29.04.2014 Views

A Review of Recent Progress in the Design and ... - Neue Verpackung

A Review of Recent Progress in the Design and ... - Neue Verpackung

A Review of Recent Progress in the Design and ... - Neue Verpackung

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ROHSTOFFE UND ANWENDUNGEN<br />

RAW MATERIALS AND APPLICATIONS<br />

Fluoroelastomers Base resistance <br />

Competitive dehydr<strong>of</strong>luor<strong>in</strong>ation <br />

F-19 NMR 3,3,3-trifluoropropene<br />

Increas<strong>in</strong>gly basic formulations <strong>of</strong><br />

automotive lubricants have required<br />

that new heat- <strong>and</strong> oil- resistant elastomers<br />

be developed. The reactivity <strong>of</strong><br />

VF2-based elastomers <strong>in</strong> solution is<br />

exam<strong>in</strong>ed <strong>in</strong> an NMR-monitored study<br />

<strong>and</strong> compared to that <strong>of</strong> VF2-free<br />

fluoroelastomers. It was found that<br />

that a VF2-free elastomer based on TFE<br />

<strong>and</strong> P that conta<strong>in</strong>s curesite levels <strong>of</strong><br />

3,3,3-trifluoropropene responds very<br />

well to basic vulcanization with bisphenols<br />

<strong>and</strong> yet affords outst<strong>and</strong><strong>in</strong>g<br />

resistance toward base <strong>in</strong> service <strong>and</strong> <strong>in</strong><br />

competitive dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

studies <strong>in</strong> solution. This desirable<br />

behavior is attributed to <strong>the</strong> high reactivity<br />

<strong>of</strong> <strong>the</strong> curesite monomer <strong>and</strong><br />

to its limited concentration.<br />

E<strong>in</strong> Fortschrittsbericht zum<br />

Aufbau und den Reaktionen<br />

Laugenstabiler Fluorelastomere<br />

Fluorelastomere Laugenstabilität <br />

Dehydr<strong>of</strong>luorierung F-19 NMR <br />

3,3,3-Trifluorpropen<br />

Die zunehmend basische Rezepturierung<br />

von Schmierst<strong>of</strong>fen im Automobilbereich<br />

erfordert die Entwicklung<br />

neuer hitze- und ölbeständiger<br />

Elastomere. Die Reaktivität<br />

von Flurelastomeren die auf VF2-<br />

Basis hergestellt wurden, ist vergleichend<br />

mit Hilfe von NMR untersucht<br />

worden. Es wurde gefunden,<br />

dass VF2 – freie Elastomere die<br />

TFE und TFP enthalten sehr gut mit<br />

basischen Bis – Phenolen vernetzt<br />

werden können und zudem e<strong>in</strong>en<br />

außergewöhlichen Widerst<strong>and</strong> gegen<br />

Basen im Gebrauch oder gegen<br />

Dehydr<strong>of</strong>luorierung <strong>in</strong> Lösung aufweisen.<br />

Dieses erwünschte Eigenschaftsbild<br />

wird der hohen Reaktivität<br />

des Curesite-Monomeren und<br />

se<strong>in</strong>er ger<strong>in</strong>gen Konzentration zugeschrieben.<br />

A <strong>Review</strong> <strong>of</strong> <strong>Recent</strong> <strong>Progress</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Design</strong> <strong>and</strong> Reactions <strong>of</strong><br />

Base-Resistant Fluoroelastomers<br />

The ease <strong>of</strong> proton abstraction from carbon-hydrogen<br />

compounds that are partially<br />

fluor<strong>in</strong>ated is a specific function <strong>of</strong> structure.<br />

Poly(v<strong>in</strong>ylidene fluoride) (VF2) <strong>and</strong><br />

isomeric, alternat<strong>in</strong>g tetrafluoroethylene<br />

(TFE)/ethylene (E) are opposites <strong>in</strong> terms<br />

<strong>of</strong> polarity, solubility <strong>and</strong> base-resistance.<br />

The homopolymer is highly reactive <strong>and</strong><br />

soluble <strong>in</strong> donor solvents like acetone,<br />

while <strong>the</strong> copolymer is essentially <strong>in</strong>ert to<br />

bases <strong>and</strong> only soluble <strong>in</strong> fluorocarbons.<br />

Elastomeric examples <strong>of</strong> such reactivity differences<br />

are <strong>the</strong> family <strong>of</strong> VF2-based copolymers<br />

<strong>of</strong> hexafluoropropylene (HFP) or<br />

perfluoro(methyl v<strong>in</strong>yl e<strong>the</strong>r) (PMVE), or<br />

<strong>the</strong>ir terpolymers with TFE, <strong>and</strong> <strong>the</strong> family<br />

<strong>of</strong> VF2-free copolymers <strong>of</strong> TFE <strong>and</strong> propylene<br />

(P) or terpolymers <strong>of</strong> TFE, PMVE, <strong>and</strong><br />

E. Clearly, fluor<strong>in</strong>e content alone is a poor<br />

predictor <strong>of</strong> base resistance. Despite <strong>the</strong>ir<br />

long demonstrated outst<strong>and</strong><strong>in</strong>g heat <strong>and</strong><br />

oil resistance generally, <strong>and</strong> good acid resistance<br />

when crossl<strong>in</strong>ked by peroxides,<br />

VF2-based fluoroelastomers are <strong>in</strong>tr<strong>in</strong>sically<br />

highly reactive toward soluble bases. It is<br />

an <strong>in</strong>escapable fact that amorphous fluoroelastomers<br />

<strong>of</strong> <strong>the</strong> VF2/HFP/TFE <strong>and</strong><br />

VF2/PMVE/TFE families can not be made<br />

resistant to gross dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

<strong>and</strong> subsequent embrittlement due to<br />

overcrossl<strong>in</strong>k<strong>in</strong>g on contact with strong<br />

nucleophilic bases. This is a consequence<br />

<strong>of</strong> <strong>the</strong> high VF2 levels required to achieve<br />

acceptably low glass transition temperatures<br />

<strong>and</strong> <strong>the</strong> high levels <strong>of</strong> HFP or PMVE<br />

required to prevent VF2, or mixed VF2/<br />

TFE, crystall<strong>in</strong>ity. Even tetrapolymers that<br />

use E to partially replace VF2 are not<br />

base-resistant but merely possess a somewhat<br />

reduced, yet still too-high, concentration<br />

<strong>of</strong> highly base-sensitive Rf – VF2 –<br />

Rf sequences. It should not be surpris<strong>in</strong>g<br />

that elastomers that can be crossl<strong>in</strong>ked<br />

<strong>in</strong> less than one m<strong>in</strong>ute at 200C <strong>and</strong><br />

have a large excess <strong>of</strong> such Rf – VF2 – Rf<br />

curesites due to morphological requirements,<br />

are not able to withst<strong>and</strong> <strong>the</strong> attack<br />

<strong>of</strong> similarly basic species <strong>in</strong> service. Instead,<br />

<strong>the</strong> hydrogen content <strong>of</strong> affordable baseresistant<br />

fluoroelastomers required for flexibility<br />

<strong>in</strong> low temperature service must be<br />

provided by hydrocarbon olef<strong>in</strong>s like E or P.<br />

Such structures <strong>the</strong>n confer <strong>the</strong> <strong>in</strong>ertness<br />

toward _bases that characterize TFE/E ra<strong>the</strong>r<br />

than poly(VF2). Elastomeric compositions<br />

that possess this superior level <strong>of</strong><br />

base-resistance are TFE/P/curesite monomer<br />

<strong>and</strong> TFE/PMVE/E/curesite monomer.<br />

Development <strong>of</strong><br />

Fluoroelastomers<br />

The early development <strong>of</strong> fluoroelastomers<br />

is described <strong>in</strong> a general reference [1]. Research<br />

<strong>in</strong> <strong>the</strong> mid 1950s by DuPont [2] <strong>and</strong><br />

M. W. Kellogg [3] (later acquired by 3M)<br />

led to a major advance <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal stability<br />

<strong>and</strong> oil resistance <strong>of</strong> elastomers useful<br />

for seal<strong>in</strong>g applications under severe conditions.<br />

Attempts to cure <strong>the</strong>se early compositions<br />

<strong>of</strong> VF2/HFP [4] <strong>and</strong> VF2/CTFE [3]<br />

showed that <strong>the</strong>y were unresponsive to<br />

peroxides but reactive toward soluble bases.<br />

Initial cur<strong>in</strong>g systems for VF2/HFP<br />

used tertiary am<strong>in</strong>es as dehydr<strong>of</strong>luor<strong>in</strong>at<strong>in</strong>g<br />

agents <strong>and</strong> dithiols as bisnucleophiles.<br />

Primary diam<strong>in</strong>es were found to be reasonably<br />

scorch resistant curatives when used<br />

<strong>in</strong> <strong>the</strong> form <strong>of</strong> <strong>the</strong>ir carbamate or Schiff’s<br />

base derivatives <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>in</strong>organic<br />

acid acceptors such as MgO <strong>and</strong><br />

Ca(OH) 2 . Commercial curatives were<br />

developed from <strong>the</strong> carbamates <strong>of</strong> ethylene<br />

diam<strong>in</strong>e <strong>and</strong> 1,6-hexamethylenediam<strong>in</strong>e<br />

