change with time<br />

dx<br />

o<br />

x


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

Probability from wavefunction<br />

It is important to note that the particle is not distributed<br />

over a large region as a charge cloud<br />

Ψ(x,t) Ψ(x,t) *<br />

It is the probability patterns (wave function) used<br />

to describe the electron motion that behaves like<br />

waves and satisfies a wave equation


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

Probability from wavefunction<br />

Consider a large number N of<br />

identical boxes with identical<br />

particles all described by the<br />

same wavefunction Ψ( xt , ):<br />

Let dn x denote the number of particle<br />

which at the same time is found<br />

between x and x + ∆x<br />

<strong>The</strong>n :<br />

dn x *<br />

=Ψ( xt , ) Ψ ( xtdx , )<br />

N


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy<br />

<strong>The</strong> time - dependent Schroedinger equation :<br />

2 2<br />

− hδΨ( xt , ) =− h δ Ψ( xt , )<br />

i δt<br />

2m<br />

2<br />

δx<br />

+<br />

Can be simplified<br />

in those cases where<br />

the potential V only<br />

depends on the<br />

position : V(t,x) - ><br />

V(x)<br />

V<br />

V(X)<br />

O<br />

Vxt ( , ) Ψ( xt , )


<strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

We might try to find a solution of the form :<br />

Ψ( xt , ) = ft ( ) ψ( x)<br />

We have<br />

δΨ(x,t)<br />

δψ(<br />

(x)f(t))<br />

= = ψ(<br />

x) δf(t)<br />

δt δt δt<br />

δ<br />

and<br />

2<br />

2<br />

Ψ(x,t) δψ( (x)f(t)) δψ(<br />

x)<br />

= = f(t)<br />

2<br />

2<br />

2<br />

δx δx δx<br />

2


Simplyfied <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

hδΨ( xt , ) h δ Ψ( xt , )<br />

− =− +<br />

i δt<br />

2m<br />

2<br />

δx<br />

A substitution of<br />

2 2<br />

Ψ( xt , ) = ft ( ) ψ( x)<br />

Vxt ( , ) Ψ( xt , )<br />

into the <strong>Schrödinger</strong> equation thus affords :<br />

2 2<br />

− h<br />

= − h<br />

ψ<br />

δ δψ(<br />

( x) f(t) x)<br />

f(t)<br />

2<br />

i δt 2m δx<br />

+<br />

Vx ( ) f(t) ψ(<br />

x)


