30.04.2014 Views

{ Earth Science Reference Tables - New York State Museum

{ Earth Science Reference Tables - New York State Museum

{ Earth Science Reference Tables - New York State Museum

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The University of the <strong>State</strong> of <strong>New</strong> <strong>York</strong> • THE STATE EDUCATION DEPARTMENT • Albany, <strong>New</strong> <strong>York</strong> 12234 • www.nysed.gov<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong><br />

RADIOACTIVE<br />

ISOTOPE<br />

Carbon-14<br />

Potassium-40<br />

Uranium-238<br />

Rubidium-87<br />

Radioactive Decay Data<br />

DISINTEGRATION<br />

HALF-LIFE<br />

(years)<br />

C 14<br />

K 40<br />

U 238<br />

Rb 87 N 14<br />

Ar 40<br />

Ca 40<br />

Pb 206<br />

Sr 87 5.7 × 10 3<br />

1.3 × 10 9<br />

4.5 × 10 9<br />

PHYSICAL CONSTANTS<br />

4.9 × 10 10<br />

Properties of Water<br />

MATERIAL<br />

solid<br />

Water liquid<br />

{ gas<br />

Dry air<br />

Basalt<br />

Granite<br />

Iron<br />

Copper<br />

Lead<br />

Energy gained during melting . . . . . . . . . . . . . . . . 80 calories/gram<br />

Energy released during freezing . . . . . . . . . . . . 80 calories/gram<br />

Energy gained during vaporization . . . . . . . . 540 calories/gram<br />

Energy released during condensation . . . . . 540 calories/gram<br />

Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 gram/milliliter<br />

Specific Heats of Common Materials<br />

SPECIFIC HEAT<br />

(calories/gram • C°)<br />

0.5<br />

1.0<br />

0.5<br />

0.24<br />

0.20<br />

0.19<br />

0.11<br />

0.09<br />

0.03<br />

cm<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Percent deviation<br />

from accepted value<br />

Eccentricity of an ellipse<br />

Gradient<br />

Rate of change<br />

Density of a substance<br />

EQUATIONS<br />

2001 EDITION<br />

This edition of the <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> should be used in the<br />

classroom beginning in the 2000–2001 school year. The first examination<br />

for which these tables will be used is the January 2001 Regents<br />

Examination in <strong>Earth</strong> <strong>Science</strong>.<br />

difference from accepted value<br />

deviation (%) = × 100<br />

accepted value<br />

eccentricity =<br />

gradient =<br />

rate of change =<br />

density =<br />

distance between foci<br />

length of major axis<br />

change in field value<br />

distance<br />

mass<br />

volume<br />

change in field value<br />

time<br />

EURYPTERUS<br />

<strong>New</strong> <strong>York</strong> <strong>State</strong> Fossil<br />

15<br />

16 17 18 19 20 21 22 23 24 25<br />

(Revised November 2006)


NEW ENGLAND PROVINCE<br />

(HIGHLANDS)<br />

HUDSON HIGHLANDS<br />

MANHATTAN PRONG<br />

ATLANTIC COASTAL PLAIN<br />

LOWLANDS<br />

CHAMPLAIN<br />

TACONIC MOUNTAINS<br />

LAKE ONTARIO<br />

TUG<br />

HILL<br />

PLATEAU<br />

LAKE<br />

ERIE<br />

ALLEGHENY PLATEAU<br />

ADIRONDACK<br />

MOUNTAINS<br />

HUDSON – MOHAWK LOWLANDS<br />

THE<br />

CATSKILLS<br />

NEWARK<br />

LOWLANDS<br />

Generalized Landscape Regions of <strong>New</strong> <strong>York</strong> <strong>State</strong><br />

ST. LAWRENCE LOWLANDS<br />

GRENVILLE PROVINCE<br />

(HIGHLANDS)<br />

INTERIOR LOWLANDS<br />

ERIE–ONTARIO LOWLANDS<br />

(PLAINS)<br />

KEY<br />

Major Geographic Province Boundary<br />

Landscape Region Boundary<br />

<strong>State</strong> Boundary<br />

International Boundary<br />

N<br />

APPALACHIAN PLATEAU (UPLANDS)<br />

2 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)