<strong>and</strong> <strong>the</strong> bis-c<strong>in</strong>namaldehyde condensation<br />

product <strong>of</strong> <strong>the</strong> hexamethylene<br />

diam<strong>in</strong>e [4]. To fur<strong>the</strong>r <strong>in</strong>crease fluor<strong>in</strong>e<br />

content <strong>and</strong> raise fluids resistance, DuPont<br />

developed <strong>and</strong> commercialized TFE-contai-<br />

W. W. Schmiegel, Wilm<strong>in</strong>gton (USA)<br />

Corresond<strong>in</strong>g author:<br />

Walter W. Schmiegel<br />

DuPont Dow Elastomers LLC<br />

DuPont Experimental Station<br />

Wilm<strong>in</strong>gton, DE 19800-0293 USA<br />

KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004 313


n<strong>in</strong>g terpolymers <strong>of</strong> VF2/HFP soon after <strong>the</strong><br />

dipolymers were commercialized [5]. Barred<br />

from us<strong>in</strong>g HFP, Montecat<strong>in</strong>i Edison<br />

entered <strong>the</strong> fluoroelastomer field with<br />

VF2 copolymers <strong>of</strong> 1-H-pentafluoropropene<br />

[6, 7]. However, <strong>the</strong>se were less <strong>the</strong>rmally<br />

stable <strong>and</strong> solvent resistant than<br />

correspond<strong>in</strong>g HFP dipolymers <strong>and</strong> terpolymers<br />

<strong>and</strong> were subsequently replaced by<br />

HFP analogs upon expiration <strong>of</strong> orig<strong>in</strong>al<br />

patents [8].<br />

A major advance <strong>in</strong> cur<strong>in</strong>g chemistry was<br />

made <strong>in</strong> <strong>the</strong> late 1960s when it was found<br />

that, <strong>in</strong> <strong>the</strong> presence or <strong>in</strong>organic acid acceptors,<br />

alkali salts <strong>of</strong> bisphenols could be<br />

used as bisnucleophilic crossl<strong>in</strong>k<strong>in</strong>g agents<br />

<strong>in</strong> <strong>the</strong> presence <strong>of</strong> a non-ionic phase transfer<br />

catalyst (18-crown-6) [9] <strong>and</strong> ultimately<br />

as free bisphenols with quaternary ammonium<br />

<strong>and</strong> phosphonium salts as phase<br />

transfer catalysts [10]. The change from aliphatic<br />

primary diam<strong>in</strong>es to bisphenol<br />

anions as <strong>the</strong> active crossl<strong>in</strong>k<strong>in</strong>g species resulted<br />

<strong>in</strong> vast improvements <strong>in</strong> process<strong>in</strong>g<br />

safety <strong>and</strong> high temperature compression<br />

set resistance, as well as <strong>in</strong> major improvements<br />

<strong>in</strong> <strong>the</strong> stability <strong>of</strong> tensile properties<br />

on heat ag<strong>in</strong>g, <strong>and</strong> <strong>in</strong> greatly improved hydrolytic<br />

stability. Bis-phenyl e<strong>the</strong>r crossl<strong>in</strong>ks,<br />

even if l<strong>in</strong>k<strong>in</strong>g unsaturated sites <strong>of</strong><br />

<strong>the</strong> fluoroelastomer, are far more stable<br />

than bis-im<strong>in</strong>e crossl<strong>in</strong>ks that are sensitive<br />

to electrophilic oxidants <strong>and</strong> that can also<br />

regenerate <strong>the</strong> active crossl<strong>in</strong>k<strong>in</strong>g agent on<br />

hydrolysis when exposed to steam or boil<strong>in</strong>g<br />

water for extended periods. The diam<strong>in</strong>e<br />

networks are <strong>the</strong>refore relatively unstable,<br />

undergo<strong>in</strong>g a ’march<strong>in</strong>g modulus’<br />

process on heat ag<strong>in</strong>g <strong>in</strong> ambient air <strong>and</strong><br />

suffer<strong>in</strong>g from a loss <strong>of</strong> crossl<strong>in</strong>k density<br />

on exposure to low pressure steam. Even<br />

bisphenol-cured vulcanizates are considerably<br />

s<strong>of</strong>tened by <strong>the</strong> swell<strong>in</strong>g <strong>of</strong> <strong>in</strong>organic<br />

bases <strong>in</strong> contact with steam or aqueous<br />

acids <strong>and</strong> <strong>the</strong> best cur<strong>in</strong>g systems for resistance<br />

to such exposures are based on peroxides<br />

<strong>and</strong> radical traps when used with<br />

fluoroelastomers that conta<strong>in</strong> a brom<strong>in</strong>e<br />

or iod<strong>in</strong>e cure site. This is not necessarily<br />

<strong>the</strong> result <strong>of</strong> a more stable crossl<strong>in</strong>k <strong>and</strong><br />

a saturated backbone, however. Instead,<br />

it appears also to be a strong function <strong>of</strong><br />

<strong>the</strong> reduced level <strong>and</strong> basicity <strong>of</strong> <strong>the</strong> <strong>in</strong>organic<br />

acid acceptors that are required for<br />

peroxidic vulcanization, as for example<br />

<strong>the</strong> replacement <strong>of</strong> Ca(OH) 2 or MgO by<br />

ZnO. Indeed, addition <strong>of</strong> <strong>the</strong> same high levels<br />

<strong>of</strong> acid acceptors commonly used for<br />

bisphenol cures confers a similarly high degree<br />

<strong>of</strong> swell<strong>in</strong>g when added to a peroxide<br />

cur<strong>in</strong>g fomulation.<br />

Ano<strong>the</strong>r advance <strong>in</strong> <strong>the</strong> cur<strong>in</strong>g chemistry <strong>of</strong><br />

VF2/HFP/(TFE) elastomers was <strong>the</strong> <strong>in</strong>troduction<br />

<strong>of</strong> “prereacted” curatives that<br />

are organic salts <strong>of</strong> <strong>the</strong> phase-transfer<br />

agent <strong>and</strong> <strong>the</strong> bisphenol. It was found<br />

that <strong>the</strong> elim<strong>in</strong>ation <strong>of</strong> chloride as <strong>the</strong><br />

counter ion <strong>of</strong> <strong>the</strong> quaternary phosphonium<br />

cation <strong>and</strong> its replacement by <strong>the</strong><br />

mono-anion <strong>of</strong> <strong>the</strong> bisphenol afforded<br />

better process<strong>in</strong>g compounds, especially<br />

with respect to mold foul<strong>in</strong>g <strong>and</strong> stick<strong>in</strong>g.<br />

This has been attributed to <strong>the</strong> reduced<br />

steel corrosion.<br />

Peroxide cures were developed by DuPont<br />

[11] <strong>in</strong> <strong>the</strong> early 1970s <strong>and</strong> commercialized<br />

<strong>in</strong> 1977. These systems generally require a<br />

brom<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g monomer, although<br />

more recent polymers rely on iod<strong>in</strong>e <strong>in</strong>troduced<br />

<strong>in</strong> <strong>the</strong> form <strong>of</strong> ei<strong>the</strong>r curesite monomers<br />

or cha<strong>in</strong> transfer agents. Among VF2-<br />

based elastomers, brom<strong>in</strong>e or iod<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

polymers that are crossl<strong>in</strong>ked by<br />

peroxides <strong>and</strong> radical traps represent <strong>the</strong><br />

upper limit <strong>of</strong> base resistance. Daik<strong>in</strong> entered<br />

this market with conventional products<br />

<strong>in</strong> <strong>the</strong> early 1970s <strong>and</strong> <strong>in</strong> 1978 patented an<br />

elegant liv<strong>in</strong>g radical emulsion polymerization<br />

process [12] that produces highly monodisperse<br />

term<strong>in</strong>al di-iodide polymers<br />

that are crossl<strong>in</strong>ked by peroxides us<strong>in</strong>g a<br />

conventional polyfunctional radical trap.<br />

To <strong>in</strong>crease base resistance fur<strong>the</strong>r <strong>and</strong><br />

ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> fluor<strong>in</strong>e content for excellent<br />

oil resistance has not been possible with<br />

elastomers based on VF2/HFP/(TFE). The<br />

emerg<strong>in</strong>g markets for seals that will tolerate<br />

<strong>the</strong> <strong>in</strong>creas<strong>in</strong>gly alkal<strong>in</strong>e formulations <strong>of</strong><br />

automotive eng<strong>in</strong>e <strong>and</strong> axle lubricants required<br />

that truly base-resistant elastomers<br />

be developed. In this connection it must be<br />

remembered that an eng<strong>in</strong>eer’s first priority<br />

<strong>in</strong> design<strong>in</strong>g a long runn<strong>in</strong>g <strong>in</strong>ternal<br />

combustion eng<strong>in</strong>e is to optimize lubrication<br />

<strong>and</strong> m<strong>in</strong>imize steel corrosion from<br />

acidic oxides <strong>of</strong> sulfur <strong>and</strong> nitrogen <strong>in</strong><br />

cyl<strong>in</strong>der blow-by gases. This is why some<br />

modern high performance lubricants<br />

conta<strong>in</strong> as little as two thirds petroleum<br />

<strong>and</strong> large amounts <strong>of</strong> additives, most <strong>of</strong><br />

<strong>the</strong>m quite basic.<br />

Early fluoropolymer research at DuPont<br />

had already <strong>in</strong>dicated by 1949 that elastomeric<br />

compositions <strong>of</strong> TFE could be obta<strong>in</strong>ed<br />

by copolymerization with hydrocarbon<br />

alpha-olef<strong>in</strong>s [13], but <strong>the</strong>se experimental<br />

elastomers attracted little attention after<br />

more highly fluor<strong>in</strong>ated VF2-based elastomers<br />

were developed. The TFE/P composition<br />

aga<strong>in</strong> ga<strong>in</strong>ed attention <strong>in</strong> <strong>the</strong> late<br />

1960s [14] because <strong>of</strong> its potentially lower<br />

monomer costs but <strong>the</strong> required polymerization<br />

process was unattractive to DuPont<br />

<strong>and</strong> construction <strong>of</strong> facilities never proceeded<br />

beyond <strong>the</strong> pilot plant scale. Base resistance<br />

was not a major issue for automotive<br />

eng<strong>in</strong>e seals at <strong>the</strong> time <strong>and</strong> <strong>the</strong> general<br />

chemical process <strong>in</strong>dustry had not yet<br />

dem<strong>and</strong>ed elastomers that were highly<br />

base-resistant <strong>and</strong> <strong>the</strong>rmally stable.<br />

Asahi Glass began to <strong>of</strong>fer highly base-resistant<br />

TFE/P dipolymers <strong>in</strong> 1979 [15]; however,<br />

<strong>the</strong>se elastomers proved quite difficult<br />

to process. In 1985 less base-resistant<br />

but more processable terpolymers that <strong>in</strong>cluded<br />

VF2 were patented by Asahi Glass<br />

[16] <strong>and</strong> later marketed by Asahi Glass <strong>and</strong><br />

3M [17]. In <strong>the</strong> mid 1980s a highly baseresistant<br />

polymer <strong>of</strong> ethylene, TFE, PMVE<br />

<strong>and</strong> a peroxide-sensitive brom<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

curesite monomer, was developed by<br />

DuPont [18]; however, <strong>the</strong> high level <strong>of</strong><br />

very expensive PMVE required to break<br />

up TFE-E crystall<strong>in</strong>ity elevated this product<br />

to <strong>the</strong> status <strong>of</strong> a high-cost, high-performance<br />

speciality. DuPont-Dow Elastomers,<br />

LLC, a wholly owned jo<strong>in</strong>t venture <strong>of</strong> Du-<br />

Pont <strong>and</strong> Dow, re-<strong>in</strong>vestigated <strong>the</strong> potential<br />

<strong>of</strong> TFE/P-based polymers <strong>in</strong> <strong>the</strong> late<br />

1990s <strong>and</strong> has now prepared VF2-free,<br />

highly processable, bisphenol-curable variants<br />

on a commercial scale us<strong>in</strong>g a proprietary<br />

curesite monomer. The f<strong>in</strong>al development<br />

<strong>of</strong> <strong>the</strong>se polymers <strong>and</strong> <strong>the</strong>ir recommended<br />

curable formulations are<br />

now <strong>in</strong> <strong>the</strong> pre-commercial stage [19].<br />

VF2/HFP/(TFE) Chemistry<br />

To underst<strong>and</strong> how to design a base-resistant<br />

hydr<strong>of</strong>luoroelastomer it is necessary<br />

to underst<strong>and</strong> how conventional VF2-based<br />

fluoroelastomers react with strong bases<br />

<strong>and</strong> ultimately fail <strong>in</strong> severe accelerated<br />

exposure tests designed for <strong>in</strong>creas<strong>in</strong>gly<br />

dem<strong>and</strong><strong>in</strong>g applications. It should be noted<br />

that field failures <strong>of</strong> exist<strong>in</strong>g FKM parts<br />

are rare <strong>in</strong> present applications, but longer<br />

automotive warranties <strong>and</strong> <strong>the</strong> <strong>in</strong>troduction<br />

<strong>of</strong> ever more aggressively formulated<br />

lubricants designed for long service <strong>in</strong>tervals<br />

has forced suppliers to develop fundamentally<br />

new fluoroelastomer compositions.<br />

VF2/HFP elastomers are derivatives <strong>of</strong> poly-<br />

VF2 <strong>in</strong> <strong>the</strong> sense that sufficient HFP is copolymerized<br />

to elim<strong>in</strong>ate <strong>the</strong> 165 8C melt<strong>in</strong>g<br />

po<strong>in</strong>t <strong>of</strong> <strong>the</strong> homopolymer <strong>and</strong> to prevent<br />

<strong>the</strong> formation <strong>and</strong> crystallization <strong>of</strong> lower<br />

melt<strong>in</strong>g, shorter sequences <strong>of</strong> contiguous<br />

VF2 units. This requires at least<br />

35 wt.% <strong>of</strong> HFP. Incorporation <strong>of</strong><br />

40 wt.% HFP <strong>in</strong> st<strong>and</strong>ard dipolymers af-<br />

314 KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004


fords a non-crystall<strong>in</strong>e elastomer with a<br />

glass transition temperature <strong>of</strong> about<br />

-18 8C. A consequence <strong>of</strong> hav<strong>in</strong>g to <strong>in</strong>troduce<br />

over 25 mole % HFP is <strong>the</strong> <strong>in</strong>troduction<br />

<strong>of</strong> substantial levels <strong>of</strong> HFP-VF2-HFP<br />

sequences, which we have previously identified<br />

as selectively base-sensitive sites that<br />

undergo both dehydr<strong>of</strong>luor<strong>in</strong>ation <strong>and</strong><br />

crossl<strong>in</strong>k<strong>in</strong>g <strong>in</strong> <strong>the</strong> cur<strong>in</strong>g process. The advantage<br />

<strong>of</strong> such a high curesite concentration<br />

is that very high cure rates can be<br />

achieved. The disadvantage is that overcrossl<strong>in</strong>k<strong>in</strong>g<br />

can occur <strong>in</strong> severe service <strong>in</strong><br />

basic environments because difunctional<br />

agents are not required to couple unsaturated<br />

fluorocarbons. Thus, fluoride ion can<br />

add to one double bond <strong>and</strong> form a carbanion<br />

that <strong>the</strong>n attacks <strong>the</strong> second double<br />

bond nucleophilically <strong>and</strong> forms an undesired<br />

crossl<strong>in</strong>k. The carbanion adduct <strong>the</strong>n<br />

stabilizes itself by elim<strong>in</strong>at<strong>in</strong>g its charge as<br />

a fluoride ion <strong>and</strong> forms a fluoroalkylated<br />

double bond at <strong>the</strong> po<strong>in</strong>t <strong>of</strong> attachment.<br />

