29.04.2014 Views

Positive relationship between non-native and native squirrels in an ...

Positive relationship between non-native and native squirrels in an ...

Positive relationship between non-native and native squirrels in an ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

1<br />

<strong>Positive</strong> <strong>relationship</strong> <strong>between</strong> <strong>non</strong>-<strong>native</strong> <strong><strong>an</strong>d</strong><br />

<strong>native</strong> <strong>squirrels</strong> <strong>in</strong> <strong>an</strong> urb<strong>an</strong> l<strong><strong>an</strong>d</strong>scape<br />

E.K. Gonzales, Y.F. Wiersma, A.I. Maher, <strong><strong>an</strong>d</strong> T.D. Nudds<br />

Abstract: Paradoxically, <strong>non</strong>-<strong>native</strong> species sometimes displace <strong>native</strong> species that appear to be well adapted to local l<strong><strong>an</strong>d</strong>scapes.<br />

That m<strong>an</strong>y l<strong><strong>an</strong>d</strong>scapes have been altered by hum<strong>an</strong>s, creat<strong>in</strong>g habitat suitable for <strong>non</strong>-<strong>native</strong> species, helps expla<strong>in</strong><br />

this apparent paradox. We asked whether the abund<strong>an</strong>ce of <strong>native</strong> Douglas (Tamiasciurus douglasii (Bachm<strong>an</strong>, 1839)) <strong><strong>an</strong>d</strong><br />

northern fly<strong>in</strong>g (Glaucomys sabr<strong>in</strong>us (Shaw, 1801)) <strong>squirrels</strong> was best expla<strong>in</strong>ed by the abund<strong>an</strong>ce of <strong>non</strong>-<strong>native</strong> eastern<br />

grey <strong>squirrels</strong> (Sciurus carol<strong>in</strong>ensis Gmel<strong>in</strong>, 1788), the proportion of urb<strong>an</strong> development, or both us<strong>in</strong>g available squirrel<br />

abund<strong>an</strong>ce data from wildlife shelters <strong><strong>an</strong>d</strong> l<strong><strong>an</strong>d</strong>-use maps. There was no evidence that <strong>non</strong>-<strong>native</strong> <strong>squirrels</strong> replaced <strong>native</strong><br />

<strong>squirrels</strong> s<strong>in</strong>ce their abund<strong>an</strong>ces were positively related, whereas <strong>native</strong> <strong>squirrels</strong> varied negatively with the amount of development.<br />

The best model expla<strong>in</strong><strong>in</strong>g variation <strong>in</strong> the abund<strong>an</strong>ce of Douglas <strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g <strong>squirrels</strong> <strong>in</strong>corporated<br />

both eastern grey <strong>squirrels</strong> <strong><strong>an</strong>d</strong> development, which is consistent with the hypothesis that regional decl<strong>in</strong>es <strong>in</strong> <strong>native</strong> <strong>squirrels</strong><br />

are more likely to be predicated by the alteration of <strong>native</strong> conifer habitats by hum<strong>an</strong>s <strong>in</strong>dependent of the effects of <strong>non</strong><strong>native</strong><br />

<strong>squirrels</strong>.<br />

Résumé : Il arrive paradoxalement que des espèces <strong>non</strong> <strong>in</strong>digènes év<strong>in</strong>cent des espèces <strong>in</strong>digènes qui semblent bien adaptées<br />

aux paysages locaux. Le paradoxe apparent s’explique en partie par la modification <strong>an</strong>thropique de nombreux paysages,<br />

ce qui crée des habitats pour les espèces <strong>non</strong> <strong>in</strong>digènes. Nous nous dem<strong><strong>an</strong>d</strong>ons si les abond<strong>an</strong>ces des écureuils de<br />

Douglas (Tamiasciurus douglasii (Bachm<strong>an</strong>, 1839)) et du gr<strong><strong>an</strong>d</strong> polatouche (Glaucomys sabr<strong>in</strong>us (Shaw, 1801)) s’expliquent<br />

mieux par l’abond<strong>an</strong>ce de l’écureuil gris (Sciurus carol<strong>in</strong>ensis Gmel<strong>in</strong>, 1788) <strong>non</strong> <strong>in</strong>digène ou par l’import<strong>an</strong>ce du<br />

développement urba<strong>in</strong>, ou encore par les deux phénomènes; nous utilisons les données d’abond<strong>an</strong>ce des sciuridés disponibles<br />

d<strong>an</strong>s les refuges de faune sauvage, a<strong>in</strong>si que des cartes d’utilisation des terres. Il n’y a aucune <strong>in</strong>dication que les écureuils<br />

<strong>non</strong> <strong>in</strong>digènes év<strong>in</strong>cent les sciuridés <strong>in</strong>digènes puisqu’il y a une corrélation positive entre leurs abond<strong>an</strong>ces<br />

respectives; en rev<strong>an</strong>che, l’abond<strong>an</strong>ce des écureuils <strong>in</strong>digènes est en corrélation négative avec l’import<strong>an</strong>ce du développement.<br />

Le meilleur modèle explicatif de l’abond<strong>an</strong>ce des écureuils de Douglas et des gr<strong><strong>an</strong>d</strong>s polatouches tient compte à la<br />

fois des écureuils gris et du développement, ce qui s’accorde avec l’hypothèse selon laquelle les décl<strong>in</strong>s régionaux de<br />

sciuridés <strong>in</strong>digènes sont plus vraisemblablement attribuables à la modification des habitats <strong>in</strong>digènes de conifères par les<br />

huma<strong>in</strong>s, <strong>in</strong>dépendamment des effets des écureuils <strong>non</strong> <strong>in</strong>digènes.<br />

[Traduit par la Rédaction]<br />

Introduction<br />

As species are tr<strong>an</strong>slocated around the globe, ecosystems<br />

become composed of <strong>in</strong>creas<strong>in</strong>g numbers of <strong>non</strong>-<strong>native</strong> species<br />

(Sax et al. 2002). Some of these have negative effects<br />

on the new environment (Wilcove et al. 1998), <strong><strong>an</strong>d</strong> are here<strong>in</strong>after<br />

called ‘‘<strong>in</strong>vaders’’ to dist<strong>in</strong>guish from <strong>non</strong>-<strong>in</strong>vasive<br />

<strong>non</strong>-<strong>native</strong> species (Alpert et al. 2000; Davis <strong><strong>an</strong>d</strong> Thompson<br />

2000). However, we currently have little ability to predict<br />

what controls the demographic success of <strong>non</strong>-<strong>native</strong> species<br />

or the demographic response of <strong>native</strong> species to <strong>non</strong>-<strong>native</strong><br />

Received 26 June 2007. Accepted 14 J<strong>an</strong>uary 2008. Published<br />

on the NRC Research Press Web site at cjz.nrc.ca on .<br />

E.K. Gonzales. 1 Centre for Applied Conservation Research,<br />

3041-2424 Ma<strong>in</strong> Mall, Forest Sciences, The University of<br />

British Columbia, V<strong>an</strong>couver, BC V6T 1Z4, C<strong>an</strong>ada.<br />

Y.F. Wiersma. Department of Biology, Memorial University,<br />

St. John’s, NL A1B 3X9, C<strong>an</strong>ada.<br />

A.I. Maher. Sirmilik National Park, Box 300, Pond Inlet,<br />

NU X0A 0S0, C<strong>an</strong>ada.<br />

T.D. Nudds. Ecology Group, Integrative Biology, Axelrod<br />

Build<strong>in</strong>g, University of Guelph, Guelph, ON N1G 2W1, C<strong>an</strong>ada.<br />

1 Correspond<strong>in</strong>g author (e-mail: emilyg@<strong>in</strong>terch<strong>an</strong>ge.ubc.ca).<br />

species (Lev<strong>in</strong>e et al. 2003). The success of <strong>non</strong>-<strong>native</strong> species<br />

has often been <strong>in</strong>terpreted <strong>in</strong> the context of biotic <strong>in</strong>teractions<br />

such as competitive exclusion (Mitchell et al. 2006),<br />

whereby the <strong>in</strong>creas<strong>in</strong>g abund<strong>an</strong>ce of a novel species is correlated<br />

with the decreas<strong>in</strong>g abund<strong>an</strong>ce of <strong>native</strong> species <strong><strong>an</strong>d</strong><br />

this <strong>relationship</strong> is taken as evidence of causation (Conroy et<br />

al. 1989; Gurevitch <strong><strong>an</strong>d</strong> Padilla 2004). However, there is little<br />

empirical evidence for a <strong>relationship</strong> <strong>between</strong> <strong>in</strong>vasion<br />

<strong><strong>an</strong>d</strong> ext<strong>in</strong>ction (Davis 2003); <strong>in</strong> fact, frequently there are<br />

positive <strong>relationship</strong>s <strong>between</strong> <strong>native</strong> <strong><strong>an</strong>d</strong> <strong>non</strong>-<strong>native</strong> species<br />

(Lonsdale 1999; Sax <strong><strong>an</strong>d</strong> Brown 1999; Sax <strong><strong>an</strong>d</strong> Ga<strong>in</strong>es<br />

