24.04.2014 Views

Institute for Nanoscale Physics and Chemistry - KU Leuven

Institute for Nanoscale Physics and Chemistry - KU Leuven

Institute for Nanoscale Physics and Chemistry - KU Leuven

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Institute</strong> <strong>for</strong><br />

<strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

INPAC’s mission:<br />

Investigation of the effect of<br />

nanostructuring <strong>and</strong> nanoscale<br />

confinement of charges, spins,<br />

<strong>and</strong> photons on the electrical,<br />

magnetic, optical, <strong>and</strong> chemical<br />

properties of inorganic, organic,<br />

<strong>and</strong> biomaterials in order to<br />

reveal the fundamental relation<br />

between quantized confined<br />

states <strong>and</strong> physical <strong>and</strong> chemical<br />

properties of these materials<br />

www.kuleuven.be/inpac


Research Activities<br />

Nanosuperconductors<br />

• <strong>Nanoscale</strong> evolution of superconductivity<br />

• Confined flux in individual 2D <strong>and</strong> 3D nanostructures<br />

• Superconductors with nanoengineered periodic pinning arrays<br />

• <strong>Nanoscale</strong> evolution of superconductivity<br />

• Exploration of the ability of biomolecules to <strong>for</strong>m templates <strong>for</strong> deposition of nanomodulated films<br />

Superconducting dots<br />

Antidots (holes) <strong>for</strong><br />

vortex ratchets<br />

16<br />

6<br />

12<br />

8<br />

4<br />

0<br />

0<br />

4<br />

8<br />

12<br />

16<br />

µm<br />

T C<br />

(Φ/Φ 0<br />

) <strong>for</strong> a superconducting ring<br />

6<br />

4<br />

2<br />

0<br />

0<br />

2<br />

4<br />

µm<br />

Nanomagnets<br />

• To study the single entity properties through shrinking its<br />

dimensions (i.e., the evolution of magnetism at nanoscale)<br />

( ) -6.72 eV<br />

a 1<br />

LUMO<br />

(1 dxy ), (1 dx² -y²)<br />

HOMO<br />

( e 2 ) -8.10 eV<br />

(1 d ), (1 d ) ( e 3<br />

) -8.15 eV<br />

xz yz<br />

(1 d z² )<br />

(1 s)<br />

(1 p z )<br />

Ag 4d<br />

b<strong>and</strong><br />

• To underst<strong>and</strong> the properties of both the<br />

elementary "magnetic building blocks"<br />

(nanocells - magnetic clusters, etc.) as well<br />

as their collective behaviour when put<br />

together<br />

X-ray reflectometry mapping of<br />

a patterned magnetic structure<br />

Magnetic domains in an<br />

antiferromagnetic Fe/Cr<br />

superlattice<br />

Calculated electronic structure of a<br />

Ag cluster containing magnetic Co dopants<br />

• To study superstructures (superlattices <strong>and</strong> cluster arrays) through<br />

combining the single magnetic entities (the drive in chemistry to<br />

make advanced structures from elementary building blocks)<br />

Cover (from top to bottom):<br />

Simulated vortex distribution in a superconducting square, cluster deposited on a surface, STM imaging of molecules.


<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

Research Activities<br />

Superconductor/Ferromagnet hybrid nanosystems<br />

• Vortex matter in superconductors with magnetic dots <strong>and</strong> in superconductor / ferromagnet planar hybrids<br />

• New possibilities of vortex manipulation with nanoscale magnetic pinning sites <strong>and</strong> magnetic textures<br />

• Novel phenomena such as field-induced superconductivity <strong>and</strong> domain wall superconductivity<br />

Lattice of magnetic dots<br />

on top of a<br />

superconducting thin film<br />

Field induced superconductivity<br />

Order parameter distribution<br />

in a superconducting square<br />

with a magnetic dot on top<br />

(vorticity= -27)<br />

Magnetic domains in<br />

BaFe 12<br />

O 19<br />

Carbon nanosystems<br />

• Carbon nanotubes <strong>and</strong> related materials, including fullerenes, are unique nanosystems with great scientific<br />

<strong>and</strong> technological potential<br />

• Realistic modeling of the electronic structure of carbon nanomaterials<br />

• Experimental probing of electrical <strong>and</strong> mechanical properties<br />