The ease <strong>of</strong> this reaction <strong>in</strong> model compounds<br />

is evident from dimerization <strong>of</strong> perfluorocyclopentene<br />

when treated with CsF<br />

<strong>in</strong> sulfolane at 125 8C (Eqn. 1 [20]).<br />

Admittedly this reaction is highly favored<br />

stereochemically, but it occurs under mild<br />

conditions. It is believed that a similar process<br />

is responsible for <strong>the</strong> roughly 10% <strong>of</strong><br />

crossl<strong>in</strong>k density [21] that results from a<br />

pseudovulcanization <strong>in</strong> which <strong>the</strong> bisphenol<br />

is omitted from an o<strong>the</strong>rwise fully functional<br />

cur<strong>in</strong>g system. In this case <strong>the</strong> function<br />

<strong>of</strong> <strong>the</strong> CsF solution is assumed by <strong>the</strong><br />

unsolvated quaternary ammonium or<br />

phosphonium ion <strong>and</strong> its hydroxide counterion<br />

from exchange with <strong>the</strong> surface <strong>of</strong><br />

<strong>the</strong> metal oxide or hydroxide.<br />

The normal crossl<strong>in</strong>k<strong>in</strong>g process <strong>in</strong> phasetransfer<br />

catalyzed bisphenol systems that<br />

conta<strong>in</strong> metal oxide or hydroxide acid<br />

acceptors like MgO or Ca(OH) 2 can be<br />

viewed as follows (Eqn. 2 [22]).<br />

Comparison <strong>of</strong> F-19 FT-NMR spectra <strong>of</strong><br />

VF2/HFP solutions <strong>in</strong> d8-THF before <strong>and</strong> after<br />

reaction with <strong>the</strong> highly basic cyclic<br />

amid<strong>in</strong>e base DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene)<br />

shows that this<br />

base, when added at a molar ratio to polymer<br />

that corresponds to <strong>the</strong> bisphenol<br />

level (2.0 phr Bisphenol AF) <strong>in</strong> commercial<br />

cures <strong>and</strong> assumes that three moles <strong>of</strong><br />

base are required to attach one phenolic<br />

OH group (one to form <strong>the</strong> first double<br />

bond, ano<strong>the</strong>r to neutralize bifluoride<br />

<strong>and</strong> a third to ionize <strong>the</strong> phenol to become<br />

nucleophilic), selectively attacks VF2 units<br />

that are flanked by HFP. The amount <strong>of</strong><br />

reaction <strong>of</strong> contiguous VF2 sequences is<br />

Eqn. 1. Fluoridecatalyzed<br />

dimerization<br />

<strong>of</strong> perfluorocyclopentene<br />

[20]<br />

Eqn. 2. Proposed dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

<strong>of</strong><br />

3.5VF2/HFP elastomer<br />

by 1,8-diazabi-<br />

cyclo[5.4.0]undec-7-<br />

ene (DBU) <strong>in</strong> solution<br />

[22]<br />

m<strong>in</strong>or. The DBU/polymer ratio is based<br />

on <strong>the</strong> ionization <strong>of</strong> Ar(OH) 2 as a bis-nucleophile<br />

<strong>and</strong> <strong>the</strong> formation <strong>of</strong> a diene<br />

structure at each end <strong>of</strong> <strong>the</strong> bis-e<strong>the</strong>r<br />

crossl<strong>in</strong>k. Polymer concentrations <strong>of</strong> <strong>the</strong><br />

solutions subjected to dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

were about 1% <strong>in</strong> order to achieve a quantitative<br />

NMR response <strong>and</strong> T 1 experiments<br />

were done to verify that <strong>the</strong> polymer <strong>and</strong><br />

<strong>in</strong>ternal st<strong>and</strong>ard had sufficiently relaxed<br />

between excitation pulses to assure full absorption<br />

<strong>and</strong> hence mean<strong>in</strong>gful <strong>in</strong>tegration.<br />

Reactions with DBU were run on approximately,<br />

but accurately determ<strong>in</strong>ed,<br />

10 mg polymer samples.<br />

The diene structure at <strong>the</strong> crossl<strong>in</strong>k was orig<strong>in</strong>ally<br />

proposed [22] to account for <strong>the</strong> relatively<br />

high levels <strong>of</strong> fluoride produced on<br />

KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004 315


eaction <strong>of</strong> VF2/HFP with DBU or (n-Bu) 4-<br />

NOH <strong>in</strong> solution. The hydroxylic base<br />

also acts as a nucleophile toward <strong>the</strong> unsaturation<br />

<strong>and</strong> is expected to form an unsaturated<br />

ketone after isomerization <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>itially formed dienol if attack is v<strong>in</strong>ylic, or<br />

an isomeric unsaturated ketone if attack is<br />

allylic. Because <strong>of</strong> <strong>the</strong> excess level <strong>of</strong> HFP-<br />

VF2-HFP sites (orig<strong>in</strong>ally about 0.6 moles/<br />

kg) that rema<strong>in</strong>s after vulcanization with<br />

0.06 moles bisphenol/kg, <strong>the</strong> formation<br />

<strong>of</strong> such ketones <strong>and</strong> <strong>the</strong>ir fur<strong>the</strong>r hal<strong>of</strong>orm<br />

reaction on cont<strong>in</strong>ued exposure to strong<br />

bases <strong>in</strong> severe exposures would lead to<br />

appreciable cha<strong>in</strong> degradation. Not all unsaturation<br />

is dienic, however, because FT-IR<br />

also shows a v<strong>in</strong>ylic C-H stretch<strong>in</strong>g b<strong>and</strong> on<br />

base treatment <strong>in</strong> solution <strong>and</strong> <strong>in</strong> th<strong>in</strong> films<br />

<strong>of</strong> unfilled vulcanizates. The case for <strong>the</strong><br />

dienic structure <strong>in</strong> bisphenol crossl<strong>in</strong>k<strong>in</strong>g<br />

is best made by consider<strong>in</strong>g that <strong>the</strong> <strong>in</strong>itially<br />

formed fluoroolef<strong>in</strong> is expected to undergo<br />

a substitution reaction with phenoxide<br />

based on reactions <strong>of</strong> model compounds.<br />

If net addition were to occur,<br />

<strong>the</strong> phenol adduct C-H bond would become<br />

<strong>the</strong> most acidic polymer structure<br />

<strong>and</strong> would <strong>the</strong>refore be rapidly dehydr<strong>of</strong>luor<strong>in</strong>ated.<br />

The result<strong>in</strong>g structure would<br />

be an allylic e<strong>the</strong>r that conta<strong>in</strong>s an allylic<br />

hydrogen. This would also be expected<br />

to preferentially lose HF <strong>and</strong> generate a<br />

dienic e<strong>the</strong>r crossl<strong>in</strong>k. The details <strong>of</strong> po<strong>in</strong>t<br />

<strong>of</strong> attachment <strong>of</strong> <strong>the</strong> phenol are not<br />

known, but various reaction paths predict<br />

a common element, a dienic phenyl e<strong>the</strong>r.<br />

A similar reaction path is proposed for <strong>the</strong><br />

dehydr<strong>of</strong>luor<strong>in</strong>ation <strong>and</strong> bisphenol-crossl<strong>in</strong>k<strong>in</strong>g<br />

processes <strong>of</strong> TFE/P/VF2 polymers.<br />

As such it is particularly relevant to re-exam<strong>in</strong>e<br />

<strong>the</strong> evidence for <strong>the</strong> proposed<br />

high reactivity <strong>of</strong> isolated VF2 units <strong>in</strong> copolymers<br />

with perfluoroolef<strong>in</strong>s.<br />

It has been proposed by Ausimont workers<br />

[23] that <strong>the</strong> HFP-VF2-HFP site cannot be<br />

<strong>the</strong> cure site <strong>of</strong> VF2/HFP elastomers because<br />

as HFP content is raised, <strong>and</strong> more<br />

HFP-flanked VF2 occurs, <strong>the</strong> vulcanization<br />

rate is well known to decrease. This view<br />

results from a confusion between <strong>the</strong><br />

<strong>in</strong>tr<strong>in</strong>sic reactivity <strong>of</strong> solvent-separated<br />

cha<strong>in</strong>s as described here <strong>and</strong> <strong>in</strong> earlier<br />

work [22] <strong>and</strong> reactions <strong>in</strong> bulk, where<br />

reactant <strong>and</strong> reaction matrix are <strong>the</strong><br />

same. As fluor<strong>in</strong>e content rises, <strong>the</strong> rates<br />

<strong>of</strong> ionic reactions <strong>of</strong> bulk fluoroelastomer<br />

systems decrease. This is a result <strong>of</strong> <strong>the</strong><br />

reduced solubility <strong>of</strong> curatives <strong>and</strong> <strong>the</strong><br />

reduced ability <strong>of</strong> <strong>the</strong> reaction medium<br />

to support ionic <strong>in</strong>termediates. The ratio<br />

<strong>of</strong> CH 2 groups to CFþCF 2<br />

þCF 3 groups<br />

(averaged to CF 2 ) <strong>of</strong> typical VF2/HFP dipolymers<br />

is 0.54 <strong>and</strong> <strong>of</strong> a typical TFE-conta<strong>in</strong><strong>in</strong>g<br />

terpolymer is 0.40. Expressed this<br />

way, <strong>the</strong> expected solubility differences between<br />

<strong>the</strong>se two polymers are more easily<br />

appreciated than when consider<strong>in</strong>g <strong>the</strong>ir<br />

fluor<strong>in</strong>e contents (66.0 vs 68.5 wt.% F).<br />

It is well known that <strong>the</strong> more highly fluor<strong>in</strong>ated<br />