2003) because the same environmental conditions favour<br />

both (Stohlgren et al. 1999).<br />

Alter<strong>native</strong>ly, negative <strong>relationship</strong>s <strong>between</strong> <strong>native</strong> <strong><strong>an</strong>d</strong><br />

<strong>non</strong>-<strong>native</strong> species c<strong>an</strong> be mediated by <strong>in</strong>direct effects such<br />

as habitat alteration (Gurevitch <strong><strong>an</strong>d</strong> Padilla 2004). Thus <strong>non</strong><strong>native</strong><br />

species may be ‘‘passengers’’ of <strong>an</strong>thropogenic disturb<strong>an</strong>ce<br />

rather th<strong>an</strong> ‘‘drivers’’ of <strong>native</strong> species decl<strong>in</strong>es<br />

(MacDougall <strong><strong>an</strong>d</strong> Turk<strong>in</strong>gton 2005). Test<strong>in</strong>g alter<strong>native</strong> hypotheses<br />

c<strong>an</strong> clarify the mech<strong>an</strong>isms driv<strong>in</strong>g species decl<strong>in</strong>es<br />

<strong>in</strong> situations of apparent competitive exclusion (Didham et<br />

al. 2005). Recent theories on the success of <strong>non</strong>-<strong>native</strong> species<br />

address multifactor mech<strong>an</strong>isms (Mitchell et al. 2006).<br />

Non-<strong>native</strong> species lose <strong>in</strong>teractions with enemies, mutual-<br />

C<strong>an</strong>. J. Zool. 86: 1–8 (2008) doi:10.1139/Z08-006 # 2008 NRC C<strong>an</strong>ada<br />

PROOF/ÉPREUVE


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

2 C<strong>an</strong>. J. Zool. Vol. 86, 2008<br />

ists, <strong><strong>an</strong>d</strong> competitors from their <strong>native</strong> r<strong>an</strong>ges <strong><strong>an</strong>d</strong> ga<strong>in</strong> <strong>in</strong>teractions<br />

with new species under new environmental conditions<br />

(Hierro et al. 2005). Determ<strong>in</strong><strong>in</strong>g the direct <strong><strong>an</strong>d</strong><br />

<strong>in</strong>direct mech<strong>an</strong>isms that mediate the abund<strong>an</strong>ces of <strong>native</strong><br />

<strong><strong>an</strong>d</strong> <strong>non</strong>-<strong>native</strong> species has import<strong>an</strong>t implications for m<strong>an</strong>agement<br />

decisions about whether <strong><strong>an</strong>d</strong> how to control established<br />

<strong>non</strong>-<strong>native</strong> species (White et al. 2006). However,<br />

demographic data for <strong>non</strong>-<strong>native</strong> species are not typically<br />

available dur<strong>in</strong>g the time when control efforts are most effective<br />

(Simberloff 2003), present<strong>in</strong>g a challenge for m<strong>an</strong>agement.<br />

We used available data to exam<strong>in</strong>e the<br />

<strong>relationship</strong>s <strong>between</strong> the abund<strong>an</strong>ce of two <strong>native</strong> species<br />

with a confamilial <strong>non</strong>-<strong>native</strong> species <strong><strong>an</strong>d</strong> habitat distribution.<br />

Perhaps one of the most well-known <strong><strong>an</strong>d</strong> well-studied examples<br />

of competitive exclusion is the replacement of Eurasi<strong>an</strong><br />

red <strong>squirrels</strong> (Sciurus vulgaris L., 1758) by eastern grey<br />

<strong>squirrels</strong> (Sciurus carol<strong>in</strong>ensis Gmel<strong>in</strong>, 1788), here<strong>in</strong>after<br />

grey <strong>squirrels</strong>, follow<strong>in</strong>g their <strong>in</strong>troduction to Europe (Gurnell<br />

et al. 2004). Three hypotheses, (1) competitive exclusion,<br />

(2) habitat modification, <strong><strong>an</strong>d</strong> (3) disease tr<strong>an</strong>smission,<br />

may expla<strong>in</strong> the shift from <strong>native</strong> to <strong>non</strong>-<strong>native</strong> <strong>squirrels</strong><br />

(Reynolds 1985). Eurasi<strong>an</strong> red <strong><strong>an</strong>d</strong> grey <strong>squirrels</strong> compete<br />

for the same resources <strong>in</strong> deciduous forests (Wauters et al.<br />

2002) <strong><strong>an</strong>d</strong> fitness of Eurasi<strong>an</strong> <strong>squirrels</strong> was shown to be<br />

lower <strong>in</strong> the presence of grey <strong>squirrels</strong> (Gurnell et al. 2004).<br />

However, Eurasi<strong>an</strong> red <strong>squirrels</strong> persist with grey <strong>squirrels</strong><br />

<strong>in</strong> some conifer forests (Bryce et al. 2002), suggest<strong>in</strong>g that<br />

habitat <strong>in</strong>fluences competitive <strong>in</strong>teractions. Grey <strong>squirrels</strong><br />

are also asymptomatic carriers of a poxvirus lethal to Eurasi<strong>an</strong><br />

red <strong>squirrels</strong> (Thomas et al. 2003; Tompk<strong>in</strong>s et al.<br />

2003), although red <strong>squirrels</strong> also decl<strong>in</strong>ed <strong>in</strong> the absence of<br />

the disease (Reynolds 1985; Gurnell et al. 2004). Regardless<br />

of the mech<strong>an</strong>ism, Eurasi<strong>an</strong> red <strong>squirrels</strong> generally disappear<br />

with<strong>in</strong> 10–20 years of the arrival of grey <strong>squirrels</strong> <strong>in</strong> deciduous<br />

forests (Usher et al. 1992). Grey <strong>squirrels</strong>, <strong>native</strong> to<br />

parts of central <strong><strong>an</strong>d</strong> eastern North America, were <strong>in</strong>troduced<br />

around the world (Gurnell 1987), <strong>in</strong>clud<strong>in</strong>g western North<br />

America (Rob<strong>in</strong>son <strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong> 1954). Interactions<br />

<strong>between</strong> <strong>native</strong> <strong><strong>an</strong>d</strong> <strong>in</strong>troduced grey <strong>squirrels</strong> have<br />

rarely been studied outside of Europe <strong><strong>an</strong>d</strong> their effects on<br />

<strong>native</strong> species are largely unknown.<br />

Two <strong>native</strong> arboreal sciurids, Douglas <strong>squirrels</strong> (Tamiasciurus<br />

douglasii (Bachm<strong>an</strong>, 1839)) <strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g<br />

<strong>squirrels</strong> (Glaucomys sabr<strong>in</strong>us (Shaw, 1801)), <strong>in</strong>habit ma<strong>in</strong>l<strong><strong>an</strong>d</strong><br />

North America’s Pacific coast. Douglas <strong>squirrels</strong> are diurnal,<br />

conifer-associated <strong>squirrels</strong> whose r<strong>an</strong>ge extends west<br />

of the Cascade Mounta<strong>in</strong>s to the coast ([McTaggart-]Cow<strong>an</strong><br />

<strong><strong>an</strong>d</strong> Guiguet 1965). Northern fly<strong>in</strong>g <strong>squirrels</strong> are nocturnal,<br />

widely distributed <strong>in</strong> North America, <strong><strong>an</strong>d</strong> tend to be found<br />

<strong>in</strong> older forests where suitable nest sites are more abund<strong>an</strong>t<br />

(Mart<strong>in</strong> <strong><strong>an</strong>d</strong> Anthony 1999). Sciurid populations are known<br />

to fluctuate with food supply <strong><strong>an</strong>d</strong> both <strong>native</strong> <strong><strong>an</strong>d</strong> grey <strong>squirrels</strong><br />

have catholic dietary preferences that <strong>in</strong>clude seeds,<br />

fungi, <strong><strong>an</strong>d</strong> occasionally bird eggs <strong><strong>an</strong>d</strong> nestl<strong>in</strong>gs (Rob<strong>in</strong>son<br />

<strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong> 1954; Sulliv<strong>an</strong> <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong> 1982).<br />

There is concern that <strong>non</strong>-<strong>native</strong> grey <strong>squirrels</strong> displace<br />

<strong>native</strong> <strong>squirrels</strong> <strong>in</strong> western North America (Bruemmer et al.<br />

2000; Garry Oak Ecosystems Recovery Team 2003). The<br />

density <strong><strong>an</strong>d</strong> reproductive output of Douglas <strong>squirrels</strong> <strong>in</strong><br />

St<strong>an</strong>ley Park, where grey <strong>squirrels</strong> were first <strong>in</strong>troduced to<br />

western C<strong>an</strong>ada, were lower th<strong>an</strong> at <strong>an</strong> ecological reserve<br />

8.5 km south of St<strong>an</strong>ley Park, where only Douglas <strong>squirrels</strong><br />

occurred (Hw<strong>an</strong>g <strong><strong>an</strong>d</strong> Lariviere 2007). Therefore, grey <strong>squirrels</strong><br />

may suppress the density <strong><strong>an</strong>d</strong> reproductive output of<br />

