23.04.2014 Views

Nanoscience and Nanotechnology at McMaster University - Arizona ...

Nanoscience and Nanotechnology at McMaster University - Arizona ...

Nanoscience and Nanotechnology at McMaster University - Arizona ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nanoscience</strong> <strong>and</strong> <strong>Nanotechnology</strong><br />

<strong>at</strong> <strong>McMaster</strong> <strong>University</strong><br />

A Model for an Interdisciplinary Approach<br />

<strong>Arizona</strong> <strong>Nanotechnology</strong> Symposium: Small is<br />

Big<br />

April 10, 2008


<strong>McMaster</strong> <strong>University</strong><br />

• Established in 1887<br />

• 65 km SW of Toronto / 70 km SE of W<strong>at</strong>erloo<br />

• 21,000+ undergradu<strong>at</strong>e <strong>and</strong> gradu<strong>at</strong>e students<br />

• 1,170+ full-time faculty (96% with PhD)<br />

• 6 Faculties – health sciences, engineering,<br />

business, humanities, science, social science<br />

• 140 undergradu<strong>at</strong>e degree programs<br />

• Students & faculty from 70+ countries<br />

• 40+ intern<strong>at</strong>ional exchange agreements<br />

• Among the Top 10 best places to work in academia<br />

(The Scientist)