<strong>of</strong> <strong>the</strong>se two polymers requires about<br />

twice <strong>the</strong> accelerator level to achieve a<br />

similar cure rates. However, it was shown<br />

<strong>in</strong> our earlier study [22] that, on addition<br />

<strong>of</strong> DBU, gelation rates <strong>of</strong> Bisphenol AFconta<strong>in</strong><strong>in</strong>g<br />

polymer solutions <strong>in</strong> DMAC<br />

are <strong>in</strong>deed 2.7 times higher for <strong>the</strong> more<br />

highly fluor<strong>in</strong>ated terpolymer. Even despite<br />

<strong>the</strong> fact that this example is complicated by<br />

<strong>the</strong> simultaneous formation <strong>of</strong> TFE-VF2-<br />

TFE(HFP)-derived unsaturation that is quite<br />

unreactive toward crossl<strong>in</strong>k<strong>in</strong>g but equally<br />

readily formed by dehydr<strong>of</strong>luor<strong>in</strong>ation, it<br />

fur<strong>the</strong>r illustrates <strong>the</strong> divergence between<br />

<strong>in</strong>tr<strong>in</strong>sic reactivity <strong>in</strong> a common medium<br />

<strong>and</strong> reaction with<strong>in</strong> a given polymer matrix<br />

as a function <strong>of</strong> <strong>the</strong> concentration <strong>of</strong> <strong>the</strong><br />

isolated-CH 2 mole fraction. However,<br />

even a polymer with a high mole fraction<br />

<strong>of</strong> CH 2 groups, such as poly (VF2), resists<br />

efficient dehydr<strong>of</strong>luor<strong>in</strong>ation <strong>and</strong> crossl<strong>in</strong>k<strong>in</strong>g<br />

<strong>in</strong> solution because <strong>of</strong> <strong>the</strong> absence<br />

<strong>of</strong> RfCH2Rf sites, where Rf is a two-carbon<br />

or longer perfluoroalkyl unit, as shown<br />

below.<br />

Additional evidence for <strong>the</strong> HFP-VF2-HFP<br />

sequence as curesite comes from exam<strong>in</strong>ation<br />

<strong>of</strong> <strong>the</strong> NMR signal <strong>of</strong> <strong>the</strong> normally<br />

head-to-tail polymerized HFP’s CF 3 group<br />

on treatment with DBU <strong>in</strong> solution<br />

(Figs. 1 <strong>and</strong> 2). The high resolution <strong>of</strong> a<br />

modern spectrometer (377 MHz for F-19)<br />

now makes it possible to resolve this CF 3<br />

signal <strong>in</strong>to a major peak with a shoulder<br />

<strong>and</strong> a fully resolved peak that has about<br />

32% <strong>of</strong> <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> this pair. The<br />

more <strong>in</strong>tense b<strong>and</strong>, at 76.41 ppm, (all chemical<br />

shifts reported here are relative to <strong>the</strong><br />

<strong>in</strong>ternal st<strong>and</strong>ard 3-trifluoromethyl anisole<br />

<strong>in</strong> d-8 THF set at 63.93 ppm on <strong>the</strong> CF 3 Cl<br />

scale) is due to isolated HFP that is flanked<br />

by more than one VF2 group on ei<strong>the</strong>r<br />

side. This is obvious from <strong>the</strong> 3.5 VF2/<br />

HFP molar composition <strong>and</strong> <strong>the</strong> fact that<br />

HFP does not form contiguous units or homopolymerize.<br />

The o<strong>the</strong>r CF 3 b<strong>and</strong> at<br />

76.84 ppm is due to <strong>the</strong> first HFP unit <strong>of</strong><br />

<strong>the</strong> HFP-VF2-HFP sequence (viewed as polymerized<br />

left to right) <strong>and</strong> <strong>the</strong> shoulder at<br />

76.5 ppm is due to <strong>the</strong> second HFP unit,<br />

whose chemical shift environment is almost<br />

<strong>the</strong> same as that <strong>of</strong> <strong>the</strong> isolated<br />

HFP. The 76.5 ppm shoulder <strong>and</strong> <strong>the</strong><br />

Fig. 1. 377 MHz 19 F NMR spectrum <strong>of</strong> CF 3 region<br />

<strong>of</strong> 3.5 VF2/HFP polymer <strong>in</strong> d 8 THF solution<br />

(ppm). Internal st<strong>and</strong>ard 3-trifluoromethyl<br />

anisole set to 63.93 ppm relative to CF 3 Cl)<br />

Fig. 2. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 1 after<br />

treatment with 1x DBU for 20 h at 20C (see<br />

text)<br />

76.84 peak are <strong>in</strong>deed <strong>the</strong> signals that<br />

are massively <strong>and</strong> selectively reduced on<br />

reaction with DBU <strong>and</strong> shifted to new positions<br />

due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> nearby unsaturation.<br />

It would be logical to conclude<br />

that this reflects <strong>the</strong> specific transformation<br />

<strong>of</strong> <strong>the</strong> HFP-VF2-HFP sequence. The <strong>in</strong>tensity<br />

<strong>of</strong> <strong>the</strong> major b<strong>and</strong> at 76.41 changes<br />

very little but unfortunately cannot be accurately<br />

<strong>in</strong>tegrated because it is <strong>in</strong>completely<br />

resolved.<br />

Based on this evidence, it is reaffirmed that<br />

<strong>the</strong> orig<strong>in</strong>ally proposed curesite <strong>of</strong> VF2/HFP<br />

polymers is <strong>in</strong>deed <strong>the</strong> HFP-VF2-HFP monomer<br />

sequence <strong>and</strong> that, despite <strong>the</strong> presumed<br />

proper calculation <strong>of</strong> <strong>the</strong> concentration<br />

<strong>of</strong> this monomer sequence as a<br />

function <strong>of</strong> HFP mole fraction <strong>in</strong> VF2/HFP<br />

dipolymers <strong>and</strong> its apparent negative correlation<br />

with cure rates <strong>of</strong> such composititional<br />

variants [23], it is <strong>in</strong>appropriate to relate<br />

<strong>the</strong>se observations to <strong>in</strong>tr<strong>in</strong>sic reactivity<br />

differences <strong>of</strong> various structural elements<br />

with<strong>in</strong> a given polymer. This k<strong>in</strong>d<br />

<strong>of</strong> comparison is equivalent to extract<strong>in</strong>g<br />

<strong>in</strong>tr<strong>in</strong>sic reactivity correlations by compar<strong>in</strong>g<br />

reaction rates <strong>of</strong> a series <strong>of</strong> model<br />

compounds with a common reagent <strong>in</strong> dif-<br />

316 KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004


ferent solvents. The literature abounds<br />

with pr<strong>of</strong>ound solvent effects on reaction<br />

rates.<br />

Better approaches to assess <strong>the</strong> reactivity<br />

<strong>of</strong> various structures are to measure <strong>the</strong> relative<br />

rates <strong>of</strong> dehydr<strong>of</strong>luor<strong>in</strong>ation <strong>and</strong><br />

crossl<strong>in</strong>k<strong>in</strong>g <strong>of</strong> model polymers <strong>in</strong> a common<br />

medium <strong>and</strong> to perform competition<br />

experiments <strong>in</strong> which two polymers have<br />

equal access to <strong>the</strong> same base <strong>in</strong> <strong>the</strong><br />

same medium. We have already reported<br />

such data before <strong>and</strong> now present additional<br />

results obta<strong>in</strong>ed under conditions<br />

where DBU/polymer ratios can be limited<br />

to <strong>the</strong> crossl<strong>in</strong>k<strong>in</strong>g stoichiometry <strong>of</strong> practical<br />

cur<strong>in</strong>g systems, ra<strong>the</strong>r than hav<strong>in</strong>g to<br />

use excess base <strong>in</strong> order to boost NMR<br />

signal strength as <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al work<br />