Simplyfied <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

2 2<br />

h<br />

h<br />

− ψ<br />

δ δψ(<br />

( x) f(t) x)<br />

= − f(t) +<br />

2<br />

i δt 2m δx<br />

1<br />

A multiplication from the left by affords :<br />

f() t ψ( x)<br />

2 2<br />

h 1 δf(t)<br />

h 1 δψ(<br />

x)<br />

− = − +<br />

2<br />

if() t δt 2mψ(<br />

x) δx<br />

Vx ( ) f(t) ψ(<br />

x)<br />

Vx ( )<br />

<strong>The</strong> R.H.S. does not depend on t if we now assume that<br />

V is time independent. Thus, the L.H.S. must also be<br />

independent of t


Simplyfied <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

Thus :<br />

h 1 δf(t)<br />

− = E = constant<br />

ift () δt<br />

<strong>The</strong> L.H.S. does not depend on x so the R.H.S. must also<br />

be independent of x and equal to the same constant, E.<br />

h 2 1 δψ<br />

2 ( x)<br />

− + V( x) = E = constant<br />

2<br />

2m<br />

ψ(<br />

x) δx


We can now solve for f(t) :<br />

h 1 δf(t)<br />

− = E = constant<br />

ift () δt<br />

Or :<br />

Simplyfied <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

δf(t)<br />

i Et δ<br />

f() t<br />

=− h<br />

Now integrating from time t=0 to t=to on both sides affords:<br />

t<br />

o<br />

∫<br />

o<br />

δf(t)<br />

o<br />

i<br />

=−∫ Et δ<br />

f() t h<br />

t<br />

o


Simplyfied <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

t<br />

o<br />

∫<br />

o<br />

δf(t)<br />

o<br />

i<br />

=−∫ Et δ<br />

f() t h<br />

t<br />

o<br />

i<br />

ln[ ft ( o)] − ln[ fo ( )] = − Et [ o −0]<br />

h<br />

i<br />

ln[ f( to)] =− Et o + ln[ f ( o )]<br />

h<br />

Cons<br />

tan<br />

t<br />

ln[ f( t )]<br />

o<br />

i<br />

=− Et o +<br />

h<br />

C


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

Or:<br />

ln[ f ( t i<br />

o)]<br />

=− Et o + C<br />

h<br />

i i<br />

f ()= t Exp<br />

⎡ − Et + C<br />

⎤ Exp C Exp Et<br />

⎣⎢ ⎦⎥ = [ ] ⎡ ⎣⎢<br />

− ⎤<br />

h<br />

h ⎦⎥<br />

E E<br />

f ( t ) = Exp[ C] ⎡ ⎤ (cos t isin t )<br />

⎣⎢ ⎦⎥ − ⎡ ⎤<br />

h ⎣⎢ h ⎦⎥


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

E E<br />

f ( t ) = Exp[ C] ⎡ ⎤ (cos t isin t )<br />

⎣⎢ ⎦⎥ − ⎡ ⎤<br />

h ⎣⎢ h ⎦⎥<br />

+<br />

-<br />

i<br />

i<br />

- i +<br />

t = 0 t =π (h/ E) t = π(h/ E) t<br />

2 = 3π<br />

2 (h /E) t= 2π(h/ E)<br />

Change of<br />

sign of f(t)<br />

with time


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

<strong>Time</strong> independent <strong>Schrödinger</strong> equation<br />

<strong>The</strong> equation for ψ(x) is given by<br />

h 2 1 δψ<br />

2 ( x)<br />

− + Vx ( ) =<br />

2m<br />

ψ(<br />

x)<br />

2<br />

δx<br />

E<br />

Or :<br />

h 2 2 2<br />

δψ(<br />

x)<br />

− + ψ( x) Vx ( ) = Eψ(<br />

x)<br />

2m δx


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

<strong>Time</strong> independent <strong>Schrödinger</strong> equation<br />

h 2 2 2<br />

δψ(<br />

x)<br />

− + ψ( x) Vx ( ) = Eψ(<br />

x)<br />

2m δx<br />

This is the time-independent Schroedinger <strong>Equation</strong><br />

for a particle moving in the time independent potential V(x)<br />

It is a postulate of Quantum Mechanics that E is<br />

the total energy of the system<br />

Part of QM postulate 6


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

<strong>Time</strong> independent <strong>Schrödinger</strong> equation<br />

<strong>The</strong> total wavefunction for a one-dimentional particle in<br />

a potential V(x) is given by<br />

Ψ( xt , ) = ft ( ) ψ( x)<br />

= Exp[ C] Exp[ −i E t] ψ( x)<br />

AExp[ i E h<br />

= − t] ψ( x)<br />

h


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

<strong>Time</strong> independent <strong>Schrödinger</strong> equation<br />

If ψ(x) is a solution to<br />

h 2 2 2<br />

δψ(<br />

x)<br />

− + ψ( x) Vx ( ) = Eψ(<br />

x)<br />

2m δx<br />

So is A ψ(x)<br />

<strong>Lecture</strong> 2<br />

h 2 δ<br />

2 ( Aψ(<br />

x))<br />

− + Aψ( x) V( x) = AEψ(<br />

x)<br />

2<br />

2m δx


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

time independent probability function<br />

h 2 δ<br />

2 ( Aψ(<br />

x))<br />

− + Aψ( x) V( x) = AEψ(<br />

x)<br />

2<br />

2m δx<br />

or :<br />

h 2 2 2<br />

δψ'(<br />

x)<br />

− + ψ'( x) Vx ( ) = Eψ'(<br />

x)<br />

2m δx<br />

with ψ<br />

' (x) = A ψ(x)


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

time independent probability function<br />

Thus we can write without loss of generality for a<br />

particle in a time-independent potential<br />

Ψ( x, t) = Exp[ −i E t] ψ( x)<br />

h<br />

This wavefunction is time dependent and complex.<br />

Let us now look at the corresponding probability density<br />

Ψ( xt , ) Ψ<br />

*<br />

( xt , )


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

with time independent potential energy :<br />

separation of time and space<br />

time independent probability function<br />

We have :<br />

*<br />

Ψ( xt , ) Ψ ( xt , ) = Exp[ −i E t] ψ( x)<br />

h<br />

* *<br />

× Exp[ i E t] ψ ( x) = ψ( x) ψ ( x)<br />

h<br />

Thus , states describing systems with a time-independent<br />

potential V(x) have a time-independent (stationary)<br />

probability density.


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

stationary states<br />

*<br />

Ψ( xt , ) Ψ ( xt , ) = Exp[ −i E t] ψ( x)<br />

h<br />

* *<br />

× Exp[ i E t] ψ ( x) = ψ( x) ψ ( x)<br />

h<br />

This does not imply that the particle is stationary.<br />

However, it means that the probability of finding<br />

a particle in the interval x + -1/2∆x to x +1/2∆x is<br />

constant.


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

stationary states<br />

*<br />

ψ( x) ψ ( x)<br />

dx Independent of time<br />

We say that systems that can be described by<br />

wave functions of the type<br />

Ψ( x, t) = Exp[ −i E t] ψ( x)<br />

h<br />

Represent<br />

Stationary<br />

states


Simplified <strong>Time</strong> <strong>Dependent</strong> <strong>Schrödinger</strong> <strong>Equation</strong><br />

Postulate 6<br />

<strong>The</strong> time development of the<br />

state of an undisturbed system<br />

is given by the time - dependent<br />

<strong>Schrödinger</strong> equation<br />

h δΨ( xt , )<br />

− =<br />

i δt<br />

Hˆ Ψ( x, t)<br />

where H ˆ is the Hamiltonian<br />

(i.e. energy) operator<br />

for the quantum mechanical system


What you should know from this lecture<br />

1. You should know postulate 6 and the form of the<br />

time dependent <strong>Schrödinger</strong> equation<br />

h δΨ( xt , )<br />

− =<br />

i δt<br />

Hˆ Ψ( x, t)<br />

2. You should know that the wavefunction for<br />

systems where the potential energy is independent of<br />

time [V(x,t) → V(x)] is given by<br />

Ψ( x, t) = Exp[ −i E t] ( x)<br />

h<br />

ψ<br />

Where ψ( x)<br />

is a solution to the time - independent<br />

<strong>Schrödinger</strong> equation : Hψ( x) = Eψ(<br />

x),<br />

and E is the energy of the system.


What you should know from this lecture<br />

3. Systems with a time independent potential<br />

energy [V(x,t) → V(x) ] have a time - independent<br />

probability density :<br />

* *<br />

Ψ( xt , ) Ψ ( xt , ) = Exp[ −i E t] ψ( x) Exp[ i E t] ψ ( x)<br />

h<br />

h<br />

= ψ( x) ψ<br />

*<br />

( x).<br />

<strong>The</strong>y are called stationary states

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!