CEDT<br />

Centre for Emerging Device Technologies<br />

Devices<br />

Systems<br />

Micro- <strong>and</strong> Nanosystems<br />

Labor<strong>at</strong>ory<br />

(CFI/ORF RI 2007)<br />

M<strong>at</strong>erials


FACILITIES<br />

M<strong>at</strong>erials Growth<br />

•Molecular Beam Epitaxy<br />

– AlInGaAsPSb(N)<br />

•ICP-PECVD with in-situ<br />

Ellipsometry<br />

•ECR-PECVD<br />

•RF-Magnetron<br />

Sputtering<br />

•Laser Abl<strong>at</strong>ion<br />

•Pulsed Laser Deposition<br />

Photonic <strong>and</strong><br />

Optoelectronics<br />

Integr<strong>at</strong>ion <strong>and</strong><br />

Packaging<br />

M<strong>at</strong>erials<br />

Characteriz<strong>at</strong>ion<br />

•Photoluminescence<br />

•Electroluminescence<br />

•Electron Microscopy<br />

•X-ray Diffraction<br />

•Hall Effect<br />

•Positron Annihil<strong>at</strong>ion<br />

•Spectroscopic <strong>and</strong><br />

Scanning Ellipsometry<br />

•Thin Film Stress<br />

Measurement<br />

•Surface Profilometry<br />

•Scanning<br />

Photoluminescence<br />

<strong>and</strong> Reflectance<br />

•Nuclear Magnetic<br />

Resonance<br />

Device Fabric<strong>at</strong>ion<br />

Mask Design<br />

Device Modelling<br />

Clean Room Facilities:<br />

Photo- <strong>and</strong> e-beam<br />

lithography<br />

FIB<br />

Metalliz<strong>at</strong>ion<br />

Reactive Ion Etching<br />

Holographic Gr<strong>at</strong>ings<br />

Device Testing<br />

High-speed/highfrequency<br />

Reliability Studies<br />

Bio-electromagnetics<br />

“Quiet” Environments


Techniques<br />

Theory<br />

New M<strong>at</strong>erials<br />

Fundamentals<br />

Nanoelectronics<br />

Nanom<strong>at</strong>erials Synthesis<br />

Photonics<br />

Health<br />

Environment<br />

Energy<br />

<strong>McMaster</strong><br />

UofA<br />

UofA<br />

SFU<br />

Orsay<br />

Oxford<br />

<strong>McMaster</strong><br />

Toronto<br />

Montreal<br />

Dalhousie<br />

York<br />

<strong>McMaster</strong><br />

INRS<br />

Sherbrooke<br />

Windsor<br />

NRCan<br />

ICPET<br />

Queen’s<br />

ICPET<br />

Windsor<br />

UWO<br />

Queen’s <strong>McMaster</strong><br />

Dalhousie<br />

Laval<br />

Toronto<br />

<strong>McMaster</strong><br />

UofA<br />

UBC<br />

INRS<br />

Polytechnique<br />

IMI<br />

SFU<br />

Polytechnique<br />

Cambridge<br />

UofA<br />

Toronto<br />

Manitoba<br />

York<br />

ENS-Cachan<br />

Manitoba<br />

<strong>McMaster</strong><br />

USask<br />

Carleton<br />

EPFL<br />

Env. Can.<br />

<strong>McMaster</strong><br />

Montreal<br />

Toronto<br />

Delft<br />

FHI<br />

Delft<br />

FHI<br />

Delft<br />

UBC<br />

INRS<br />

Dortmund<br />

Monash<br />

GATech<br />

McGill<br />

UWO<br />

York<br />

Geosciences<br />

UWO<br />

UNB<br />

Ottawa<br />

IMS<br />

NTNU<br />

<strong>McMaster</strong><br />

Polytechnique<br />

Acadia<br />

Tsinghua<br />

UIUC<br />

Montreal<br />

SIMS<br />

McGill<br />

UBC<br />

UBC<br />

Sherbrooke<br />

UBC<br />

Sherbrooke<br />

UofA<br />

UBC<br />

RPI CINT<br />

Cambridge<br />

Queen’s<br />

IMI<br />

Intern<strong>at</strong>ional outreach:<br />

Monash (Australia),<br />

Cambridge,<br />

Imperial College, Rouen<br />

(France)


The Canadian Centre for Electron Microscopy<br />

2 FEI Titans:<br />

1) double correctors <strong>and</strong> monochrom<strong>at</strong>or<br />

2) image corrector <strong>and</strong> monochrom<strong>at</strong>or, laser<br />

JEOL 2010F, STEM HB601 Cryo, JEOL 7000F SEM, CM12, Zeiss NVision<br />

FIB/SEM


Elemental Analysis of Nanoscale Structures<br />

380 Torr<br />

Al 2<br />

O 3<br />

C<br />

50 nm<br />

Ni-Al<br />

Ni O C<br />

G. Botton’s Group: N. Braidy, PhD student, C.Andrei, PDF<br />

Collabor<strong>at</strong>ion with R. Hughes <strong>and</strong> J. Preston, PLD Labor<strong>at</strong>ory, BIMR


GaAsP Nanowire<br />

Aberr<strong>at</strong>ion-corrected Imaging<br />

Cs (image) corrected Titan<br />

HRTEM images<br />

LaBaCuO<br />

PtRu np<br />

Collabor<strong>at</strong>ions between synthesis <strong>and</strong> characteriz<strong>at</strong>ion<br />

experts


MAJOR FOCUS AREAS<br />

ELECTRONIC AND OPTICAL MATERIALS<br />

Functionalized Carbon Nanotubes<br />

Silicon Nanostructures<br />

III-V <strong>and</strong> II-VI Quantum Structures<br />

2<br />

nm<br />

MEMS <strong>and</strong> BIO-MEMS<br />

POLYMER NANOTECHNOLOGY<br />

Crystalliz<strong>at</strong>ion<br />

Confinement<br />

Self-assembly <strong>and</strong> P<strong>at</strong>tern Form<strong>at</strong>ion<br />