[22], which was done on a cont<strong>in</strong>uous<br />

wave 94.1 MHz <strong>in</strong>strument.<br />

Fig. 3 shows <strong>the</strong> entire 377 MHz F-19 FT<br />

NMR spectrum <strong>of</strong> a 3.5 VF2/HFP<br />

(60 wt.% VF2) polymer <strong>in</strong> d8-THF solution.<br />

Fig. 4 shows <strong>the</strong> same polymer solution<br />

20 hrs after addition <strong>of</strong> DBU. Fluoride<br />

ion is seen at 162 ppm <strong>and</strong> some orig<strong>in</strong>al<br />

CF 3 <strong>in</strong>tensity is shifted to higher <strong>and</strong> lower<br />

frequencies as a result <strong>of</strong> nearby unsaturation.<br />

The peak due to contiguous VF2 sequences<br />

at 91 ppm is essentially unchanged.<br />

The 110 ppm CF 2 peak due to isolated<br />

VF2 is decreased as is <strong>the</strong> CF 2 peak due<br />

to <strong>the</strong> adjacent HFP unit. The fluoride evolution<br />

at 20 h at 25 8C can be expressed as<br />

0.69 lmol F/0.375 lmol DBU/mg pol <strong>in</strong><br />

138 ll THF, which substantially supports<br />

a double dehydr<strong>of</strong>luor<strong>in</strong>ation <strong>of</strong> <strong>the</strong> isolated<br />

VF2 unit, complete reaction <strong>of</strong> DBU to<br />

form DBUHþ FHF , <strong>and</strong> <strong>the</strong>refore <strong>the</strong> proposed<br />

diene structure.<br />

Figs. 5 <strong>and</strong> 6 show <strong>the</strong> correspond<strong>in</strong>g<br />

spectra <strong>of</strong> a 4.7 VF2/TFE (75 wt.% VF2)<br />

polymer before <strong>and</strong> after DBU treatment.<br />

The extent <strong>of</strong> fluoride evolution after<br />

20 hours is only about half <strong>of</strong> that for<br />

VF2/HFP <strong>and</strong> v<strong>in</strong>yl fluor<strong>in</strong>es are prom<strong>in</strong>ently<br />

visible. Reaction primarily reduces <strong>the</strong><br />

110 <strong>and</strong> 127 ppm b<strong>and</strong>s. The fluoride evolution<br />

can be expressed as 0.36 mol F/<br />

0.387 mol DBU/mg pol <strong>in</strong> 142 ll THF <strong>in</strong><br />

20 hr at 25 8C. This reflects a s<strong>in</strong>gle dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

<strong>of</strong> an isolated VF2 unit per<br />

DBU <strong>and</strong> <strong>in</strong>dicates that <strong>the</strong> rearrangement<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>itial olef<strong>in</strong> by fluoride that occurs<br />

with VF2/HFP to yield an easily abstractable<br />

allylic hydrogen does not occur without<br />

stabilization <strong>of</strong> <strong>the</strong> <strong>in</strong>termediate carbanion<br />

by a CF 3 group. The observed stoichiometry<br />

is consistent with complete reaction <strong>of</strong><br />

DBU <strong>and</strong> formation <strong>of</strong> DBUH + F .<br />

Figs. 7 <strong>and</strong> 8 show correspond<strong>in</strong>g spectra<br />

<strong>of</strong> poly (VF2) before <strong>and</strong> after DBU treatment.<br />

Very little fluoride is formed <strong>and</strong><br />

no spectral changes <strong>in</strong> <strong>the</strong> polymer are evident<br />

after 20 hrs. This suggests that long<br />

sequences <strong>of</strong> VF2 need activation by an adjacent<br />

perfluoromonomer to create a highly<br />

acidic CH 2 group <strong>in</strong> order to start <strong>the</strong> dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

by DBU under <strong>the</strong>se conditions.<br />

These sites, <strong>of</strong> course, are abundant<br />

<strong>in</strong> VF2 copolymers <strong>of</strong> HFP <strong>and</strong> TFE<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> more base-resistant copolymers<br />

<strong>of</strong> TFE <strong>and</strong> P.<br />

Once a double bond has formed, conjugate<br />

dehydr<strong>of</strong>luor<strong>in</strong>ation is expected to<br />

proceed easily.<br />

To summarize, analysis <strong>of</strong> <strong>the</strong>se three types<br />

<strong>of</strong> polymers shows that high reactivity toward<br />

DBU <strong>in</strong> VF2-conta<strong>in</strong><strong>in</strong>g polymers requires<br />

CH 2 sites that are flanked by perfluor<strong>in</strong>ated<br />

two or three carbon units.<br />

Because presently known highly fluor<strong>in</strong>ated<br />

elastomeric copolymers <strong>of</strong> VF2 are sensitive<br />

to attack by base, it has been<br />

attempted to reduce this sensitivity by copolymerization<br />

with hydrocarbon olef<strong>in</strong>s,<br />

generally ethylene <strong>in</strong> <strong>the</strong> case <strong>of</strong> HFP-conta<strong>in</strong><strong>in</strong>g<br />

elastomers. Thus, VF2/HFP/TFE/E<br />

elastomers have been developed by<br />

Ausimont [24], but disadvantages to <strong>the</strong>ir<br />

Fig. 3. Entire 377 MHz 19 F spectrum <strong>of</strong> 3.5 VF2/<br />

HFP polymer <strong>and</strong> <strong>in</strong>ternal st<strong>and</strong>ard <strong>in</strong> d 8 THF<br />

solution<br />

Fig. 4. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 3 after<br />

treatment with 1x DBU for 20 h at 20C (see<br />

text)<br />

Fig. 5. Entire spectrum <strong>of</strong> 4.7 VF2/TFE polymer<br />

plus std<br />

Fig. 6. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 5 after<br />

treatment with 1x DBU for 20 h at 20C<br />

Fig. 7. Entire spectrum <strong>of</strong> poly-VF2 plus std<br />

Fig. 8. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 7 after<br />

treatment with 1x DBU for 20 h at 20C<br />

KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004 317


production are low polymerization rates<br />

without microemulsification <strong>and</strong> an <strong>in</strong>sufficient<br />

reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> selectively<br />

acidic VF2 sites for high resistance toward<br />

bases. This occurs because ethylene<br />

does not readily add to a propagat<strong>in</strong>g VF2<br />

radical but <strong>in</strong>stead prefers to add to a propagat<strong>in</strong>g<br />

TFE radical, <strong>and</strong> <strong>the</strong> preference<br />

for VF2 by propagat<strong>in</strong>g HFP radicals rema<strong>in</strong>s<br />

high. Practical base resistance tests<br />

<strong>in</strong> hot, aggressively formulated motor oils<br />

show only moderate improvements compared<br />

to st<strong>and</strong>ard FKM products by this<br />

ethylene dilution strategy.<br />

Fig. 9. Entire spectrum <strong>of</strong> 1.62 TFE/ 1.52 VF2/<br />

1.00 P polymer plus std<br />

Fig. 10. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 9 after<br />

treatment with 10x DBU for 13 d at 20C (see<br />

text)<br />

TFE/P-based polymers<br />

Because high degrees <strong>of</strong> base resistance <strong>in</strong><br />

practical hydr<strong>of</strong>luoropolymers can only be<br />

achieved sharply reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g<br />

VF2, <strong>the</strong> best flexibility-conferr<strong>in</strong>g comonomers<br />

for base-resistant elastomers are<br />

hydrocarbon olef<strong>in</strong>s. Thus, TFE/E is a truly<br />

base resistant <strong>the</strong>rmoplastic <strong>and</strong> TFE/P is<br />

<strong>the</strong> related base-resistant elastomer. These<br />

materials possess highly alternat<strong>in</strong>g structures<br />

but can be prepared with higher fluor<strong>in</strong>e<br />

levels by forc<strong>in</strong>g <strong>in</strong> additional TFE.<br />

They ga<strong>in</strong> <strong>the</strong>ir non-acidity by <strong>the</strong> absence<br />

<strong>of</strong> R f CH 2 R f structures. Unlike st<strong>and</strong>ard VF2-<br />

based elastomers, <strong>the</strong>se polymers do not<br />

form strong hydrogen bonds with carbonyl<br />

oxygens <strong>in</strong> common solvents <strong>and</strong> <strong>the</strong>refore<br />

are not soluble <strong>in</strong> <strong>the</strong>se polar fluids. Hydroxylic<br />

solvents, with <strong>the</strong> possible exception<br />

<strong>of</strong> methanol, prefer to form hydrogen<br />

bonds among <strong>the</strong>mselves <strong>and</strong> ignore even<br />

st<strong>and</strong>ard VF2-based polymers. Solvents for<br />

TFE/P are mixtures <strong>of</strong> hydrocarbons <strong>and</strong><br />

perfluorocarbons, for example aromatics<br />

<strong>and</strong> hexfluorobenzene, as well as THF,<br />

which has well recognized but poorly<br />

understood solvat<strong>in</strong>g power. Without <strong>the</strong><br />

ability to form strong hydrogen bonds to<br />

weakly basic oxygen <strong>in</strong> carbonyl fluids,<br />

TFE/P also does not readily form an actual<br />

H-N bond to nitrogen bases, <strong>and</strong> <strong>the</strong> resultant<br />

polymer carbanion <strong>in</strong>termediate for<br />

loss <strong>of</strong> fluoride, on attempted dehydr<strong>of</strong>luor<strong>in</strong>ation.<br />