SEM AFM resonance<br />

Ring currents in<br />

nanographene<br />

MHz<br />

110<br />

nm<br />

300<br />

90<br />

70<br />

1 µm<br />

0<br />

50<br />

SEM <strong>and</strong> AFM imaging of a coiled carbon nanotube, where<br />

the dynamic AFM mode also provides direct in<strong>for</strong>mation<br />

about the mechanical resonance of the windings of the tube


Research Activities<br />

Silicon nanosystems<br />

•To integrate research on Si-based nm particles <strong>and</strong> 2D structures regarding properties of nanoparticles,<br />

layers, interfaces, <strong>and</strong> surfaces, based on a complementary study of phonons, charges, <strong>and</strong> spins<br />

• Metal-doped Si clusters<br />

• Phonon <strong>and</strong> electron states in 2D systems<br />

hν Au/Al (15 nm) hν<br />

• Nanoparticles <strong>and</strong> embedding<br />

IPS<br />

• Interfaces <strong>and</strong> point defects<br />

Intercalated Fe-Si layer<br />

in an Fe matrix<br />

+<br />

-<br />

BIAS<br />

Si<br />

pA<br />

MeO x<br />

Au/Al<br />

Si<br />

pA<br />

V g<br />

>0 V g<br />


<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

Research Activities<br />

Self-assembled molecular <strong>and</strong> macromolecular structures<br />

• Precise control <strong>and</strong> creation of nanoscale organic structures (with special attention to chirality)<br />

• Highly ordered 2D templates <strong>for</strong> nanostructures<br />

• Self-assembled nanostructures under potential control<br />

• Mixtures of molecules <strong>and</strong> polymers self-organizing into bicontinuous percolating systems<br />

• Characterization of the electronic <strong>and</strong> optical properties of self-assembled structures<br />

• Synthesis of new chiral conducting polymers self-assembling into chiral supramolecular structures<br />