NANOSTRUCTURED DEVICES<br />

Wireless Sensors<br />

Superl<strong>at</strong>tice Photodetectors<br />

Nanoelectronics-based Bio-imaging<br />

Nanowire-based Photovoltaics<br />

Silicon Photonic Circuits


CdTe Nanowire Structures<br />

nanowires<br />

pyramids<br />

tripods<br />

tetrapods<br />

half cylinders<br />

J. Preston, R. Hughes, P.Mascher, S. Neretina, CEDT <strong>and</strong> BIMR


Nanowire structures: InP/InGaAs/InP<br />

R.R. LaPierre<br />

G. Botton


InAs Quantum Dots (GS-MBE)<br />

D.A. Thompson <strong>and</strong> S. Tavakoli<br />

D (Diameter) = 22.1±0.15 nm<br />

H (Height) = 10.03± 0.70 nm<br />

ρ (Density) = 8.04×10 10 cm -2<br />

D = 16.36 ± 0.08 nm<br />

H = 9.14 ± 0.65 nm<br />

ρ = 1.30 × 10 11 cm -2<br />

D = 19.34 ± 0.10 nm<br />

H = 9.23 ± 0.65 nm<br />

ρ = 1.87 × 10 11 cm -2<br />

Room temper<strong>at</strong>ure PL from QDots:<br />

Growth on meta-morphic layers


In 0.53 Ga 0.37 Al 0.1 As<br />

InAs Quantum Wires (GS-MBE)<br />

D.A. Thompson, K. Cui <strong>and</strong> G. Botton<br />

InP<br />

10 nm<br />

5 nm<br />

In 0.53 Ga 0.37 Al 0.1 As<br />

InAs QWrs<br />

0<br />

In 0.53 Ga 0.37 Al 0.1 As<br />

InP Buffer<br />

50 nm<br />

[011]<br />

[011]<br />

2 nm


Si nanocrystal form<strong>at</strong>ion<br />

CEDT<br />

Centre for Emerging Device Technologies<br />

X-ray intensity (a.u.)<br />

1100 o C<br />

1000 o C<br />

900 o C<br />

As grown<br />

Si (111)<br />

Si (220)<br />

Si (311)<br />

1100 o C<br />

1000 o C<br />

900 o C<br />

a-Si y O 1-y<br />

y=0.45<br />

t=2 h<br />

Glancingangle<br />

X-ray<br />

diffraction<br />

As grown<br />

15 20 25 30 45 50 55 60<br />

2θ (degrees)<br />

D. Comedi et al., J. Appl. Phys. 99 (2006)


MAJOR FOCUS AREAS<br />

ELECTRONIC AND OPTICAL MATERIALS<br />

Functionalized Carbon Nanotubes<br />

Silicon Nanostructures<br />

III-V <strong>and</strong> II-VI Quantum Structures<br />

2<br />

nm<br />

MEMS <strong>and</strong> BIO-MEMS<br />

POLYMER NANOTECHNOLOGY<br />

Crystalliz<strong>at</strong>ion<br />

Confinement<br />

Self-assembly <strong>and</strong> P<strong>at</strong>tern Form<strong>at</strong>ion<br />

NANOSTRUCTURED DEVICES<br />

Wireless Sensors<br />

Superl<strong>at</strong>tice Photodetectors<br />

Nanoelectronics-based Bio-imaging<br />

Nanowire-based Photovoltaics<br />

Silicon Photonic Circuits


Atomic Scale NEMS Devices<br />

Rafael Kleiman’s Group<br />

CEDT<br />

Centre for Emerging Device Technologies


MAJOR FOCUS AREAS<br />

ELECTRONIC AND OPTICAL MATERIALS<br />

Functionalized Carbon Nanotubes<br />

Silicon Nanostructures<br />

III-V <strong>and</strong> II-VI Quantum Structures<br />

2<br />

nm<br />

MEMS <strong>and</strong> BIO-MEMS<br />

POLYMER NANOTECHNOLOGY<br />

Crystalliz<strong>at</strong>ion<br />

Confinement<br />

Self-assembly <strong>and</strong> P<strong>at</strong>tern Form<strong>at</strong>ion<br />