Douglas <strong>squirrels</strong>. Differences <strong>between</strong> the two habitats, as<br />

well as squirrel habitat preferences, might also expla<strong>in</strong> the<br />

variation <strong>in</strong> abund<strong>an</strong>ces. The ecological reserve is a mature<br />

conifer forest, whereas St<strong>an</strong>ley Park consists of a variety of<br />

habitat types <strong>in</strong>clud<strong>in</strong>g conifer forest, deciduous woodl<strong><strong>an</strong>d</strong>s,<br />

<strong><strong>an</strong>d</strong> developed areas (Rob<strong>in</strong>son <strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong><br />

1954). Grey <strong>squirrels</strong> are not present <strong>in</strong> the reserve but are<br />

abund<strong>an</strong>t <strong>in</strong> the habitats surround<strong>in</strong>g it, perhaps because<br />

they do not generally select coniferous habitats (Rob<strong>in</strong>son<br />

<strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong> 1954; Gonzales 2005). Non-<strong>native</strong><br />

species with habitat requirements that differ from <strong>native</strong> species<br />

may establish with relatively little resist<strong>an</strong>ce or consequence<br />

for <strong>native</strong> species (Gilbert <strong><strong>an</strong>d</strong> Lechowicz 2005).<br />

Therefore, habitat segregation c<strong>an</strong> allow coexistence (Bryce<br />

et al. 2002), but may create the perception of competitive<br />

exclusion if suitable habitat <strong>in</strong>creases for <strong>non</strong>-<strong>native</strong> species<br />

while simult<strong>an</strong>eously decl<strong>in</strong><strong>in</strong>g for <strong>native</strong> species.<br />

We explored whether the distribution <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce of<br />

eastern grey <strong>squirrels</strong>, the proportion of urb<strong>an</strong> development,<br />

or both accounted for the distribution <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce of<br />

Douglas <strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g <strong>squirrels</strong> <strong>in</strong> 15 municipalities<br />

<strong>in</strong> Greater V<strong>an</strong>couver, British Columbia, C<strong>an</strong>ada. Submission<br />

records from wildlife shelters, facilities that rescue <strong><strong>an</strong>d</strong><br />

rehabilitate wild <strong>an</strong>imals, provided squirrel abund<strong>an</strong>ces by<br />

municipality from 1983 to 2003. Negative <strong>relationship</strong>s <strong>between</strong><br />

squirrel abund<strong>an</strong>ces could imply competitive exclusion,<br />

whereas positive <strong>relationship</strong>s suggest common<br />

environmental <strong>in</strong>fluences such as weather conditions <strong><strong>an</strong>d</strong><br />

food availability. Alter<strong>native</strong>ly, squirrel abund<strong>an</strong>ces may be<br />

<strong>in</strong>dependently related to habitat availability. F<strong>in</strong>ally, <strong>non</strong>-<strong>native</strong><br />

squirrel abund<strong>an</strong>ces <strong><strong>an</strong>d</strong> habitat may both contribute to<br />

variation <strong>in</strong> abund<strong>an</strong>ces of <strong>native</strong> <strong>squirrels</strong>. Tests for poxvirus<br />

<strong>in</strong> 100 grey <strong>squirrels</strong> from British Columbia were negative<br />

(C. Bruemmer, personal communication (2007)),<br />

therefore we did not explore disease tr<strong>an</strong>smission as a mech<strong>an</strong>ism<br />

for potential <strong>native</strong> squirrel decl<strong>in</strong>es.<br />

Materials <strong><strong>an</strong>d</strong> methods<br />

In 1909, grey <strong>squirrels</strong> were <strong>in</strong>troduced to the pen<strong>in</strong>sula<br />

of St<strong>an</strong>ley Park (Rob<strong>in</strong>son <strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong> 1954)<br />

<strong><strong>an</strong>d</strong> beg<strong>an</strong> spread<strong>in</strong>g to neighbour<strong>in</strong>g municipalities sometime<br />

around the 1970s (Merilees 1986). They presently <strong>in</strong>habit<br />

~1500 km 2 <strong>in</strong> Greater V<strong>an</strong>couver (Gonzales <strong><strong>an</strong>d</strong><br />

Gergel 2007) (Fig. 1). We used submission records from<br />

Greater V<strong>an</strong>couver wildlife shelters as a novel approach to<br />

estimate squirrel abund<strong>an</strong>ces. Submission records document<br />

the age of the squirrel submitted, the municipality of orig<strong>in</strong>,<br />

<strong><strong>an</strong>d</strong> the reason for admission. There are no formal surveys<br />

encompass<strong>in</strong>g the spatial <strong><strong>an</strong>d</strong> temporal breadths of the <strong>in</strong>vasion;<br />

however, <strong>native</strong> <strong>squirrels</strong> were captured us<strong>in</strong>g mark–<br />

recapture techniques from 1995 to 1999 <strong>in</strong> forested areas <strong>in</strong><br />

1 of the 15 Greater V<strong>an</strong>couver municipalities (Coquitlam)<br />

by R<strong>an</strong>some <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong> (2003). We calculated Pearson<br />

correlations for the mark–recapture estimates <strong><strong>an</strong>d</strong> total wildlife<br />

shelter submissions for Douglas <strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g<br />

<strong>squirrels</strong> to test whether <strong>native</strong> squirrel abund<strong>an</strong>ces followed<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

Gonzales et al. 3<br />

Fig. 1. Wildlife shelter locations, po<strong>in</strong>t of orig<strong>in</strong> of the <strong>non</strong>-<strong>native</strong> eastern grey <strong>squirrels</strong> (Sciurus carol<strong>in</strong>ensis), <strong><strong>an</strong>d</strong> total counts of two<br />

<strong>native</strong> (Douglas, Tamiasciurus douglasii, <strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g, Glaucomys sabr<strong>in</strong>us, <strong>squirrels</strong>) <strong><strong>an</strong>d</strong> one <strong>non</strong>-<strong>native</strong> sciurid species submitted<br />

to wildlife shelters from 15 Greater V<strong>an</strong>couver municipalities <strong>between</strong> 1983 <strong><strong>an</strong>d</strong> 2003.<br />

similar trends <strong>in</strong> those years. Specifically, we used estimates<br />

collected from a second-growth forest located <strong>in</strong> Coquitlam<br />

(for methodology see R<strong>an</strong>some <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong> 2003).<br />

As with more formal sampl<strong>in</strong>g techniques, we assumed<br />

that the encounter rate for <strong>squirrels</strong> submitted to wildlife<br />

shelters approximated their abund<strong>an</strong>ce <strong>in</strong> the l<strong><strong>an</strong>d</strong>scape.<br />

This assumption would be violated if there were regional<br />

differences <strong>in</strong> submission rate, e.g., if urb<strong>an</strong> dwellers had<br />

different attitudes toward <strong>squirrels</strong> th<strong>an</strong> rural residents or if<br />

<strong>native</strong> squirrel abund<strong>an</strong>ces differed <strong>between</strong> the shelters.<br />

First, we surveyed rural <strong><strong>an</strong>d</strong> urb<strong>an</strong> attitudes (positive, negative,<br />

or no op<strong>in</strong>ion) toward grey <strong>squirrels</strong>. Posters, a Web<br />

page, <strong><strong>an</strong>d</strong> publications (newspaper <strong>an</strong>nouncements <strong><strong>an</strong>d</strong> Gonzales<br />

1999) solicited local residents for <strong>in</strong>formation regard<strong>in</strong>g<br />

<strong>native</strong> <strong><strong>an</strong>d</strong> <strong>non</strong>-<strong>native</strong> <strong>squirrels</strong>. Differences were tested<br />

with a 2 <strong>an</strong>alysis. Wildlife Rescue Association <strong><strong>an</strong>d</strong> Critter<br />

Care are separated by 32 km <strong><strong>an</strong>d</strong> the Fraser River, a large<br />

water barrier; therefore, their submissions are likely to represent<br />

<strong>in</strong>dependent observations. We pooled submissions to<br />

a third shelter, Monika’s Wildlife Shelter, with Critter Care<br />

because Critter Care, which opened <strong>in</strong> 1993, eventually took<br />

over care of mammals from Monika’s Wildlife Shelter.<br />

Second, we compared abund<strong>an</strong>ces of <strong>native</strong> <strong>squirrels</strong> <strong>between</strong><br />

the shelters. Regional differences <strong>between</strong> the abund<strong>an</strong>ces<br />

of <strong>native</strong> <strong>squirrels</strong> <strong><strong>an</strong>d</strong> the shelters would suggest (i)<br />

<strong>native</strong> squirrel abund<strong>an</strong>ces differed through time <strong>between</strong><br />

shelters, possibly <strong>in</strong>dicat<strong>in</strong>g decl<strong>in</strong>es <strong>in</strong> one region, or (ii)<br />

undesirable variability <strong>between</strong> the wildlife shelter submissions.<br />