In this connection, it should be noted that<br />

hydr<strong>of</strong>luorocarbons have been shown to<br />

undergo am<strong>in</strong>e-catalyzed deuterium exchange<br />

rates that are many orders <strong>of</strong> magnitude<br />

greater than HF or DF elim<strong>in</strong>ation<br />

[25]. Although <strong>the</strong> ratio <strong>of</strong> exchange to elim<strong>in</strong>ation<br />

is a strong function <strong>of</strong> structure, it<br />

is primarily a testament to <strong>the</strong> high strength<br />

<strong>of</strong> <strong>the</strong> C-F bond. Extensive fluor<strong>in</strong>ation <strong>in</strong><br />

beta positions <strong>of</strong> model structures leads<br />

Fig. 11. Entire spectrum <strong>of</strong> 18.2 TFE / 11.4 P /<br />

1.00 3,3,3-trifluoropropene plus std<br />

to <strong>the</strong> highest exchange rates or, stated differently,<br />

<strong>the</strong> most stable carbanions.<br />

The extraord<strong>in</strong>ary base resistance <strong>of</strong> TFE/P<br />

is a liability when attempt<strong>in</strong>g to cure this<br />

polymer with a basic bis-nucleophile like<br />

a bisphenol or diam<strong>in</strong>e. Peroxide cures<br />

do not proceed well on <strong>the</strong> native polymer<br />

<strong>and</strong> attempts to activate <strong>the</strong> dipolymer<br />

have <strong>in</strong>cluded some highly discolor<strong>in</strong>g<br />

pre-treatments. Some suppliers have chosen<br />

to <strong>of</strong>fer VF2-conta<strong>in</strong><strong>in</strong>g TFE/P polymers<br />

<strong>in</strong> order to <strong>in</strong>crease curability. This approach<br />

also has <strong>the</strong> desirable effect <strong>of</strong> decreas<strong>in</strong>g<br />

t g but at <strong>the</strong> cost <strong>of</strong> resistance to<br />

polar fluids <strong>and</strong> particulary bases.<br />

Figs. 9 <strong>and</strong> 10 show <strong>the</strong> F-19 spectra <strong>of</strong> a<br />

32 wt.% VF2 copolymer <strong>of</strong> TFE <strong>and</strong> P (54<br />

TFE / 32 VF2/14 P wt.% or 1.62 TFE / 1.50<br />

VF2 / 1.00 P moles) <strong>in</strong> d8-THF before <strong>and</strong><br />

after a 13 day exposure to 10x <strong>of</strong> <strong>the</strong> DBU<br />

levels used <strong>in</strong> experiments with <strong>the</strong> nonbase<br />

resistant polymers. Relative to VF2/<br />

HFP at 1x DBU, <strong>the</strong> evolution <strong>of</strong> fluoride<br />

is low. However, on exposure to <strong>the</strong> 10x<br />

st<strong>and</strong>ard DBU level (Fig. 8), <strong>the</strong> elim<strong>in</strong>ation<br />

<strong>of</strong> HF <strong>in</strong>creases markedly with<strong>in</strong> <strong>the</strong> 13 day<br />

reaction period. Exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> spectra<br />

reveals that reaction has occurred at<br />

a series <strong>of</strong> TFE-VF2-TFE sites at 110.93,<br />

112.05, 112.37 <strong>and</strong> 112.78 <strong>and</strong> at<br />

Fig. 12. Spectrum <strong>of</strong> solution <strong>of</strong> Fig. 11 after<br />

treatment with 10x DBU for 13d at 20C<br />

126.87, 127.05 <strong>and</strong> 127.47 ppm. This behavior<br />

is entirely consistent with <strong>the</strong> reactions<br />

<strong>of</strong> VF2/TFE polymers <strong>and</strong> <strong>the</strong> reactivity<br />

pattern <strong>and</strong> spectral assignments <strong>of</strong><br />

our earlier lower resolution NMR study<br />

(22) which proposed this general site as<br />

one <strong>of</strong> four selectively base-sensitive sites<br />

<strong>of</strong> VF2/HFP/TFE polymers. High VF2 levels<br />

are required <strong>in</strong> TFE/P copolymers because<br />

low levels do not respond well to bisphenol<br />

cur<strong>in</strong>g s<strong>in</strong>ce only a fraction <strong>of</strong> <strong>the</strong> total VF2<br />

is <strong>in</strong>corporated <strong>in</strong> TFE-VF2-TFE sites. However,<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g VF2 <strong>in</strong> TFE-VF2-P sequences<br />

rema<strong>in</strong>s available for slower dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

<strong>and</strong> degradation <strong>in</strong> service.<br />

The overall evolution <strong>of</strong> fluoride can be expressed<br />

as 2.4 lmol F/3.86 lmol DBU/mg<br />

pol <strong>in</strong> 138 ll THF <strong>in</strong> 13 d at 25 8C. The consumption<br />

<strong>of</strong> DBU is <strong>in</strong>complete.<br />

Figs. 11 <strong>and</strong> 12 show <strong>the</strong> F-19 spectra <strong>of</strong> a<br />

4.0 wt.% TFP (3,3,3-trifluoropropene) copolymer<br />

<strong>of</strong> TFE <strong>and</strong> P (76 TFE / 20 P /<br />

4.0 TFP wt.% or 18.2 TFE / 11.4 P / 1.0<br />

TFP moles) before <strong>and</strong> after <strong>the</strong> same 13<br />

day exposure to 10x DBU. Only about<br />

15% <strong>of</strong> <strong>the</strong> amount <strong>of</strong> fluoride compared<br />

to <strong>the</strong> TFE/P/VF2 polymer is formed under<br />

<strong>the</strong>se conditions. The TFP-terpolymer is<br />

<strong>the</strong>refore more than 6 times as resistant<br />

to <strong>the</strong> strong base DBU as <strong>the</strong> 30% VF2-<br />

318 KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004


Fig. 13. Entire spectrum <strong>of</strong> a 50/50 mixture <strong>of</strong><br />

polymer solutions <strong>of</strong> Figs. 9 <strong>and</strong> 11<br />

Fig. 15. Dependence <strong>of</strong> <strong>the</strong> change <strong>in</strong> maximum<br />

elongation on VF2 content <strong>of</strong> TFE/P/<br />

VF2 polymers when aged <strong>in</strong> a basic oil at<br />

150C for up to 2000 h<br />

like TFE or HFP have been shown to be<br />

<strong>the</strong> sites highly selectively attacked by<br />

base <strong>in</strong> both st<strong>and</strong>ard VF2/HFP/(TFE) polymers<br />

<strong>and</strong> <strong>in</strong> base-resistant TFE/P-conta<strong>in</strong><strong>in</strong>g<br />

terpolymers. The high level <strong>of</strong> VF2 required<br />

for an adequate bisphenol cure response<br />

<strong>of</strong> <strong>the</strong> TFE/P/VF2 polymers renders<br />

<strong>the</strong>m less base-resistant than <strong>the</strong> newly developed,<br />

more highly fluor<strong>in</strong>ated TFE/P/TFP<br />

composition because <strong>the</strong> TFP level is designed<br />

for efficient reaction <strong>and</strong> consumption<br />

dur<strong>in</strong>g cure. In contrast, residual VF2<br />

units <strong>of</strong> TFE/P/VF2 polymers, not reacted<br />

dur<strong>in</strong>g <strong>the</strong> cure, rema<strong>in</strong> available for degradation<br />

by base dur<strong>in</strong>g service.<br />

Fig. 14. Competitive dehydr<strong>of</strong>luor<strong>in</strong>ation for<br />

12d at 20C by 10x DBU <strong>of</strong> a solution <strong>of</strong> <strong>the</strong><br />

50/50 polymer mixture <strong>of</strong> Fig. 13 (see text)<br />

terpolymer. The CF 3 absorption at<br />

67.05 ppm is lost entirely <strong>and</strong> appears to<br />

reflect <strong>the</strong> only reactive environment. An<br />

absorption at 68.15 ppm <strong>in</strong>creases. Spectral<br />

features <strong>in</strong> <strong>the</strong> range <strong>of</strong> 110 –<br />