NANOSTRUCTURED DEVICES<br />

Wireless Sensors<br />

Superl<strong>at</strong>tice Photodetectors<br />

Nanoelectronics-based Bio-imaging<br />

Nanowire-based Photovoltaics<br />

Silicon Photonic Circuits


How does crystallis<strong>at</strong>ion start?<br />

These are droplets of<br />

PEO on a substr<strong>at</strong>e<br />

imaged with AFM. The<br />

black droplets have not<br />

yet crystallised (i.e. they<br />

are liquid), the striped<br />

droplets are crystalline<br />

<strong>and</strong> show their lamellae.<br />

Note th<strong>at</strong> the small<br />

droplet has just 10<br />

molecules!<br />

250 nm<br />

Kari Dalnoki-Veress<br />

only ~10 chains (370 kg/mol)!!!


Droplets in an anisotropic liquid<br />

Expected spherical cap<br />

Hyperbolic cap th<strong>at</strong> is layered!<br />

These droplets can be used to make lenses<br />

th<strong>at</strong> have unique optical properties because<br />

they are hyperbolic in shape. They can also<br />

be used as building blocks in nano-devices<br />

Kari Dalnoki-Veress


MAJOR FOCUS AREAS<br />

ELECTRONIC AND OPTICAL MATERIALS<br />

Functionalized Carbon Nanotubes<br />

Silicon Nanostructures<br />

III-V <strong>and</strong> II-VI Quantum Structures<br />

2<br />

nm<br />

MEMS <strong>and</strong> BIO-MEMS<br />

POLYMER NANOTECHNOLOGY<br />

Crystalliz<strong>at</strong>ion<br />

Confinement<br />

Self-assembly <strong>and</strong> P<strong>at</strong>tern Form<strong>at</strong>ion<br />

NANOSTRUCTURED DEVICES<br />

Wireless Sensors<br />

Superl<strong>at</strong>tice Photodetectors<br />

Nanoelectronics-based Bio-imaging<br />

Nanowire-based Photovoltaics<br />

Silicon Photonic Circuits


Ray LaPierre (Engineering Physics) <strong>and</strong> Alex Adronov (Chemistry)<br />

» Adronov fabric<strong>at</strong>es flexible, conductive films of stacked<br />