Grey <strong>squirrels</strong> were actively spread<strong>in</strong>g through the region<br />

with time; therefore, grey <strong>squirrels</strong> were expected to<br />

differ <strong>between</strong> the shelters, whereas <strong>native</strong> squirrel abund<strong>an</strong>ces<br />

were expected to be stable. We tested differences with<br />

generalized estimation equations us<strong>in</strong>g Proc GENMOD<br />

(SAS version 9.1; SAS Institute Inc. 2003) with a ‘‘repeated’’<br />

statement <strong><strong>an</strong>d</strong> assumed a negative b<strong>in</strong>omial distribution<br />

of the response variable, counts of <strong>native</strong> <strong>squirrels</strong>, with<br />

a log-l<strong>in</strong>k function. Generalized estimation equations provide<br />

unbiased st<strong><strong>an</strong>d</strong>ard errors of the parameter estimates for<br />

longitud<strong>in</strong>al <strong><strong>an</strong>d</strong> other correlated data (Li<strong>an</strong>g <strong><strong>an</strong>d</strong> Zeger<br />

1986). We <strong>in</strong>putted ‘‘year’’ as the repeated subject <strong><strong>an</strong>d</strong> hypothesized<br />

a first-order autoregressive covari<strong>an</strong>ce structure.<br />

We used the negative b<strong>in</strong>omial distribution rather th<strong>an</strong> a<br />

Poisson distribution because of overdispersion (Lawless<br />

1987).<br />

Our primary question was ‘‘are <strong>native</strong> squirrel abund<strong>an</strong>ces<br />

best predicted by <strong>non</strong>-<strong>native</strong> squirrel abund<strong>an</strong>ces, the<br />

amount of undeveloped area, or both?’’ We compared four<br />

models (Table 1) us<strong>in</strong>g each expl<strong>an</strong>atory variable <strong><strong>an</strong>d</strong> both<br />

variables together. Digital l<strong><strong>an</strong>d</strong>-use maps (1 : 250 000) provided<br />

by the Greater V<strong>an</strong>couver Regional District Policy<br />

<strong><strong>an</strong>d</strong> Pl<strong>an</strong>n<strong>in</strong>g Department for 1996 <strong><strong>an</strong>d</strong> 2001 were used to<br />

calculate the proportion of urb<strong>an</strong> development <strong>in</strong> each of<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

4 C<strong>an</strong>. J. Zool. Vol. 86, 2008<br />

Table 1. Generalized l<strong>in</strong>ear model selection for <strong>native</strong> <strong>squirrels</strong> (Douglas, Tamiasciurus douglasii,<br />

<strong><strong>an</strong>d</strong> northern fly<strong>in</strong>g, Glaucomys sabr<strong>in</strong>us), <strong>in</strong>clud<strong>in</strong>g the number of parameters (K) <strong><strong>an</strong>d</strong><br />

the ratio of Pearson 2 to degrees of freedom (df), which is the estimate of dispersion for each<br />

model where 1 is a good fit.<br />

ID Model K 2 /df AIC c i w i<br />

1a Douglas = grey 2 1.5 1161.2 49.23 0.00<br />

B Douglas = development 2 1.26 1149.2 37.23 0.00<br />

C Douglas = grey + development 3 1.17 1111.97 0 1.00<br />

2a Northern fly<strong>in</strong>g = grey 2 1.07 728.81 45.01 0.00<br />

B Northern fly<strong>in</strong>g = development 2 1.32 715.43 31.63 0.00<br />

C Northern fly<strong>in</strong>g = grey + development 3 0.92 683.8 0 1.00<br />

Note: Non-<strong>native</strong> <strong>squirrels</strong> <strong><strong>an</strong>d</strong> the proportion of urb<strong>an</strong> development were <strong>in</strong>put as fixed effects. The<br />

best approximat<strong>in</strong>g models (<strong>in</strong> boldface type) were selected among a to d for each <strong>native</strong> squirrel based on<br />

the lowest Akaike’s <strong>in</strong>formation criterion corrected for small sample sizes (AIC c ) <strong><strong>an</strong>d</strong> Akaike weights (w i ),<br />

which represent the relative likelihood of a particular model, given the set of c<strong><strong>an</strong>d</strong>idate models.<br />

the municipalities. We merged l<strong><strong>an</strong>d</strong>-use categories <strong>in</strong>to two<br />

broad classes, urb<strong>an</strong> development <strong><strong>an</strong>d</strong> undeveloped, <strong><strong>an</strong>d</strong> excluded<br />

bodies of water from the <strong>an</strong>alyses. The urb<strong>an</strong> development<br />

class consisted of <strong>in</strong>dustrial, residential, commercial,<br />

<strong>in</strong>stitutional, <strong><strong>an</strong>d</strong> tr<strong>an</strong>sportation l<strong><strong>an</strong>d</strong>-use types. The undeveloped<br />

class consisted of agricultural, research, harvest<strong>in</strong>g (selective<br />

logg<strong>in</strong>g), parks <strong><strong>an</strong>d</strong> protected natural areas, rural, <strong><strong>an</strong>d</strong><br />

other undeveloped l<strong><strong>an</strong>d</strong>s. We estimated the proportion of development<br />

for each municipal group through time by calculat<strong>in</strong>g<br />

the percent ch<strong>an</strong>ge <strong>in</strong> urb<strong>an</strong> development <strong>between</strong><br />

1996 <strong><strong>an</strong>d</strong> 2001, <strong><strong>an</strong>d</strong> then estimated <strong>an</strong> <strong>an</strong>nual rate of development<br />

that we back <strong><strong>an</strong>d</strong> forward cast for 1983–2003.<br />

Although municipalities were unlikely to have a stable rate<br />

of development through time, our goal was to approximate<br />

a dynamic development variable <strong><strong>an</strong>d</strong> to <strong>in</strong>crease the realism<br />

of the representation of the l<strong><strong>an</strong>d</strong>scape relative to a static estimate.<br />

Spatial operations were performed us<strong>in</strong>g ArcView<br />

version 3.3 (Environmental Systems Research Institute, Inc.<br />

2002) <strong><strong>an</strong>d</strong> maps were prepared <strong>in</strong> ArcGIS version 9.2 (Environmental<br />

Systems Research Institute, Inc. 2007).<br />

Mixed-effects models enable the model<strong>in</strong>g of the correlations<br />

that often exist with spatially <strong><strong>an</strong>d</strong> temporally grouped<br />

data. The expl<strong>an</strong>atory variables, counts of grey <strong>squirrels</strong> <strong><strong>an</strong>d</strong><br />

the proportion of urb<strong>an</strong> development <strong>in</strong> each municipality<br />

from 1983 to 2003, were put <strong>in</strong>to the model as fixed effects.<br />

Fixed effects are associated with the entire population,<br />

whereas r<strong><strong>an</strong>d</strong>om effects are used to model the behaviour of<br />

<strong>in</strong>dividual experimental units, which are drawn at r<strong><strong>an</strong>d</strong>om<br />

from the population <strong><strong>an</strong>d</strong> govern the vari<strong>an</strong>ce–covari<strong>an</strong>ce<br />

structure of the response variable (Buckley et al. 2003).<br />

Treat<strong>in</strong>g variables as r<strong><strong>an</strong>d</strong>om effects also has the adv<strong>an</strong>tage<br />

of us<strong>in</strong>g up fewer degrees of freedom th<strong>an</strong> treat<strong>in</strong>g variables<br />

as fixed effects with multiple levels.<br />

We first fit the four c<strong><strong>an</strong>d</strong>idate models for each <strong>native</strong><br />

squirrel us<strong>in</strong>g Proc GLIMMIX (SAS version 9.1; SAS Institute<br />

Inc. 2003) with negative b<strong>in</strong>omial distributions <strong><strong>an</strong>d</strong><br />

log-l<strong>in</strong>k functions, <strong>in</strong>putt<strong>in</strong>g the fixed but not the r<strong><strong>an</strong>d</strong>om<br />

effect variables because selection techniques for models<br />

with r<strong><strong>an</strong>d</strong>om effects are still <strong>in</strong> development. There was a<br />

good fit to the models (Pearson 2 /df & 1; Table 1). We<br />

used Akaike’s <strong>in</strong>formation criterion corrected for small<br />

sample sizes (AIC c ) <strong><strong>an</strong>d</strong> subtracted the m<strong>in</strong>imum AIC c<br />

value from each c<strong><strong>an</strong>d</strong>idate set of models for each model <strong>in</strong><br />

its associated set to make <strong>in</strong>ferences about the best model<br />

g¼1<br />

(Burnham <strong><strong>an</strong>d</strong> Anderson 2002). We also used Akaike<br />

weights (w i ), which represent the relative likelihood of a<br />

particular model given a set of c<strong><strong>an</strong>d</strong>idate models to assess<br />

the likelihood of the model be<strong>in</strong>g supported (Burnham <strong><strong>an</strong>d</strong><br />