STM image of rosettes<br />

<strong>for</strong>med byπ-conjugated<br />

OPV’s<br />

STM image of monomers<br />

<strong>and</strong> s<strong>and</strong>wich dimers of<br />

phthalocyanine<br />

STM image of chiral poly-<br />

(3,7-dimethyloctyl)thiophene<br />

in a chiral mono- <strong>and</strong> bilayer<br />

Chains of bacteria, visualized<br />

by electron microsocopy can be<br />

used as (in this case 1D) templates<br />

to deposit nanoparticles<br />

Fundamental Research - Technology - Education<br />

INPAC – IMEC – Erasmus Mundus MNST<br />

Fundamental Research<br />

INPAC<br />

www.kuleuven.be/inpac<br />

Applied Research<br />

IMEC<br />

www.imec.be<br />

Education<br />

Erasmus Mundus Master of<br />

Nanoscience <strong>and</strong> Nanotechnology<br />

www.kuleuven.be/MNST


Research Facilities<br />

e<br />

µ B<br />

ηω<br />

INPAC<br />

K.U.<strong>Leuven</strong><br />

Modeling<br />

Tools<br />

6<br />

TD(GL)<br />

Abrikosov-<br />

Gor’kov<br />

Bogoliubovde<br />

Gennes<br />

Ab initio<br />

calculation<br />

Kohn – Sham<br />

DFT<br />

Car – Parrinello<br />

DFT<br />

Molecular<br />

dynamics<br />

6<br />

Monte-<br />

Carlo<br />

PAC<br />

Integrated<br />

Physical<br />

Properties<br />

Local<br />

Probe<br />

Techniques<br />

Optical<br />

Techniques<br />

4<br />

5<br />

4<br />

3<br />

Time resolved<br />

calorimetry<br />

LT – vacuum<br />

STM<br />

Quasi-elastic<br />

light scattering<br />

SQUID<br />

VSM<br />

LT – vacuum<br />

STS<br />

Time resolved<br />

spectroscopy<br />

High field<br />

ρ, M, CR, PL<br />

LT- AFM<br />

Photoionization<br />

spectroscopy<br />

Mössbauer<br />

spectroscopy<br />

LT- MFM<br />

UV-VIS<br />

MO KERR<br />

X-ray magnetic<br />

hyperfine spectr.<br />

Micro-Raman<br />

spectroscopy<br />

Hyper-Rayleigh<br />

scattering<br />

Low T CEMS<br />

I-V, C-V, G-V<br />

SPM in fluids<br />

Transient photoconductivity<br />

Neutron<br />

scattering<br />

AFM in fluids<br />

Confocal<br />

microscopy<br />

5<br />

4<br />

3<br />

SHPM<br />

Fluorescent<br />

cell sorter<br />

Rheed<br />

Integrated<br />

Structural<br />

Properties<br />

2<br />

1<br />

0<br />

XRD<br />

XPS<br />

E-beam<br />

patterning<br />

Molecular<br />

beam epitaxy<br />

Auger<br />

Ion beam<br />

patterning<br />

Cluster beam<br />

deposition<br />

Raman<br />

spectroscopy<br />

STM –<br />

writing<br />

Low energy<br />

ion deposition<br />

ESR<br />

IPE<br />

Optical<br />

lithography<br />

Sputtering<br />

Evaporation<br />

RBS<br />

ERD<br />

Channeling<br />

Selfassembly<br />

Spin<br />

casting<br />

Nanomanipulator<br />

Electro-chemical<br />

deposition<br />

SEM<br />

TEM<br />

Self- organized<br />

etching<br />

Potentio-control<br />

adsorption<br />

2<br />

1<br />

0<br />

Langmuir-<br />

Blodgett<br />

Meltquenching<br />

Nano-<br />

Structuring<br />

Techniques<br />

Thin film<br />

Preparation<br />

Thin film preparation<br />

• Molecular beam epitaxy<br />

• Sputtering & Evaporation<br />

• Low energy ion deposition/implantation<br />

• Cluster beam deposition<br />

• Electro-chemical deposition<br />

• Spin casting<br />

• Potentio-control adsorption<br />

• Langmuir-Blodgett layer deposition<br />

Nanostructuring techniques<br />

• E-beam patterning<br />

• Ion beam patterning<br />

• STM-writing<br />

• Optical lithography<br />

• Nanomanipulation<br />

• Self-assembly<br />

• Self-organized etching<br />

• Melt quenching<br />

Riber MBE - IMBL


Cluster source<br />

<strong>and</strong> vaporisation laser<br />

Local probe techniques<br />

• Scanning tunnelling microscopy<br />

(low temperature <strong>and</strong> vacuum)<br />

• Scanning tunnelling spectroscopy<br />

(low temperature <strong>and</strong> vacuum)<br />

• Atomic <strong>for</strong>ce microscopy<br />

(low temperature, ambient, in fluids)<br />

• Magnetic <strong>for</strong>ce microscopy (low temperature)<br />

• Scanning probe microscopy in fluids<br />

• Scanning Hall probe microscopy<br />

Integrated physical properties<br />

• Time resolved, laser induced optoacoustic calorimetry<br />

• SQUID magnetometry<br />

• Vibrating sample magnetometry<br />

• High (pulsed) magnetic field resistivity <strong>and</strong> magnetization<br />

• Mössbauer spectroscopy<br />

• X-ray magnetic hyperfine spectroscopy<br />

• Neutron scattering<br />

• Center of mass spectroscopy (low temperature)<br />

• Perturbed angular correlation spectroscopy<br />

• I-V, C-V, <strong>and</strong> σ−V analysis<br />

<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

Integrated structural properties<br />

• X-ray diffraction (XRD)<br />

• Auger spectroscopy<br />

• X-rayphotoelectronspectroscopy(XPS)<br />

• Micro-Raman <strong>and</strong> resonant Raman spectroscopy<br />

• Ruther<strong>for</strong>d backscattering spectrometry (RBS)<br />

• Elastic recoil detection analysis (ERD)<br />

• Ion beam channeling<br />

• Reflection-high energy electron diffraction (RHEED)<br />

• Scanning electron microscopy (SEM)<br />

• Transmission electron spectroscopy (TEM)<br />

• Electron spin resonance spectroscopy (ESR)<br />

• Internal photoemission spectroscopy (IPE)<br />

Optical techniques<br />

• Ultraviolet-visible spectrophotometry (UV-VIS)<br />

• Time resolved spectroscopy<br />

• Photoionization spectroscopy<br />

• Mass spectroscopy<br />

• Quasi-elastic light scattering<br />

• Hyper-Rayleigh scattering<br />

• High (pulsed) magnetic field photoluminescence<br />

• Confocal microscopy<br />

• Magneto-optical KERR effect<br />

• Transient photoconductivity<br />

• Fluorescence assisted cell sorter<br />

Scanning<br />

probe<br />

microscope<br />

Calculated<br />

isosurfaces <strong>for</strong> the<br />

difference charge<br />

density in<br />

USn 3<br />

Modeling tools<br />

• Time dependent Ginzburg-L<strong>and</strong>au<br />

• Bogoliubov-de Gennes<br />

• Ab-initio calculations<br />

• Abrikosov-Gor'kov<br />

• Kohn-Sham density functional theorem<br />

• Car-Parrinello density functional theorem<br />

• Molecular dynamics simulations<br />

• Monte-Carlo simulations


<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

steering committee<br />

Prof. Victor V. Moshchalkov<br />

Director INPAC<br />

<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

Celestijnenlaan 200 D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327618<br />