SWNTs, functionalized with Au nanoparticles<br />

1 μm<br />

CEDT<br />

Centre for Emerging Device Technologies


» the au nanoparticles act as seeds for semiconductor<br />

nanowire growth. Lapierre grows III-V nanowires on<br />

Adronov’s CNT films for PV applic<strong>at</strong>ions<br />

CEDT<br />

Centre for Emerging Device Technologies


• Antimonide m<strong>at</strong>erials<br />

• Mid Infrared lasers/detectors for<br />

Biomedical applic<strong>at</strong>ions<br />

Defense <strong>and</strong> security applic<strong>at</strong>ions<br />

Next gener<strong>at</strong>ion non-silica fibers<br />

Superl<strong>at</strong>tice Photodetectors<br />

TEM images<br />

GaSb cap<br />

Top InGaSb<br />

metamorphic layer<br />

n<br />

Top layer n+ In 0.1<br />

Ga 0.9<br />

Sb<br />

n<br />

InGaSb layers<br />

Undoped absorption layer<br />

InAs 0.816 Sb 0.184<br />

GaSb buffer<br />

GaSb substr<strong>at</strong>e<br />

Superl<strong>at</strong>tice Multiplic<strong>at</strong>ion layer<br />

In 0.1 Ga 0.9 Sb /AlInGaSb<br />

p<br />

p<br />

+ Bottom contact p+ In0.1 Ga 0.9 Sb ~ 0.5μm<br />

AFM image<br />

Metamorphically Graded Buffer<br />

from GaSb to In 0.15 Ga 0.85 Sb ~ 1.5μm<br />

p GaSb Substr<strong>at</strong>e<br />

Surface roughness: 0.175nm; Disloc<strong>at</strong>ion density: ~3x10 8 cm -2


Silicon-based Photonic<br />

Systems<br />

Detectors<br />

Optical source<br />

CMOS circuitry<br />

Optical <strong>at</strong>tenu<strong>at</strong>or<br />

Waveguides<br />

Microfluidics<br />

I 1<br />

I 2<br />

Couplers<br />

Silicon bench<br />

P. Jessop, A. Knights, P. Mascher (<strong>McMaster</strong>), G. Tarr (Carleton), S. Janz (NRC)


Device Design & Fabric<strong>at</strong>ion<br />

Defect<br />

Implant<strong>at</strong>ion<br />

Metal (Al)<br />

contact<br />

SiO 2<br />

n+ (P)<br />

doped<br />

region<br />

1.55 µm<br />

light<br />

x<br />

Si<br />

l<br />

p+ (B)<br />

doped<br />

region<br />

Bradley, Jessop, <strong>and</strong> Knights, APL 86, 241103 (2005).


Silicon Photonics – A Nano Solution?<br />

• Silicon on the nanoscale (Si-ncs)<br />

Nanocrystals<br />

Amorphous nanoclusters<br />

• Quantum confinement<br />

Localiz<strong>at</strong>ion of electrons <strong>and</strong> holes<br />

B<strong>and</strong>gap widening<br />

Relax<strong>at</strong>ion of k-selection rules<br />

• Uncertainty principle<br />

• ‘quasi-direct’ recombin<strong>at</strong>ion<br />

• Inter-b<strong>and</strong>gap electronic st<strong>at</strong>es<br />

Limit observed emission range<br />

Si=O double bond<br />

• Wolkin et al. PRL 82, 197 (1999)


Ce 3+ (<strong>and</strong> Si-ncs)<br />

Eu 2+ (<strong>and</strong> Si-ncs)<br />

PL intensity (a.u.)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

J. Li<br />

AD<br />

700 o C<br />

800 o C<br />

900 o C<br />

1000 o C<br />

1100 o C<br />

1200 o C<br />

PL Intensity (a.u.)<br />

4<br />

3<br />

2<br />

1<br />

J. Li<br />

AD<br />

800 o C<br />

900 o C<br />

1000 o C<br />

1100 o C<br />

1200 o C<br />

0<br />

300 400 500 600 700 800 900<br />

Wavelength (nm)<br />

0<br />

300 400 500 600 700 800 900<br />

Wavelength (nm)<br />

PL intensity (a.u.)<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

As deposited<br />

800 o C<br />

900 o C<br />

1000 o C<br />

1100 o C<br />

1200 o C<br />

0.00015<br />

Tb 3+ Er 3+<br />

J. Li<br />

PL Intensity (a.u.)<br />

0.00010<br />

0.00005<br />

As deposited<br />

800 o C<br />

900 o C<br />

1000 o C<br />

1100 o C<br />

1200 o C<br />

D. Blakie<br />

0.0<br />

300 400 500 600 700 800<br />

Wavelength (nm)<br />

0.00000<br />

1400 1450 1500 1550 1600 1650 1700<br />

Wavelength (nm)