126 ppm are almost unchanged on DBU<br />

addition. The overall evolution <strong>of</strong> fluoride<br />

can be expressed as 0.38 lmol F/ 4.11<br />

çmol DBU/mg pol <strong>in</strong> 147 ll THF <strong>in</strong> 13 d<br />

at 25 8C. DBU consumption is <strong>in</strong>complete.<br />

Figs. 13 <strong>and</strong> 14 show <strong>the</strong> F-19 spectra <strong>of</strong> a<br />

d-8 THF solution <strong>of</strong> equal amounts <strong>of</strong> <strong>the</strong><br />

above TFE/P/VF2 polymer <strong>and</strong> <strong>the</strong> above<br />

TFE/P/TFP polymer before <strong>and</strong> after a 12<br />

day exposure to 10x DBU, respectively.<br />

This is a competition experiment <strong>in</strong> which<br />

<strong>the</strong>basehas equalaccesstoallsites<strong>of</strong>ei<strong>the</strong>r<br />

polymer <strong>in</strong> <strong>the</strong> same reaction medium. Therefore,<br />

<strong>the</strong> course <strong>of</strong> this dehydr<strong>of</strong>luor<strong>in</strong>ation<br />

reveals <strong>the</strong> true relative reactivity <strong>of</strong> <strong>the</strong><br />

active sites <strong>of</strong> <strong>the</strong> two polymer types. Excess<br />

DBU rema<strong>in</strong>s, as <strong>in</strong> <strong>the</strong> exposures <strong>of</strong> <strong>the</strong> separate<br />

base-resistant polymers.<br />

Exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> 111-112 <strong>and</strong> 126.5-<br />

127.5 ppm regions <strong>in</strong>dicates <strong>the</strong> complete<br />

loss <strong>of</strong> structures that generate <strong>the</strong>se absorptions<br />

<strong>in</strong> <strong>the</strong> TFE/P/VF2 polymer. In contrast,<br />

<strong>the</strong> spectral changes due to reaction<br />

<strong>of</strong> <strong>the</strong> TFE/P/TFP polymer <strong>in</strong> this 50/50 polymer<br />

mixture shows that only orig<strong>in</strong>al CF 3 -<br />

related structures due to <strong>the</strong> curesite monomer<br />

have reacted. This specificity <strong>in</strong><br />

reaction <strong>of</strong> <strong>the</strong> TFP-terpolymer is highly desirable<br />

because it promises a facile but<br />

limited dehydr<strong>of</strong>luor<strong>in</strong>ation sensitivity<br />

<strong>and</strong> <strong>the</strong>refore would be expected to lead<br />

to fast bisphenol-based cures <strong>and</strong> excellent<br />

resistance to bases <strong>in</strong> service. One could<br />

draw <strong>the</strong> analogy to <strong>the</strong> oxidation resistance<br />

<strong>of</strong> diene elastomers vs. EPDM.<br />

Comparison to resistance toward<br />

a basic oil <strong>in</strong> practical exposure<br />

tests<br />

Fig. 15 compares <strong>the</strong> percent loss <strong>of</strong> elongation<br />

at break <strong>of</strong> various TFE/P/VF2 polymers<br />

on ag<strong>in</strong>g <strong>in</strong> ASTM Reference Oil 105<br />

at 150 8C as a function <strong>of</strong> VF2 content <strong>and</strong><br />

reveals <strong>the</strong> deleterious practical effects <strong>of</strong><br />

<strong>in</strong>creas<strong>in</strong>g its level. Comprehensive favorable<br />

comparisons <strong>of</strong> <strong>the</strong> performance <strong>of</strong> a<br />

new bisphenol-crossl<strong>in</strong>ked TFP terpolymer<br />

(VTX-8802) vs a typical bisphenol-crossl<strong>in</strong>ked<br />

VF2-terpolymer <strong>and</strong> a typical peroxide-curable<br />

TFE/P dipolymer are given by<br />

Bauerle <strong>and</strong> Tang [19]. The data also<br />

show that, although outst<strong>and</strong><strong>in</strong>gly resistant<br />

to attack by bases, st<strong>and</strong>ard TFE/P dipolymer<br />

compositions are <strong>in</strong>sufficiently oil<br />

resistant for many applications; however,<br />

<strong>the</strong> high TFE level <strong>of</strong> <strong>the</strong> new TFP terpolymer<br />

reduces <strong>the</strong> 504 hr swell at 150 8C <strong>in</strong><br />

this oil to virtually <strong>the</strong> same low level as<br />

that for conventional VF2/HFP dipolymers.<br />

Conclusions<br />

A new highly base-resistant fluoroelastomer<br />

has been designed by DuPont Dow<br />

Elastomers <strong>and</strong> is now undergo<strong>in</strong>g f<strong>in</strong>al<br />

evaluations. It <strong>in</strong>corporates a proprietary<br />

curesite monomer, 3,3,3-trifluoropropene<br />

(TFP), <strong>and</strong> conta<strong>in</strong>s no VF2. VF2 units flanked<br />

by perfluorocarbon monomer units<br />

References<br />

[1] R. G. Arnold, A. L. Barney, D. C. Thompson, Rubber<br />

Chem. Technol 46 (1973) 619.<br />

[2] D. R. Rexford, Ind. Eng. Chem. 49 (1957) 1687;<br />

US Pat 3051677 (1962), DuPont.<br />

[3] US Pat. 2689241 (1954), M. W. Kellogg, Inv. A. L.<br />

Dittman,., A. J. Pass<strong>in</strong>o, J. M. Wrightson.<br />

[4] US Pat.2951832 (1960), DuPont, Inv. A. L. Moran.<br />

[5] US Pat.2968649 (1961), DuPont, Inv. J. R. Pailthorp,<br />

H. E. Schroeder.<br />

[6] US Pat.3331823 (1967), Montecat<strong>in</strong>i-Edison, Inv.<br />

D. Sianesi, C.Bernardi, A. Regio.<br />

[7] US Pat. 3335106 (1967), Montecat<strong>in</strong>i-Edison, D.<br />

Inv. Sianesi, G. C. Bernardi, G. Diotalleri.<br />

[8] A. Van Cleeff, <strong>in</strong> J. Scheirs, (Ed.), Modern Fluoropolymers,<br />

Wiley, New York (1997) p. 600<br />

[9] Fr. Pat.1578405 (1969), DuPont, Inv. A. L. Barney,<br />

W. Honsberg.<br />

[10] US Pat. 3655727 (1972), 3M, Inv. K. U. Patel, J. E.<br />

Meier.<br />

[11] US Pat. 4035565 (1977), 4214060 (1980), Du-<br />

Pont, Inv. D. Apo<strong>the</strong>ker, P. J. Krusic.<br />

[12] US Pat. 4243770 (1981), Daik<strong>in</strong>, Inv. T. Suzuki, M.<br />

Tatemoto, M. Tomoda.<br />

[13] US Pat. 2484530 (1949), DuPont, Inv. H. E.<br />

Schroeder.<br />

[14] US Pat. 3467635 (1969), DuPont, Inv. W. R. Brasen,<br />

C. S. Cleaver.<br />

[15] Jap. Pat 52041662 (1977), Asahi Glass, Inv. M. Hisasue,<br />

B. Kojima, H. Kojima, M. Yamakage.<br />

[16] Jap. Pat. 85019325 (1985), Asahi Glass, Inv. M.<br />

Hisasue, G. Kojima, H. Kojima, M. Yamakage.<br />

[17] W. M. Grootaert, R. E. Kolb, A. T. Worm, Rubber<br />

Chem. Technol. 63 (1990) 516.<br />

[18] A. L. Moore, Elastomerics, September (1986); US<br />

Pat. 4694045 (1987), DuPont.<br />

[19] J. G. Bauerle, P. L. Tang, SAE World Congress, Detroit,<br />

March 2002, 2002-01-636.<br />

[20] R. D. Chambers, E. Marper, W. K. R. Musgrave,<br />

unpublished results, cited <strong>in</strong> R. D. Chambers,<br />

Fluor<strong>in</strong>e <strong>in</strong> Organic Chemistry, Wiley, New York,<br />

(1973) p. 170.<br />

[21] W. W. Schmiegel, KGK 3/31 (1978) 137.<br />

[22] W. W. Schmiegel, Angew. Makromol. Chem. 76/<br />

77 (1979) 39.<br />

[23] M. P<strong>in</strong>aca, P. Bonardelli, M. Tato, G. Cirillo, G.<br />

Moggi, Polymer 28 (1987) 224.<br />

[24] US Pat. 5264509 (1993), Ausimont, Inv. M. Albano,<br />

V. Arcella, G. Br<strong>in</strong>ati, G. Chiod<strong>in</strong>i, A. M<strong>in</strong>utillo.<br />

[25] S. Andreades, J. Am. Chem. Soc. 86 (1964) 2003.<br />

KGK Kautschuk Gummi Kunstst<strong>of</strong>fe 57. Jahrgang, Nr. 6/2004 319

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!