01.11.2014 Views

Handout for this lecture - Cobalt

Handout for this lecture - Cobalt

Handout for this lecture - Cobalt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lecture 32 : The Hückel Method<br />

The material in <strong>this</strong> <strong>lecture</strong> covers the following in Atkins.<br />

14.0 The Hückel approximation<br />

(a)The secular determinant<br />

(b) Ethene and frontier orbitals<br />

(c) Butadiene and p-electron binding energy<br />

(d) benzene and aromatic stability<br />

The Hückel method<br />

The Hückel approximation<br />

can be used <strong>for</strong> conjugated<br />

molecules in which there is an<br />

alternation of single and<br />

double bonds along a chain<br />

One example is the<br />

conjugated π - systems<br />

Conjugated systems<br />

We shall also use it<br />

<strong>for</strong> the π - bond in<br />

ethylene<br />

C 2 H 4<br />

Lecture on-line<br />

Huckel Theory (PowerPoint)<br />

Huckel Theory (PDF)<br />

<strong>Handout</strong> <strong>for</strong> <strong>this</strong> <strong>lecture</strong><br />

Butadiene<br />

Benzene<br />

Cyclo-Butadiene<br />

allyl cation<br />

Molecular orbital theory<br />

In molecular orbital<br />

theory we write our<br />

orbitals as linear<br />

combinations of atomic<br />

orbitals :<br />

i=<br />

n<br />

ψk() 1 = ∑ Ciχi()<br />

1<br />

i=<br />

1<br />

We next require that the<br />

corresponding orbital<br />

energies<br />

H dv<br />

W C C k()ˆ<br />

1<br />

(C k<br />

1 , 2,.. n)<br />

= ∫ ψ ψ<br />

∫ ψk() 1ψk()<br />

1dv<br />

be optimal with respect<br />

to {C 1 , C 2 ,.. C n }<br />

δ<br />

or : W = 0; i = 1,..,n<br />

δCi<br />

This leads to the<br />

set of homogeneous<br />

equations :<br />

k=n<br />

∑ CkHik − WS ik = 0<br />

k=1<br />

i = 1,2,...,n.<br />

For which the<br />

secular determinant<br />

must be zero<br />

Hik − WSik<br />

= 0<br />

i = 1,2,...,n; k = 1,2,...,n<br />

In order to obtain<br />

non - trivial solutions<br />

The Hückel method<br />

We are going to use as our<br />

atomic orbitals a single p π<br />

function on each<br />

carbon atom.<br />

The p π orbital is<br />

the p - function<br />

perpendicular to<br />

the molecular plane<br />

For ethylene we have<br />

two p orbitals π<br />

p A π p B π<br />

For butadiene we have<br />

four p π orbitals<br />

p A π<br />

Conjugated systems<br />

p B π<br />

p C π<br />

p D π<br />

The Hückel method Ethylene The Hückel method<br />

For ethylene we have Non - trivial solutions<br />

For butadiene we have<br />

two p π orbitals<br />

are only possible if<br />

four p π orbitals<br />

the secular determinant<br />

is zero<br />

H11 − E H12 - ES12<br />

= 0<br />

H21 - ES 21 H11<br />

− E<br />

Each of the two roots W = Ei<br />

p A p B π<br />

π p C p D π<br />

i = 1,2 can be substituted<br />

π<br />

into the set of linear equations<br />

to obtain orbital coefficients<br />

p A π p B π<br />

For ethylene we can<br />

use linear variation<br />

theory to obtain a set<br />

of linear homogeneous<br />

equations<br />

k=n<br />

∑ CkHik − WS ik = 0<br />

k=1<br />

i = 1,2 and n = 1,2<br />

k=n<br />

ψ<br />

i<br />

= ∑ C<br />

i k p<br />

k π<br />

k=1<br />

k = 1,2 ; i = 1,2<br />