<strong>McMaster</strong> School of Biomedical Engineering –<br />

An Equal Partnership of Engineering <strong>and</strong> Health Sciences<br />

McMASTER SCHOOL OF<br />

BIOMEDICAL ENGINEERING<br />

RESEARCH<br />

EDUCATION<br />

BIOMATERIALS<br />

LABORATORY<br />

GRADUATE<br />

UNDERGRAD<br />

MEDICAL IMAGING<br />

LABORATORY<br />

BIOPHOTONICS<br />

LABORATORY<br />

INTEGRATED SYSTEMS<br />

LABORATORY<br />

MEDICAL ROBOTICS<br />

LABORATORY<br />

MEDICAL DEVICES<br />

LABORATORY<br />

BIOMECHANICS<br />

LABORATORY<br />

MASTERS<br />

PhD<br />

CHEMICAL AND<br />

BIOENGINEERING<br />

ELECTRICAL AND<br />

BIOMEDICAL ENG<br />

MECHANICAL AND<br />

BIOMEDICAL ENG<br />

FACULTY OF<br />

HEALTH SCIENCES<br />

http://msbe.mcmaster.ca


Encapsul<strong>at</strong>ed fluorescence imaging - clinical<br />

diagnosis<br />

Pulsed UV lasers<br />

Jamal Deen <strong>and</strong> Qiyin Fang<br />

Optical<br />

window<br />

Polymer micro-lens<br />

Extra-cellular<br />

m<strong>at</strong>rix<br />

Normal epithelial<br />

cells<br />

B<strong>at</strong>teries<br />

controller<br />

Malignant cells<br />

Antenna<br />

Transducer<br />

Fluorescence<br />

spectroscopic<br />

imaging array<br />

Detector<br />

http://www.med.howard.edu/an<strong>at</strong>omy/gas/wk6/lect19gi.htm<br />

Fluorescence lifetime<br />

spectroscopic detection<br />

single detector<br />

Mirror<br />

Lens<br />

Green GRIN lens Lens


Bonding <strong>and</strong> Interconnect System<br />

Atom <strong>and</strong> ion<br />

beam cleaning<br />

<strong>and</strong> bonding<br />

cluster<br />

An integr<strong>at</strong>ion facility th<strong>at</strong> will be second to<br />

none in its capabilities<br />

Surface<br />

analyzing<br />

cluster<br />

Load lock chamber with<br />

transport<strong>at</strong>ion tool<br />

Scanning electron<br />

microscope with electron<br />

beam lithography<br />

capability<br />

NBIS’s Fe<strong>at</strong>ures:<br />

Door<br />

Alignment accuracy: +/- 0.5 μm<br />

Surface activ<strong>at</strong>ion: Low vacuum , UHV<br />

Sample accommod<strong>at</strong>ion: as small as 1 sq. mm.<br />

Plasma<br />

cleaning<br />

<strong>and</strong> bonding<br />

cluster<br />

Bonding environments: Low vacuum, UHV N 2 gas, Air<br />

Bonding m<strong>at</strong>erials: Ultra-thin metal, semiconductor,<br />

ceramic <strong>and</strong> piezoelectric m<strong>at</strong>erial<br />

Si<br />

SiO2<br />

CMP-Cu<br />

TaN<br />

Cu<br />

CMP-Cu<br />

CMP-Cu<br />

Key advantages of surface activ<strong>at</strong>ed bonding<br />

• No requirement of external pressure, adhesive or he<strong>at</strong>ing<br />

• Sub-μm alignment <strong>and</strong> placement of components<br />

• Two- <strong>and</strong> three-dimensional integr<strong>at</strong>ion of dissimilar m<strong>at</strong>erials<br />

1 μm<br />

Si (chip side)<br />

SiO 2<br />

Cu bump-less electrode<br />

Si (substr<strong>at</strong>e side)<br />

Cu wire<br />

10 µm


http://www.eng.mcmaster.ca/~wwwmini/<br />

MINI/<br />

Contact Inform<strong>at</strong>ion<br />

Gianluigi Botton,<br />

Director<br />

gbotton@mcmaster.ca<br />

John S. Preston, Director<br />

prestonj@mcmaster.ca<br />

Rafael Kleiman,<br />

Director<br />

CEDT<br />

kleiman@mcmaster.c<br />

Centre for Emerging Device<br />

a<br />

Technologies<br />

Micro- <strong>and</strong> Nano-systems<br />

Labor<strong>at</strong>ory M. Jamal Deen, Director<br />

jamal@mcmaster.ca<br />

Peter Mascher, Program Director<br />

mascher@mcmaster.ca


Nano <strong>and</strong> Giga Challenges 14th Canadian Semiconductor<br />

in Electronics,<br />

Technology Conference<br />

Photonics <strong>and</strong> Renewable Energy<br />

Symposium <strong>and</strong> Summer School (Tutorial Lectures)<br />

Hamilton, Ontario, Canada, August 10 - 14, 2009<br />

For further inform<strong>at</strong>ion <strong>and</strong> registr<strong>at</strong>ion visit our web site <strong>at</strong>:<br />