Anderson 2002). Akaike weights were calculated as<br />

w i ¼ expð 1=2_c i Þ= Pg<br />

expð 1=2_c g Þ, where g is the number<br />

of models <strong>in</strong> each set.<br />

We then <strong>in</strong>put r<strong><strong>an</strong>d</strong>om effects for the selected models to<br />

<strong>in</strong>corporate the spatial cluster<strong>in</strong>g <strong><strong>an</strong>d</strong> temporal autocorrelations<br />

<strong>in</strong>herent <strong>in</strong> this data set (Schabenberger <strong><strong>an</strong>d</strong> Pierce<br />

2002). As before, temporal <strong>relationship</strong>s were assumed to<br />

have a first-order autoregressive error vari<strong>an</strong>ce–covari<strong>an</strong>ce<br />

structure <strong><strong>an</strong>d</strong> the class variable ‘‘year’’ was <strong>in</strong>putted as a<br />

r<strong><strong>an</strong>d</strong>om effect. Given that municipal groups were likely to<br />

also conta<strong>in</strong> <strong>non</strong>-<strong>in</strong>dependent vari<strong>an</strong>ce, we categorized the<br />

class variable ‘‘municipalilty’’ as a r<strong><strong>an</strong>d</strong>om subject to separate<br />

the vari<strong>an</strong>ce of the spatial cluster<strong>in</strong>g from the fixed effects.<br />

Results<br />

The shelters recorded 238 northern fly<strong>in</strong>g, 590 Douglas,<br />

<strong><strong>an</strong>d</strong> 3786 grey <strong>squirrels</strong> <strong>in</strong> the 15 municipalities over the<br />

20-year period (Fig. 2). Most <strong>squirrels</strong> were described as orph<strong>an</strong>ed<br />

young (northern fly<strong>in</strong>g = 24%, grey = 30%, Douglas<br />

= 27%), although staff clarified that m<strong>an</strong>y orph<strong>an</strong>ed young<br />

were from disturbed nests or nuis<strong>an</strong>ce <strong>squirrels</strong> rather th<strong>an</strong><br />

ab<strong><strong>an</strong>d</strong>oned. Predators <strong><strong>an</strong>d</strong> pets accounted for the next most<br />

common <strong>in</strong>juries (northern fly<strong>in</strong>g = 15%, grey = 12%,<br />

Douglas = 23%). Adult <strong>squirrels</strong> were also submitted without<br />

<strong>in</strong>juries when their nest<strong>in</strong>g locations were disturbed or<br />

as nuis<strong>an</strong>ce <strong>squirrels</strong> (northern fly<strong>in</strong>g = 2%, grey = 10%,<br />

Douglas = 4%). Other reasons for submission <strong>in</strong>cluded vehicular<br />

collisions, unspecified <strong>in</strong>juries, parasites, <strong><strong>an</strong>d</strong> <strong>in</strong>traspecific<br />

aggression <strong>between</strong> grey <strong>squirrels</strong>. No <strong>in</strong>ter- or<br />

<strong>in</strong>tra-specific squirrel conflict was reported for <strong>native</strong> <strong>squirrels</strong>.<br />

Fly<strong>in</strong>g squirrel estimates from mark–recapture techniques<br />

were correlated with wildlife shelter submissions (P = 0.77),<br />

but Douglas <strong>squirrels</strong> were not (P = 0.24). The poor <strong>relationship</strong><br />

was related to a year shift <strong>between</strong> the years of<br />

greatest abund<strong>an</strong>ces. The peak <strong>in</strong> Douglas squirrel shelter<br />

abund<strong>an</strong>ces occurred <strong>in</strong> 1996, whereas the mark–recapture<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

Gonzales et al. 5<br />

Fig. 2. Me<strong>an</strong> (1 SD) number of northern fly<strong>in</strong>g (Glaucomys sabr<strong>in</strong>us), eastern grey (Sciurus carol<strong>in</strong>ensis), <strong><strong>an</strong>d</strong> Douglas (Tamiasciurus douglasii)<br />

<strong>squirrels</strong> submitted to three local wildlife shelters from Greater V<strong>an</strong>couver municipalities (n = 15) from 1983 to 2003.<br />

Fig. 3. Comparison of mark–recapture data for northern fly<strong>in</strong>g (Glaucomys sabr<strong>in</strong>us; P = 0.77) <strong><strong>an</strong>d</strong> Douglas (Tamiasciurus douglasii; P =<br />

0.24) <strong>squirrels</strong> (R<strong>an</strong>some <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong> 2003) <strong><strong>an</strong>d</strong> wildlife shelter submissions.<br />

data recorded a peak <strong>in</strong> the 1997 (Fig. 3). R<strong>an</strong>some <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong><br />

(2003) describe a large cone mast <strong>in</strong> the w<strong>in</strong>ter of<br />

1996–1997 to expla<strong>in</strong> the peak <strong>in</strong> Douglas squirrel abund<strong>an</strong>ces,<br />

so it is possible that the peaks do co<strong>in</strong>cide.<br />

We also compared submissions of <strong>native</strong> <strong>squirrels</strong> <strong>between</strong><br />

shelters <strong><strong>an</strong>d</strong> rural <strong><strong>an</strong>d</strong> urb<strong>an</strong> attitudes toward grey<br />

<strong>squirrels</strong> to test for bias. Native squirrel abund<strong>an</strong>ces did not<br />

differ <strong>between</strong> shelters (Douglas: 2 = 1.37, p = 0.24; northern<br />

fly<strong>in</strong>g: 2 = 0.13, p = 0.72). Given that grey <strong>squirrels</strong><br />

were spread<strong>in</strong>g from west to east, however, regional differences<br />

<strong>in</strong> shelter submissions differed as expected ( 2 = 9.32,<br />

p = 0.002). There were no differences <strong>between</strong> rural (n =<br />

22) <strong><strong>an</strong>d</strong> urb<strong>an</strong> (n = 34) attitudes toward grey <strong>squirrels</strong> ( 2 =<br />

0.04, p = 0.98).<br />

Both species showed <strong>in</strong>itial <strong>in</strong>creases <strong>in</strong> abund<strong>an</strong>ce, perhaps<br />

as <strong>an</strong> artifact of the public’s <strong>in</strong>creas<strong>in</strong>g awareness of<br />

the wildlife shelters for the first few years after they opened.<br />

The species richness <strong><strong>an</strong>d</strong> abund<strong>an</strong>ces of all wildlife brought<br />

to the shelters <strong>in</strong>creased dur<strong>in</strong>g the first 5 years <strong><strong>an</strong>d</strong> then stabilized<br />

(Roy Teo, shelter staff, personal communication<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

6 C<strong>an</strong>. J. Zool. Vol. 86, 2008<br />

Table 2. Generalized l<strong>in</strong>ear mixed models with <strong>non</strong>-<strong>native</strong> eastern grey <strong>squirrels</strong> (Sciurus carol<strong>in</strong>ensis) <strong><strong>an</strong>d</strong> the proportion of urb<strong>an</strong><br />

development <strong>in</strong>put as fixed effects <strong><strong>an</strong>d</strong> year of submission <strong><strong>an</strong>d</strong> municipality <strong>in</strong>put as r<strong><strong>an</strong>d</strong>om factors.<br />

Response variable Fixed effects 2 /df<br />

Parameter<br />

estimates SE df F p<br />

Douglas squirrel (Tamiasciurus douglasii) Grey squirrel 1.03 0.02 0.006 1, 338 14.6 0.0002<br />

Development –0.02 0.007 1, 338 15.49 0.0001<br />

Northern fly<strong>in</strong>g squirrel (Glaucomys sabr<strong>in</strong>us) Grey squirrel 1 0.02 0.008 1, 337 3.7 0.06<br />

Development –0.04 0.009 1, 337 23.79


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

Gonzales et al. 7<br />

rels, North Americ<strong>an</strong> red <strong>squirrels</strong> (Tamiasciurus hudsonicus<br />

(Erxleben, 1777)), throughout much of central North America<br />

where competitive <strong>in</strong>teractions are reduced by habitat<br />

differentiation (Riege 1991; Nupp <strong><strong>an</strong>d</strong> Swihart 2000, 2001).<br />

In Indi<strong>an</strong>a, North Americ<strong>an</strong> red <strong>squirrels</strong> have exp<strong><strong>an</strong>d</strong>ed<br />

their r<strong>an</strong>ge <strong>in</strong>to <strong>native</strong> eastern grey squirrel habitat as a result<br />

of l<strong><strong>an</strong>d</strong> conversion (Goheen et al. 2003). Grey <strong>squirrels</strong><br />

are decl<strong>in</strong><strong>in</strong>g because of <strong>in</strong>creas<strong>in</strong>g fragmentation of deciduous<br />

forests, <strong><strong>an</strong>d</strong> the loss of these scatter hoarders is expected<br />

to have negative consequences for the recruitment of nutbear<strong>in</strong>g<br />

trees (Goheen <strong><strong>an</strong>d</strong> Swihart 2003).<br />

Concern regard<strong>in</strong>g the potential negative effects of grey<br />

<strong>squirrels</strong> on <strong>native</strong> species <strong>in</strong> British Columbia prompted<br />

prov<strong>in</strong>cial m<strong>an</strong>agers to contract a m<strong>an</strong>agement pl<strong>an</strong> for grey<br />