For butadiene we can<br />

use linear variation<br />

theory to obtain a set<br />

of linear homogeneous<br />

equations<br />

k=n<br />

∑ CkHik − WS ik = 0<br />

k=1<br />

i = 1,4 and n = 1,4<br />

Butadiene


The Hückel method<br />

Butadiene The Hückel method<br />

Non - trivial solutions<br />

are only possible if<br />

the secular determinant<br />

is zero<br />

H11 − E H12 - ES12 H13 - ES 13 H14 - ES14<br />

H21 - ES 21 H22 − E H23 - ES 23 H24 - ES24<br />

H31 - ES 31 H32 - ES 32 H33 − E H34 - ES34<br />

H41 - ES 41 H42 - ES 42 H43 - ES 43 H44<br />

− E<br />

Each of the two roots W = Ei<br />

i = 1,4 can be substituted<br />

into the set of linear equations<br />

to obtain orbital coefficients<br />

= 0<br />

k=n<br />

ψ<br />

i<br />

= ∑ C<br />

i k p<br />

k π<br />

k=1<br />

k = 1,4 ; i = 1,4<br />

The Hückel approximation<br />

1. all overlaps are set to zero S ij = 0<br />

H11 − E H12 - ES12<br />

= 0<br />

H21 - ES 21 H11<br />

− E<br />

H11 − E H12<br />

= 0<br />

H 21 H11<br />

− E<br />

H11 − E H12 - ES12 H13 - ES 13 H14 - ES14<br />

H21 - ES 21 H22 − E H23 - ES 23 H24 - ES24<br />

H31 - ES 31 H32 - ES 32 H33 − E H34 - ES34<br />

H41 - ES 41 H42 - ES 42 H43 - ES 43 H44<br />

− E<br />

H11 − E H 12 H 13 H14<br />

H 21 H22 − E H 23 H24<br />

H 31 H 32 H33 − E H34<br />

H 41 H 42 H 43 H44<br />

= 0<br />

= 0<br />

The Hückel method<br />

The Hückel approximation<br />

1. All overlaps are set to zero S ij = 0<br />

2. All diagonal terms are set equal to<br />

Coulomb integral α<br />

The Hückel method<br />

The Hückel approximation<br />

2<br />

1. All overlaps are set to zero S ij = 0<br />

2. All diagonal terms are set equal to<br />

1<br />

3<br />

Coulomb integral α<br />

3. All resonance integrals between non - neighbours<br />

are set to zero<br />

4<br />

H11 − E H12<br />

= 0<br />

H 21 H11<br />

− E<br />

α − E H<br />

=<br />

H α −<br />

12 0<br />

21 E<br />

H11 − E H 12 H 13 H14<br />

H 21 H22 − E H 23 H24<br />

H 31 H 32 H33 − E H34<br />

H 41 H 42 H 43 H44<br />

α − E H 12 H 13 H14<br />

H 21 α − E H 23 H24<br />

H 31 H 32 α − E H34<br />

H 41 H 42 H 43 α - E<br />

= 0<br />

= 0<br />

α − E H<br />

=<br />

H α −<br />

12 0<br />

21 E<br />

α − E H<br />

=<br />

H α −<br />

12 0<br />

21 E<br />

α − E H 12 H 13 H14<br />

H 21 α − E H 23 H24<br />

= 0<br />

H 31 H 32 α − E H34<br />

H 41 H 42 H 43 α - E<br />

α − E H 12 0 0<br />

H 21 α − E H 23 0<br />

0 H α − E H<br />

= 0<br />

32 34<br />

0 0 H 43 α - E<br />

The Hückel method<br />

The Hückel approximation<br />

2<br />

1. All overlaps are set to zero S ij = 0<br />

1<br />

3<br />

2. All diagonal terms are set equal to<br />

Coulomb integral α<br />

3. All resonance integrals between non - neighbours<br />

are set to zero<br />

4. All remaining resonance integrals<br />

are set to β<br />

α − E H<br />

=<br />

H α −<br />

12 α−<br />

E β<br />

0<br />

= 0<br />

21 E β α−<br />

E<br />

α − E H 12 0 0<br />

H 21 α − E H 23 0<br />

0 H α − E H<br />

= 0<br />

32 34<br />

0 0 H 43 α - E<br />

α−<br />

E β 0 0<br />

β α−<br />

E β 0<br />

0 β α−<br />

E β<br />

= 0<br />

0 0 β α- E<br />

4<br />

The Hückel method<br />

The Hückel approximation<br />

1. All overlaps are set to zero S ij = 0<br />