http://asdn.net/ngc2009/ or http://cstc2009.mcmaster.ca<br />

or contact<br />

organizers@asdn.net


<strong>McMaster</strong> <strong>University</strong> – Research Accolades<br />

• Ranked Canada’s most innov<strong>at</strong>ive "medical doctoral"<br />

university eight times in the last 11 years in Maclean's<br />

annual ranking of universities<br />

• Ranked #1 in Canada for Research Intensity ($ per fulltime<br />

faculty) Canada’s Research <strong>University</strong> of the Year 2004<br />

(ResearchInfosource)<br />

• Ranked 6th in Canada’s Top 50 Research Universities with<br />

$308.3 million in sponsored research income<br />

• Ranked among the top 100 universities in the world<br />

(China's Shanghai Jiao Tong <strong>University</strong> annual ranking)<br />

• 1 of only 7 Canadian universities ranked in the top 200<br />

universities in the world by The Times Higher Educ<strong>at</strong>ion<br />

Supplement (2006)


<strong>McMaster</strong> <strong>University</strong><br />

Str<strong>at</strong>egic Research Areas<br />

• Molecular Biology<br />

• Inform<strong>at</strong>ion Technology<br />

• Globaliz<strong>at</strong>ion <strong>and</strong> the Human Condition<br />

• Science-based Innov<strong>at</strong>ion in Manufacturing <strong>and</strong><br />

M<strong>at</strong>erials<br />

• Work <strong>and</strong> Society<br />

• Integr<strong>at</strong>ed Health Research<br />

Faculty of Engineering<br />

Research Priority Areas<br />

• Inform<strong>at</strong>ion Technology<br />

• Biomedical Engineering<br />

• M<strong>at</strong>erials <strong>and</strong> Manufacturing<br />

• Sustainable Energy Systems<br />

• Micro- <strong>and</strong> Nano-systems


<strong>McMaster</strong> Innov<strong>at</strong>ion Park<br />

• 37-acres of brownfields <strong>and</strong> warehouses being<br />

developed into a premiere research park<br />

• Future home of CANMET M<strong>at</strong>erials Technology<br />

Labor<strong>at</strong>ory <strong>and</strong> General Motors of Canada’s Centre<br />

for Corrosion Engineering Research


Nanoelectronics-based Bio-imaging<br />

High speed switch<br />

Pulse gener<strong>at</strong>or<br />

(Si-Ge) - Antenna<br />

(Copper)<br />

(MEMS)<br />

P<strong>at</strong>tern gener<strong>at</strong>or<br />

15<br />

(CMOS)<br />

Coupling medium<br />

(Quartz glass)<br />

Clock gener<strong>at</strong>or<br />

(CMOS)<br />

Threshold<br />

selector<br />

(CMOS)<br />

Wideb<strong>and</strong> LNA<br />

(Si-Ge or compound<br />

semiconductor)<br />

Signal<br />

processor<br />

(CMOS)<br />

|S 21<br />

| (dB)<br />

Sampler<br />

(Compound<br />

semiconductor<br />

less than 10ps)<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

Simul<strong>at</strong>ion<br />

Measurement<br />

-12<br />

2 4 6 8 10 12 14 16<br />

Frequency (GHz)<br />

10<br />

|S 21 | (dB)<br />

Bakr, Deen, Fang,<br />

Hranilovic, Liu,<br />

Nikolova,<br />

Selvaganap<strong>at</strong>hy,<br />

Hayward, P<strong>at</strong>terson<br />

5<br />

0<br />

-5<br />

-10<br />

0 2 4 6 8 10 12 14 16<br />

Frequency (GHz)