<strong>squirrels</strong>; however, little was known about factors <strong>in</strong>fluenc<strong>in</strong>g<br />

abund<strong>an</strong>ces of <strong>squirrels</strong> <strong>in</strong> southwestern British Columbia.<br />

Future <strong>in</strong>vestigations with more detailed data <strong>in</strong>to the<br />

<strong>relationship</strong> among squirrel distributions <strong><strong>an</strong>d</strong> l<strong><strong>an</strong>d</strong>scape parameters,<br />

such as patch size, quality, <strong><strong>an</strong>d</strong> isolation (Verbeylen<br />

et al. 2003), will address outst<strong><strong>an</strong>d</strong><strong>in</strong>g questions. For<br />

example, are grey <strong>squirrels</strong> spread<strong>in</strong>g <strong>in</strong>to residential niches<br />

where <strong>native</strong> <strong>squirrels</strong> are absent? Does forest quality alter<br />

competitive <strong>relationship</strong>s <strong>between</strong> <strong>native</strong> <strong><strong>an</strong>d</strong> <strong>non</strong>-<strong>native</strong><br />

<strong>squirrels</strong>? Do <strong>native</strong> squirrel populations decl<strong>in</strong>e as a function<br />

of patch size <strong><strong>an</strong>d</strong> (or) isolation? Given that our <strong>an</strong>alyses<br />

were comparative, <strong>in</strong>terpretations of underly<strong>in</strong>g mech<strong>an</strong>isms<br />

must be <strong>in</strong>terpreted with caution. Nevertheless, our <strong>an</strong>alyses<br />

address a knowledge gap <strong><strong>an</strong>d</strong> c<strong>an</strong> be used to direct more formal<br />

research <strong>in</strong> the future.<br />

Acknowledgements<br />

F<strong>in</strong><strong>an</strong>cial support was provided to E.K.G. by Natural Sciences<br />

<strong><strong>an</strong>d</strong> Eng<strong>in</strong>eer<strong>in</strong>g Research Council of C<strong>an</strong>ada<br />

(NSERC) Industrial Postgraduate Scholarship, Environmental<br />

Systems Research Institute Pacific Region, the University<br />

of Guelph, Mounta<strong>in</strong> Equipment Co-Op, <strong><strong>an</strong>d</strong> NSERC support<br />

to T.D.N. Th<strong>an</strong>k you to the Wildlife Rescue Association,<br />

Monika’s Wildlife Shelter, <strong><strong>an</strong>d</strong> Critter Care for<br />

provid<strong>in</strong>g squirrel submission data <strong><strong>an</strong>d</strong> to the Greater V<strong>an</strong>couver<br />

Regional District for provid<strong>in</strong>g digital maps. We are<br />

also grateful for the help from numerous volunteers, particularly<br />

R. Teo. V. Gonzales <strong><strong>an</strong>d</strong> V. LeMay provided excellent<br />

statistical <strong>in</strong>struction to E.K.G.. Th<strong>an</strong>k you to J. Reid, P. Arcese,<br />

R. Norris, J. Goheen, I. McEachern, <strong><strong>an</strong>d</strong> the a<strong>non</strong>ymous<br />

reviewers for their helpful comments on earlier<br />

versions of the m<strong>an</strong>uscript.<br />

References<br />

Alpert, P., Bone, E., <strong><strong>an</strong>d</strong> Holzapfel, C. 2000. Invasiveness, <strong>in</strong>vasibility<br />

<strong><strong>an</strong>d</strong> the role of environmental stress <strong>in</strong> the spread of <strong>non</strong><strong>native</strong><br />

pl<strong>an</strong>ts. Perspect. Pl<strong>an</strong>t Ecol. Evol. Syst. 3: 52–66. doi:10.<br />

1078/1433-8319-00004.<br />

Buckley, Y.M., Briese, D.T., <strong><strong>an</strong>d</strong> Rees, M. 2003. Demography <strong><strong>an</strong>d</strong><br />

m<strong>an</strong>agement of the <strong>in</strong>vasive pl<strong>an</strong>t species Hypericum perforatum.<br />

I. Us<strong>in</strong>g multi-level mixed-effects models for characteriz<strong>in</strong>g<br />

growth, survival <strong><strong>an</strong>d</strong> fecundity <strong>in</strong> a long-term data set. J.<br />

Appl. Ecol. 40: 481–493. doi:10.1046/j.1365-2664.2003.00821.<br />

x.<br />

Bruemmer, C., Lurz, P., Larsen, K., <strong><strong>an</strong>d</strong> Gurnell, J. 2000. Impacts<br />

<strong><strong>an</strong>d</strong> m<strong>an</strong>agement of the alien eastern gray squirrel <strong>in</strong> Great Brita<strong>in</strong><br />

<strong><strong>an</strong>d</strong> Italy: lessons for British Columbia. In Proceed<strong>in</strong>gs of<br />

the Conference on the Biology <strong><strong>an</strong>d</strong> M<strong>an</strong>agement of Species <strong><strong>an</strong>d</strong><br />

Habitats at Risk, Kamloops, B.C., 15–19 February 1999. Edited<br />

by L.M. Darl<strong>in</strong>g. B.C. M<strong>in</strong>istry of Environment, L<strong><strong>an</strong>d</strong>s <strong><strong>an</strong>d</strong><br />

Parks, Victoria, B.C.; University College of the Cariboo, Kamloops,<br />

B.C. pp. 341–350.<br />

Bryce, J., Johnson, P.J., <strong><strong>an</strong>d</strong> MacDonald, D.W. 2002. C<strong>an</strong> niche<br />

use <strong>in</strong> red <strong><strong>an</strong>d</strong> grey <strong>squirrels</strong> offer clues for their apparent coexistence?<br />

J. Appl. Ecol. 39: 875–887. doi:10.1046/j.1365-2664.<br />

2002.00765.x.<br />

Burnham, K.P., <strong><strong>an</strong>d</strong> Anderson, D.R. 2002. Model selection <strong><strong>an</strong>d</strong><br />

multimodel <strong>in</strong>ference: a practical <strong>in</strong>formation–theoretic approach.<br />

2nd ed. Spr<strong>in</strong>ger-Verlag, New York.<br />

Conroy, M.J., Barnes, G.G., Bethke, R.W., <strong><strong>an</strong>d</strong> Nudds, T.D. 1989.<br />

Increas<strong>in</strong>g mallards, decreas<strong>in</strong>g Americ<strong>an</strong> black ducks — no<br />

evidence for cause <strong><strong>an</strong>d</strong> effect: a comment. J. Wildl. M<strong>an</strong>ag. 53:<br />

1065–1071. doi:10.2307/3809611.<br />

Davis, M.A. 2003. Biotic globalization: does competition from <strong>in</strong>troduced<br />

species threaten biodiversity? Bioscience, 53: 481–489.<br />

doi:10.1641/0006-3568(2003)053[0481:BGDCFI]2.0.CO;2.<br />

Davis, M.A., <strong><strong>an</strong>d</strong> Thompson, K. 2000. Eight ways to be a colonizer;<br />

two ways to be <strong>an</strong> <strong>in</strong>vader. Bull. Ecol. Soc. Am. 81: 226–<br />

230.<br />

Didham, R.K., Tyli<strong>an</strong>akis, J.M., Hutchison, M.A., Ewers, R.M.,<br />

<strong><strong>an</strong>d</strong> Gemmell, N.J. 2005. Are <strong>in</strong>vasive species the drivers of<br />

ecological ch<strong>an</strong>ge? Trends Ecol. Evol. 20: 470–474. doi:10.<br />

1016/j.tree.2005.07.006. PMID:16701420.<br />

Environmental Systems Research Institute, Inc. 2002. ArcView.<br />

Version 3.3 [computer program]. Environmental Systems Research<br />

Institute, Inc., Redl<strong><strong>an</strong>d</strong>s, Calif.<br />

Environmental Systems Research Institute, Inc. 2007. ArcGIS. Version<br />

9.2 [computer program]. Environmental Systems Research<br />

Institute, Inc. 2002., Redl<strong><strong>an</strong>d</strong>s, Calif.<br />

Garry Oak Ecosystems Recovery Team. 2003. Invasive species <strong>in</strong><br />

Garry Oak <strong><strong>an</strong>d</strong> associated ecosystems <strong>in</strong> British Columbia.<br />