2. All diagonal terms are set equal to<br />

Coulomb integral α<br />

3. All resonance integrals between non - neighbours<br />

are set to zero<br />

4. All remaining resonance integrals<br />

are set to β<br />

α−<br />

E β<br />

= 0<br />

β α−<br />

E<br />

α−<br />

E β 0 0<br />

β α−<br />

E β 0<br />

0 β α−<br />

E β<br />

0 0 β α- E<br />

= 0<br />

1<br />

2<br />

3<br />

4


α β α β ψ π π<br />

The Hückel method<br />

Solutions <strong>for</strong> ethylene<br />

α−<br />

E β<br />

= ( α−E) 2 − β<br />

2<br />

= 0<br />

β α−<br />

E<br />

( α− E)<br />

2<br />

= β<br />

2<br />

;( α− E) = ± β<br />

E 1 = α+<br />

β ( α and β negative)<br />

E 2 = − ( and negative)<br />

k=n<br />

∑ CkHik − WS ik = 0<br />

k=1<br />

i = 1,2 and n = 1,2<br />

k=n<br />

ψ<br />

i<br />

= ∑ C<br />

i k p<br />

k π<br />

k=1<br />

k = 1,2 ; i = 1,2<br />

1 1<br />

ψ2<br />

=− p<br />

1<br />

π + p<br />

2<br />

π<br />

2 2<br />

1 1 1 2<br />

1 = p + p<br />

2 2<br />

The Hückel method<br />

Solutions <strong>for</strong> butadiene<br />

α−<br />

E β 0 0<br />

β α−<br />

E β 0<br />

0 β α−<br />

E β<br />

=<br />

0 0 β α- E<br />

α−<br />

E β 0 β β 0<br />

( α − E)<br />

β α−<br />

E β −β<br />

0 α−E<br />

β =<br />

0 β α−<br />

E 0 β α−<br />

E<br />

α−<br />

β<br />

( α − E) 2 E<br />

−( α−E)<br />

β β β<br />

β α−<br />

E 0 ( α − E)<br />

−<br />

−β 2 α E β + β<br />

20 β<br />

=<br />

β α−<br />

E 0 ( α − E)<br />

( α−E) 4<br />

−( α−E)<br />

2<br />

β<br />

2 −( α−E)<br />

2 β<br />

2 −( α−E)<br />

2 β<br />

2 +β 4<br />

( α−E) 4<br />

−3( α− E)<br />

2<br />

β<br />

2<br />

+ β<br />

4<br />

= 0<br />

The Hückel method<br />

Solutions <strong>for</strong> butadiene<br />

( α−E) 4<br />

−3( α− E)<br />

2<br />

β<br />

2<br />

+ β<br />

4<br />

= 0<br />

Dividing by β<br />

2<br />

:<br />

Introducing : x = ( α -E)2<br />

β<br />

2<br />

Thus<br />

( α − E) 4<br />

( α − E)<br />

2<br />

− 3 + 1=<br />

0<br />

β<br />

4<br />

β<br />

2<br />

E = α± 1.62 β and α±<br />

0.62β<br />

x 2 − 3x<br />

+ 1=<br />

0<br />

x = 2.62 ; x = 0.38<br />

The Hückel method<br />

Solutions <strong>for</strong> butadiene<br />

k=n<br />

∑ CkHik − WS ik = 0<br />

k=1<br />

i = 1,4 and n = 1,4<br />

k=n<br />

ψ<br />

i<br />

= ∑ C<br />

i k p<br />

k π<br />

k=1<br />

k = 1,4 ; i = 1,4<br />

The Hückel molecular orbital<br />

energy levels of butadiene and the<br />

top view of the corresponding<br />

π orbitals. The four p electrons<br />

(one supplied by each C)<br />

occupy the two lower π orbitals.<br />

Note that the orbitals are delocalized.<br />

The Hückel method<br />

Solutions <strong>for</strong> butadiene<br />

1<br />

2<br />

4<br />

0.372p 1 π − 0. 602p 2 π + 0.<br />

602p 3 π −0.372p<br />

4 π<br />

3<br />

The Hückel method Solutions <strong>for</strong> butadiene<br />

Comparison between PIB<br />

and Huckel treatment of<br />

butadiene<br />

Same nodal structure<br />

2<br />

4<br />

Huckel<br />

FMO<br />

1<br />

3<br />

0. 602pp 1 π −0.372 2 π −0.372p 3 π + 0.602p<br />

4 π<br />

α−.62β<br />

9h 2<br />

E 3 =<br />

8mL 2 ,<br />

1<br />

2<br />

3<br />

4<br />

α+.62β<br />

−0. 602pp 1<br />