Fax: + 32 16 327983<br />

E-mail: victor.moshchalkov@fys.kuleuven.be<br />

Prof. Arnout Ceulemans<br />

Vice-director INPAC<br />

Department of <strong>Chemistry</strong><br />

Quantum <strong>Chemistry</strong> <strong>and</strong> Physical <strong>Chemistry</strong><br />

Celestijnenlaan 200F, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327363 or +32 16 327356<br />

Fax: +32 16 327992<br />

E-mail: Arnout.Ceulemans@chem.kuleuven.be<br />

Prof. Mark Van der Auweraer<br />

Department of <strong>Chemistry</strong><br />

Molecular <strong>and</strong> Nanomaterials<br />

Photochemistry <strong>and</strong> Spectroscopy<br />

Celestijnenlaan 200F, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327496 or +32 16 327418<br />

Fax: +32 16 327990<br />

E-mail: Mark.V<strong>and</strong>erAuweraer@chem.kuleuven.be<br />

Prof. Chris Van Haesendonck<br />

Department of <strong>Physics</strong> <strong>and</strong> Astronomy<br />

Solid State <strong>Physics</strong> <strong>and</strong> Magnetism<br />

Nanophysics with Scanning Probes<br />

Celestijnenlaan 200D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327501 or +32 16 327184<br />

Fax: +32 16 327983<br />

E-mail: Chris.VanHaesendonck@fys.kuleuven.be<br />

Prof. André Vantomme<br />

Department of <strong>Physics</strong> <strong>and</strong> Astronomy<br />

Nuclear <strong>and</strong> Radiation <strong>Physics</strong><br />

Nuclear Solid State <strong>Physics</strong><br />

Celestijnenlaan 200D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327514 or +32 16 327680<br />

Fax: +32 16 327985<br />

E-mail: Andre.Vantomme@fys.kuleuven.be<br />

Prof. Koen Clays<br />

Department of <strong>Chemistry</strong><br />

Molecular <strong>and</strong> Nanomaterials<br />

Molecular Electronics <strong>and</strong> Photonics<br />

Celestijnenlaan 200D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327508<br />

Fax: +32 16 327982<br />

E-mail: Koen.Clays@fys.kuleuven.be<br />

Prof. Peter Lievens<br />

Department of <strong>Physics</strong> <strong>and</strong> Astronomy<br />

Solid State <strong>Physics</strong> <strong>and</strong> Magnetism<br />

Clusters <strong>and</strong> Laser Spectroscopy<br />

Celestijnenlaan 200D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327207 or +32 16 327184<br />

Fax: +32 16 327983<br />

E-mail: Peter.Lievens@fys.kuleuven.be<br />

Prof. Andre Stesmans<br />

Department of <strong>Physics</strong> <strong>and</strong> Astronomy<br />

Semiconductor <strong>Physics</strong><br />

Electron Spin Resonance<br />

Celestijnenlaan 200D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327179 or +32 16 327281<br />

Fax: +32 16 327987<br />

E-mail: Andre.Stesmans@fys.kuleuven.be<br />

Prof. Jozef V<strong>and</strong>erleyden<br />

Department of Microbial <strong>and</strong> Molecular Systems (M2S)<br />

Centre of Microbial <strong>and</strong> Plant Genetics<br />

Cell-cell interactions<br />

Kasteelpark Arenberg 20, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 329679 or +32 16 321631<br />

Fax: +32 16 321966<br />

E-mail: Jozef.V<strong>and</strong>erleyden@biw.kuleuven.be<br />

Prof. Johan Vanacken<br />

Scientific secretary INPAC<br />

<strong>Institute</strong> <strong>for</strong> <strong>Nanoscale</strong> <strong>Physics</strong> <strong>and</strong> <strong>Chemistry</strong><br />

Celestijnenlaan 200 D, B-3001 <strong>Leuven</strong><br />

Phone: +32 16 327198<br />

Fax: + 32 16 327983<br />

E-mail: johan.vanacken@fys.kuleuven.be<br />

how to reach us:<br />

E-mail: inpac@kuleuven.be<br />

Web: www.kuleuven.be/inpac

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!