Garry Oak Ecosystems Recovery Team, Victoria, B.C.<br />

Gilbert, B., <strong><strong>an</strong>d</strong> Lechowicz, M.J. 2005. Invasibility <strong><strong>an</strong>d</strong> abiotic gradients:<br />

the positive correlation <strong>between</strong> <strong>native</strong> <strong><strong>an</strong>d</strong> exotic pl<strong>an</strong>t<br />

diversity. Ecology, 86: 1848–1855. doi:10.1890/04-09997.<br />

Goheen, J.R., <strong><strong>an</strong>d</strong> Swihart, R.K. 2003. Food hoard<strong>in</strong>g behavior of<br />

gray <strong>squirrels</strong> <strong><strong>an</strong>d</strong> North Americ<strong>an</strong> red <strong>squirrels</strong> <strong>in</strong> the central<br />

hardwoods: implications for forest regeneration. C<strong>an</strong>. J. Zool.<br />

81: 1636–1639. doi:10.1139/z03-143.<br />

Goheen, J.R., Swihart, R.K., Gehr<strong>in</strong>g, T.M., <strong><strong>an</strong>d</strong> Miller, M.S. 2003.<br />

Forces structur<strong>in</strong>g tree squirrel communities <strong>in</strong> l<strong><strong>an</strong>d</strong>scapes fragmented<br />

by agriculture: species differences <strong>in</strong> perceptions of forest<br />

connectivity <strong><strong>an</strong>d</strong> carry<strong>in</strong>g capacity. Oikos, 102: 95–103.<br />

doi:10.1034/j.1600-0706.2003.12336.x.<br />

Goheen, J.R., Young, T.P., Kees<strong>in</strong>g, F., <strong><strong>an</strong>d</strong> Palmer, T.M. 2007.<br />

Consequences of herbivory by <strong>native</strong> ungulates for reproduction<br />

of a sav<strong>an</strong>na tree. J. Ecol. 95: 129–135. doi:10.1111/j.1365-<br />

2745.2006.01196.x.<br />

Gonzales, E.K. 1999. Eastern grey <strong>squirrels</strong> <strong>in</strong> BC: <strong>an</strong> <strong>in</strong>troduction<br />

to <strong>an</strong> <strong>in</strong>troduction. Discovery, 28: 22–25.<br />

Gonzales, E.K. 2005. The distribution <strong><strong>an</strong>d</strong> habitat selection of <strong>in</strong>troduced<br />

eastern grey <strong>squirrels</strong>, Sciurus carol<strong>in</strong>ensis, <strong>in</strong> British<br />

Columbia. C<strong>an</strong>. Field-Nat. 119: 343–350.<br />

Gonzales, E.K., <strong><strong>an</strong>d</strong> Gergel, S.E. 2007. Test<strong>in</strong>g assumptions of cost<br />

surface <strong>an</strong>alysis — a tool for <strong>in</strong>vasive species m<strong>an</strong>agement.<br />

L<strong><strong>an</strong>d</strong>sc. Ecol. 22: 1155–1168. doi:10.1007/s10980-007-9106-6.<br />

Gurevitch, J., <strong><strong>an</strong>d</strong> Padilla, D.K. 2004. Are <strong>in</strong>vasive species a major<br />

cause of ext<strong>in</strong>ctions? Trends Ecol. Evol. 19: 470–474. doi:10.<br />

1016/j.tree.2004.07.005. PMID:16701309.<br />

Gurnell, J. 1987. The natural history of <strong>squirrels</strong>. Facts on File<br />

Publications, New York.<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada


Pag<strong>in</strong>ation not f<strong>in</strong>al/Pag<strong>in</strong>ation <strong>non</strong> f<strong>in</strong>ale<br />

8 C<strong>an</strong>. J. Zool. Vol. 86, 2008<br />

Gurnell, J., Wauters, L.A., Lurz, P.W.W., <strong><strong>an</strong>d</strong> Tosi, G. 2004. Alien<br />

species <strong><strong>an</strong>d</strong> <strong>in</strong>terspecific competition: effects of <strong>in</strong>troduced eastern<br />

grey <strong>squirrels</strong> on red squirrel population dynamics. J. Anim.<br />

Ecol. 73: 26–35. doi:10.1111/j.1365-2656.2004.00791.x.<br />

Hager, H.A., <strong><strong>an</strong>d</strong> McCoy, K.D. 1998. The implications of accept<strong>in</strong>g<br />

untested hypotheses: a review of the effects of purple loosestrife<br />

(Lythrum salicaria) <strong>in</strong> North America. Biodivers. Conserv. 7:<br />

1069–1079. doi:10.1023/A:1008861115557.<br />

Hierro, J.L., Maron, J.L., <strong><strong>an</strong>d</strong> Callaway, R.M. 2005. A biogeographical<br />

approach to pl<strong>an</strong>t <strong>in</strong>vasions: the import<strong>an</strong>ce of study<strong>in</strong>g<br />

exotics <strong>in</strong> their <strong>in</strong>troduced <strong><strong>an</strong>d</strong> <strong>native</strong> r<strong>an</strong>ge. J. Ecol. 93: 5–15.<br />

doi:10.1111/j.0022-0477.2004.00953.x.<br />

Hw<strong>an</strong>g, Y., <strong><strong>an</strong>d</strong> Lariviere, S. 2007. A test of <strong>in</strong>terspecific effects of<br />

eastern grey <strong>squirrels</strong>, Sciurus carol<strong>in</strong>ensis, on Douglas’s <strong>squirrels</strong>,<br />

Tamiasciurus douglasii, <strong>in</strong> V<strong>an</strong>couver, British Columbia.<br />

C<strong>an</strong>. Field-Nat. 120: 10–15.<br />

Lawless, J.F. 1987. Negative b<strong>in</strong>omial <strong><strong>an</strong>d</strong> mixed Poisson regression.<br />

C<strong>an</strong>. J. Stat. 15: 209–225. doi:10.2307/3314912.<br />

Lev<strong>in</strong>e, J.M., Vila, M., D’Antonio, C.M., Dukes, J.S., Grigulis, K.,<br />

<strong><strong>an</strong>d</strong> Lavorel, S. 2003. Mech<strong>an</strong>isms underly<strong>in</strong>g the impacts of<br />

exotic pl<strong>an</strong>t <strong>in</strong>vasions. Proc. R. Soc. B Biol. Sci. 270: 775–781.<br />

doi:10.1098/rspb.2003.2327.<br />

Li<strong>an</strong>g, K.Y., <strong><strong>an</strong>d</strong> Zeger, S.L. 1986. Longitud<strong>in</strong>al data <strong>an</strong>alysis<br />

us<strong>in</strong>g general l<strong>in</strong>ear models. Biometrika, 73: 13–22. doi:10.<br />

1093/biomet/73.1.13.<br />

Lonsdale, W.M. 1999. Global patterns of pl<strong>an</strong>t <strong>in</strong>vasions <strong><strong>an</strong>d</strong> the<br />

concept of <strong>in</strong>vasibility. Ecology, 80: 1522–1536.<br />

MacDougall, A.S., <strong><strong>an</strong>d</strong> Turk<strong>in</strong>gton, R. 2005. Are <strong>in</strong>vasive species<br />

the drivers or passengers of ch<strong>an</strong>ge <strong>in</strong> degraded ecosystems?<br />

Ecology, 86: 42–55. doi:10.1890/04-0669.<br />

Mart<strong>in</strong>, K.J., <strong><strong>an</strong>d</strong> Anthony, R.G. 1999. Movements of northern fly<strong>in</strong>g<br />

<strong>squirrels</strong> <strong>in</strong> different-aged forest st<strong><strong>an</strong>d</strong>s of western Oregon.<br />

J. Wildl. M<strong>an</strong>ag. 63: 291–297. doi:10.2307/3802512.<br />

[McTaggart-]Cow<strong>an</strong>, I.[McT.], <strong><strong>an</strong>d</strong> Guiguet, C.J. 1965. The mammals<br />

of British Columbia. H<strong><strong>an</strong>d</strong>b. No. 11, Royal British Columbia<br />

Museum, Victoria.<br />

Merilees, B. 1986. Eastern gray <strong>squirrels</strong> around Greater V<strong>an</strong>couver.<br />

Discovery, 15: 17–19.<br />

Mitchell, C.E., Agrawal, A.A., Bever, J.D., Gilbert, G.S., Hufbauer,<br />

R.A., Klironomos, J.N., Maron, J.L., Morris, W.F., Parker, I.M.,<br />

Power, A.G., Seabloom, E.W., Torch<strong>in</strong>, M.E., <strong><strong>an</strong>d</strong> Vazquez, D.P.<br />

2006. Biotic <strong>in</strong>teractions <strong><strong>an</strong>d</strong> pl<strong>an</strong>t <strong>in</strong>vasions. Ecol. Lett. 9: 726–<br />

740. doi:10.1111/j.1461-0248.2006.00908.x. PMID:16706916.<br />

Nupp, T.E., <strong><strong>an</strong>d</strong> Swihart, R.K. 2000. L<strong><strong>an</strong>d</strong>scape-level correlates<br />

of small-mammal assemblages <strong>in</strong> forest fragments of farml<strong><strong>an</strong>d</strong>.<br />