− 0.372<br />

2<br />

+ 0.372p<br />

3<br />

+ 0.602p<br />

4<br />

π π π π<br />

α+1.62β<br />

4 h 2<br />

E 2 =<br />

8mL 2 ,<br />

1<br />

2<br />

3<br />

4<br />

h 2<br />

E 1 =<br />

8mL 2 ,<br />

0.372p 1 π + 0. 602p 2 π + 0.<br />

602p 3 π + 0.372p<br />

4 π


The Hückel method Solutions <strong>for</strong> butadiene<br />

The Hückel method Cyclobutadiene<br />

Butadiene<br />

α−<br />

E β 0<br />

β<br />

We can write butadiene<br />

β α−<br />

E β 0<br />

as two localized π - bonds<br />

α−.62β<br />

0 β α−<br />

E β<br />

= 0<br />

2 3<br />

β 0 β α- E<br />

1 4<br />

Or two delocalized π - bonds 4π<br />

0.5p 1 π − 05 . p 2 π + 05 . p 3 π −0.5p<br />

4 π<br />

α+.62β<br />

E Bu E Et<br />

α+1.62β<br />

π( ) − 2 π( )<br />

∴ delocalization<br />

energy<br />

α− 2β<br />

0.5p 1 π −05 . p 2 π − 05 . p 3 π + 0.5p<br />

4 π<br />

Eπ( Bu) = 2( α+ 1. 62β) + 2( α+<br />

. 62β)<br />

Ethylene<br />

= 4α+<br />

4.<br />

48β<br />

α−β<br />

α α<br />

2Eπ ( Et) = 4( α+ β)<br />

= 4α+<br />

4β<br />

α+ 2β<br />

0.5p 1 π + 05 . p 2 π −05<br />

. p 3 π −0.5p<br />

4 π<br />

Delocalization energy = .48β<br />

α+β<br />

( −36 kJ mol -1 )<br />

0.5p 1 π + 05 . p 2 π + 05 . p 3 π + 0.5p<br />

4 π<br />

The Hückel method Cyclobutadiene<br />

1<br />

2 3<br />

4<br />

1<br />

2<br />

4<br />

3<br />

No delocalization<br />

energy<br />

The Hückel method Benzene<br />

The C - C and C - H<br />

σ - orbitals<br />

α− 2β<br />

α−<br />

β<br />

α α<br />

Benzene<br />

α+ 2β<br />

α+<br />

β<br />

The framework of benzene<br />

is <strong>for</strong>med by the overlap of Csp2<br />

hybrids, which fit without strain<br />

into a hexagonal arrangement.<br />

The Hückel method<br />

Benzene<br />

The Hückel method<br />

Benzene<br />

α−<br />

E β 0 0 0 β<br />

β α−<br />

E β<br />

0<br />

β 0 α−<br />

E β 0 0<br />

0 0 β α−<br />

E β 0<br />

0 0 0 β α- E β<br />

β 0 0 β β α- E<br />

= 0<br />

α− 2β<br />

α−<br />

β<br />

Delocalization energy =<br />

2( α+ 2 β) + 4( α+ β) − 6( α+<br />

β)<br />

= 2β<br />

−150 kJ mol -1<br />

E= α± 2 β ; α± β;<br />

α±<br />

β<br />

α+<br />

β<br />

k=n<br />

k=n<br />

∑ CkHik − WS ik = 0 ψ<br />

i<br />

= ∑ C<br />

i k p<br />

k π<br />

k=1<br />

k=1<br />

α+ 2β<br />

i = 1, 6 and n = 1, 6<br />

k = 1, 6 ; i = 1, 6


What you should learn from <strong>this</strong> <strong>lecture</strong><br />

1. Be able to construct the secular<br />

determinant <strong>for</strong> a conjugated π - system<br />

within the Huckel approximation<br />

2. Be able to calculate orbital<br />

energies <strong>for</strong> simple systems<br />

The Hückel method<br />

allyl cation<br />

2<br />

3<br />

The allyl system<br />

α−<br />

E β 0<br />

β α−<br />

E β<br />

0 β α−<br />

E<br />

= 0<br />

3. You will not be asked to find<br />

the molecular orbitals. However,<br />

you should be able to discuss<br />

provided orbitals in terms of bonding<br />

and anti - bonding interactions<br />

α− 142 . α<br />

α<br />

0.5p 1 π − 0. 707p 2 π + 0.<br />

5p<br />

3 π<br />

0.707p 1 π − 0.<br />

707p<br />

3 π<br />

α+ 142 . α<br />

0.5p 1 π + 0. 707p 2 π + 0.<br />

5p<br />

3 π

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!