Nanoelectronics – Wireless Sensor<br />

B<strong>and</strong>pass<br />

filter<br />

DC mixer<br />

Antenna<br />

Duplexer<br />

LNA<br />

LO<br />

ADC<br />

Channel<br />

select<br />

Baseb<strong>and</strong><br />

processing<br />

PA<br />

DAC<br />

B<strong>and</strong>pass<br />

filter<br />

UC mixer


Nanotubes - Contacts<br />

Chromophore-functionalized<br />

polymers on nanotubes<br />

nanotubes<br />

electrodes<br />

Block copolymer functionalized nanotubes<br />

might also SA into controllable p<strong>at</strong>terns<br />

between deposited electrodes on surfaces<br />

S. Soliveres, et a, Proc. 18th Intern<strong>at</strong>ional<br />

Conf. on Noise in Physical Systems & 1/f<br />

Fluctu<strong>at</strong>ions (ICNF 2005), Salamanca, Spain,<br />

pp. 462-265 (19-23 September 2005).


Collabor<strong>at</strong>ion between Ray LaPierre (Engineering Physics), Cecile Fradin (Physics),<br />

<strong>and</strong> Bhagw<strong>at</strong>i Gupta (Department of Biology)<br />

» Lapierre grows light emitting nanowires. Fradin <strong>and</strong> Gupta use<br />

nanowires for cellular studies.<br />

a<br />

b<br />

SEM image showing ensemble<br />

of AlGaAs nanowires.<br />

Microscopy (left) <strong>and</strong> PL image (right)<br />

of nanowires. Nanowires emit in the<br />

visible region (700 nm) <strong>at</strong> room<br />

temper<strong>at</strong>ure. Scale bar is 1 μm.<br />

Nanowires are injected<br />

into nem<strong>at</strong>ode for<br />

cellular <strong>and</strong> toxicological<br />

studies.


39% Si, annealed <strong>at</strong> 1100 °C (BFTEM, HRTEM, EFTEM)<br />

Si-ncs: Structure<br />

<br />

42 % Si, annealed <strong>at</strong> 1100 °C (BFTEM) <strong>and</strong> 1200 °C (HRTEM)<br />

T.R. Roschuk et al., ECS Transactions 6, 2007


Silicon Photonics – The Giga Challenge<br />

• Si-based light sources<br />

Electrically pumped<br />

• Lasers, LEDs<br />

• Bulk Si - indirect b<strong>and</strong>gap<br />

e-h recombin<strong>at</strong>ion<br />

• Phonon medi<strong>at</strong>ed<br />

• Slow<br />

Competing processes<br />

• Auger process<br />

• Free carrier absorption


Si-ncs: Photoluminescence<br />

• UV excited PL<br />

HeCd Laser<br />

325 nm excit<strong>at</strong>ion<br />

SRSO Samples<br />

• PL in the NIR<br />

Normalized Photon Flux [a.u.]<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

600 C<br />

800 C<br />

1000 C<br />

1100 C<br />

1200 C<br />

0<br />

400 500 600 700 800 900<br />

Wavelength [nm]<br />

T. Roschuk et al., ECS Proc. Vol. 2005-1, 136 (2005)<br />

Normalized Photon Flux<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

y= 0.345<br />

T= 1100ºC<br />

0.36<br />

1100ºC<br />

0.36<br />

1200ºC<br />

0.40<br />

1100ºC 0.40<br />

1200ºC<br />

700 800 900 1000<br />

Wavelength (nm)


Polymer-nanotubes composites<br />

10 nm<br />

10 nm<br />

Polymer<br />

Filled<br />

nanotubes<br />

Carbon Nano-<br />

Torus (?)<br />

A. Adronov et al

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!