J. Mammal. 81: 512–526. doi:10.1644/1545-1542(2000)<br />

0812.0.CO;2.<br />

Nupp, T.E., <strong><strong>an</strong>d</strong> Swihart, R.K. 2001. Assess<strong>in</strong>g competition <strong>between</strong><br />

forest rodents <strong>in</strong> a fragmented l<strong><strong>an</strong>d</strong>scape of midwestern<br />

USA. Mamm. Biol. 66: 1–12.<br />

R<strong>an</strong>some, D.B., <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong>, T.P. 2003. Population dynamics of<br />

Glaucomys sabr<strong>in</strong>us <strong><strong>an</strong>d</strong> Tamiasciurus douglasii <strong>in</strong> old-growth<br />

<strong><strong>an</strong>d</strong> second-growth st<strong><strong>an</strong>d</strong>s of coastal coniferous forest. C<strong>an</strong>. J.<br />

For. Res. 33: 587–596. doi:10.1139/x02-193.<br />

Reynolds, J.C. 1985. Details of the geographic replacement of the<br />

red squirrel (Sciurus vulgaris) by the grey squirrel (Sciurus carol<strong>in</strong>ensis)<br />

<strong>in</strong> eastern Engl<strong><strong>an</strong>d</strong>. J. Anim. Ecol. 54: 149–162.<br />

doi:10.2307/4627.<br />

Riege, D.A. 1991. Habitat specialization <strong><strong>an</strong>d</strong> social-factors <strong>in</strong> distribution<br />

of red <strong><strong>an</strong>d</strong> gray <strong>squirrels</strong>. J. Mammal. 72: 152–162.<br />

doi:10.2307/1381990.<br />

Rob<strong>in</strong>son, D.J., <strong><strong>an</strong>d</strong> [McTaggart-]Cow<strong>an</strong>, I.[McT.] 1954. An <strong>in</strong>troduced<br />

population of the gray squirrel (Sciurus carol<strong>in</strong>ensis Gmel<strong>in</strong>)<br />

<strong>in</strong> British Columbia. C<strong>an</strong>. J. Zool. 32: 261–282. doi:10.<br />

1139/z54-026.<br />

S<strong><strong>an</strong>d</strong>los, J. 1997. Purple loosestrife <strong><strong>an</strong>d</strong> the ‘‘bound<strong>in</strong>g’’ of nature<br />

<strong>in</strong> North Americ<strong>an</strong> wetl<strong><strong>an</strong>d</strong>s [onl<strong>in</strong>e]. Electron. J. Sociol. 3: 1.<br />

SAS Institute Inc. 2003. SAS. Vversion 9.1 [computer program].<br />

SAS Institute Inc., Cary, N.C.<br />

Sax, D.F., <strong><strong>an</strong>d</strong> Brown, J.H. 1999. The paradox of <strong>in</strong>vasion. Glob.<br />

Ecol. Biogeogr. 11: 343–348.<br />

Sax, D.F., <strong><strong>an</strong>d</strong> Ga<strong>in</strong>es, S.D. 2003. Species diversity: from global<br />

decreases to local <strong>in</strong>creases. Trends Ecol. Evol. 18: 561–566.<br />

doi:10.1016/S0169-5347(03)00224-6.<br />

Sax, D.F., Ga<strong>in</strong>es, S.D., <strong><strong>an</strong>d</strong> Brown, J.H. 2002. Species <strong>in</strong>vasions<br />

exceed ext<strong>in</strong>ctions on isl<strong><strong>an</strong>d</strong>s worldwide: a comparative study<br />

of pl<strong>an</strong>ts <strong><strong>an</strong>d</strong> birds. Am. Nat. 160: 766–783. doi:10.1086/<br />

343877.<br />

Schabenberger, O., <strong><strong>an</strong>d</strong> Pierce, F.J. 2002. Contemporary statistical<br />

models for the pl<strong>an</strong>t <strong><strong>an</strong>d</strong> soil science. CRC Press, Boca Raton, Fla.<br />

Shaffer, H.B., Fisher, R.N., <strong><strong>an</strong>d</strong> Davidson, C. 1998. The role of<br />

natural history collections <strong>in</strong> document<strong>in</strong>g species decl<strong>in</strong>es.<br />

Trends Ecol. Evol. 13: 27–30. doi:10.1016/S0169-5347(97)<br />

01177-4.<br />

Sheail, J. 1999. The grey squirrel (Sciurus carol<strong>in</strong>ensis) —aUK<br />

historical perspective on a vertebrate pest species. J. Environ.<br />

M<strong>an</strong>ag. 55: 145–156. doi:10.1006/jema.1998.0246.<br />

Simberloff, D. 2003. Eradication — prevent<strong>in</strong>g <strong>in</strong>vasions at the<br />

outset. Weed Sci. 51: 247–253. doi:10.1614/0043-1745(2003)<br />

051[0247:EPIATO]2.0.CO;2.<br />

Stohlgren, T.J., B<strong>in</strong>kley, D., Chong, G.W., Kalkh<strong>an</strong>, M.A., Schell,<br />

L.D., Bull, K.A., Otsuki, Y., Newm<strong>an</strong>, G., Bashk<strong>in</strong>, M., <strong><strong>an</strong>d</strong><br />

Son, Y. 1999. Exotic pl<strong>an</strong>t species <strong>in</strong>vade hot spots of <strong>native</strong><br />

pl<strong>an</strong>t diversity. Ecol. Monogr. 69: 25–46.<br />

Sulliv<strong>an</strong>, T.P., <strong><strong>an</strong>d</strong> Sulliv<strong>an</strong>, D.S. 1982. Population dynamics <strong><strong>an</strong>d</strong><br />

regulation of the Douglas squirrel (Tamiasciurus douglasii) with<br />

supplemental food. Oecologia (Berl.), 53: 264–270. doi:10.1007/<br />

BF00545675.<br />

Thomas, K., Tompk<strong>in</strong>s, D.M., Sa<strong>in</strong>sbury, A.W., Wood, A.R., Dalziel,<br />

R., Nettleton, P.F., <strong><strong>an</strong>d</strong> McInnes, C.J. 2003. A novel poxvirus<br />

lethal to red <strong>squirrels</strong> (Sciurus vulgaris). J. Gen. Virol. 84:<br />

3337–3341. doi:10.1099/vir.0.19464-0. PMID:14645914.<br />

Tompk<strong>in</strong>s, D.M., White, A.R., <strong><strong>an</strong>d</strong> Boots, M. 2003. Ecological replacement<br />

of <strong>native</strong> red <strong>squirrels</strong> by <strong>in</strong>vasive greys driven by<br />

disease. Ecol. Lett. 6: 189–196. doi:10.1046/j.1461-0248.2003.<br />

00417.x.<br />

Usher, M.B., Crawford, T.J., <strong><strong>an</strong>d</strong> B<strong>an</strong>well, J.L. 1992. An Americ<strong>an</strong><br />

<strong>in</strong>vasion of Great Brita<strong>in</strong> — the case of the <strong>native</strong> <strong><strong>an</strong>d</strong> alien<br />

squirrel (Sciurus) species. Conserv. Biol. 6: 108–115. doi:10.<br />

1046/j.1523-1739.1992.610108.x.<br />

Verbeylen, G., de Bruyn, L., Adriaensen, F., <strong><strong>an</strong>d</strong> Matthysen, E.<br />

2003. Does matrix resist<strong>an</strong>ce <strong>in</strong>fluence red squirrel (Sciurus vulgaris<br />

L. 1758) distribution <strong>in</strong> <strong>an</strong> urb<strong>an</strong> l<strong><strong>an</strong>d</strong>scape? L<strong><strong>an</strong>d</strong>sc. Ecol.<br />

18: 791–805. doi:10.1023/B:LAND.0000014492.50765.05.<br />

Wauters, L.A., Gurnell, J., Mart<strong>in</strong>oli, A., <strong><strong>an</strong>d</strong> Tosi, G. 2002. Interspecific<br />

competition <strong>between</strong> <strong>native</strong> Eurasi<strong>an</strong> red <strong>squirrels</strong> <strong><strong>an</strong>d</strong><br />

alien grey <strong>squirrels</strong>: does resource partition<strong>in</strong>g occur? Behav.<br />

Ecol. Sociobiol. 52: 332–341. doi:10.1007/s00265-002-0516-9.<br />

White, E.M., Wilson, J.C., <strong><strong>an</strong>d</strong> Clarke, A.R. 2006. Biotic <strong>in</strong>direct<br />

effects: a neglected concept <strong>in</strong> <strong>in</strong>vasion biology. Divers. Distrib.<br />

12: 443–455. doi:10.1111/j.1366-9516.2006.00265.x.<br />

Wilcove, D.S., Rothste<strong>in</strong>, D., Dubow, J., Phillips, A., <strong><strong>an</strong>d</strong> Losos, E.<br />

1998. Qu<strong>an</strong>tify<strong>in</strong>g threats to imperiled species <strong>in</strong> the United<br />

States. Bioscience 48: 607–615. doi:10.2307/1313420.<br />

PROOF/ÉPREUVE<br />

# 2008 NRC C<strong>an</strong>ada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!