Generalized Bedrock Geology of <strong>New</strong> <strong>York</strong> <strong>State</strong><br />

modified from<br />

GEOLOGICAL SURVEY<br />

NEW YORK STATE MUSEUM<br />

1989<br />

N<br />

ISLAND SOUND<br />

LONG<br />

Niagara River<br />

GEOLOGICAL PERIODS AND ERAS IN NEW YORK<br />

CRETACEOUS, TERTIARY, PLEISTOCENE (Epoch) weakly consolidated to unconsolidated gravels, sands, and clays<br />

LATE TRIASSIC and EARLY JURASSIC conglomerates, red sandstones, red shales, and diabase (in Palisades Sill)<br />

PENNSYLVANIAN and MISSISSIPPIAN conglomerates, sandstones, and shales<br />

DEVONIAN limestones, shales, sandstones, and conglomerates<br />

SILURIAN Silurian also contains salt, gypsum, and hematite.<br />

ORDOVICIAN<br />

CAMBRIAN<br />

}<br />

}<br />

limestones, shales, sandstones, and dolostones<br />

CAMBRIAN and EARLY ORDOVICIAN sandstones and dolostones<br />

Moderately to intensely metamorphosed east of the Hudson River.<br />

CAMBRIAN and ORDOVICIAN (undifferentiated) quartzites, dolostones, marbles, and schists<br />

Intensely metamorphosed; includes portions of the Taconic Sequence and Cortlandt Complex.<br />

TACONIC SEQUENCE sandstones, shales, and slates<br />

Slightly to intensely metamorphosed rocks of CAMBRIAN through MIDDLE ORDOVICIAN ages.<br />

MIDDLE PROTEROZOIC gneisses, quartzites, and marbles<br />

Lines are generalized structure trends. Intensely Metamorphosed Rocks<br />

MIDDLE PROTEROZOIC anorthositic rocks (regional metamorphism about 1,000 m.y.a.)<br />

}<br />

}<br />

}<br />

Dominantly<br />

Sedimentary<br />

Origin<br />

Dominantly<br />

Metamorphosed<br />

Rocks<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 3


Surface Ocean Currents<br />

4 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)


Tectonic Plates<br />

Mid-Atlantic Ridge<br />

KEY:<br />

Philippine<br />

Plate<br />

Fiji<br />

Plate<br />

Divergent Plate Boundary<br />

(usually broken by transform<br />

faults along mid-ocean ridges)<br />

Mid-Ocean Ridge<br />

Sandwich<br />

Plate<br />

overriding<br />

plate<br />

subducting<br />

plate<br />

Convergent Plate Boundary<br />

(Subduction Zone)<br />

Transform Plate Boundary<br />

(Transform Fault)<br />

Complex or Uncertain<br />

Plate Boundary<br />

Relative Motion<br />

at Plate Boundary<br />

Mantle<br />

Hot Spot<br />

NOTE: Not all plates and boundaries are shown.<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 5


Metamorphism<br />

Cementation<br />

SEDIMENTARY<br />

ROCK<br />

Heat and/or Pressure<br />

METAMORPHIC<br />

ROCK<br />

Rock Cycle in <strong>Earth</strong>’s Crust<br />

Melting<br />

Melting<br />

Burial<br />

Compaction<br />

(Uplift)<br />

Weathering & Erosion<br />

Heat and/or Pressure<br />

Metamorphism<br />

(Uplift)<br />

Weathering & Erosion<br />

Melting<br />

MAGMA<br />

Deposition<br />

SEDIMENTS<br />

Erosion<br />

(Uplift)<br />

Weathering & Erosion<br />

IGNEOUS<br />

ROCK<br />

Solidification<br />

PARTICLE DIAMETER (cm)<br />

100.0<br />

10.0<br />

1.0<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

Relationship of Transported<br />

Particle Size to Water Velocity<br />

BOULDERS<br />

COBBLES<br />

PEBBLES<br />

SAND<br />

SILT<br />

CLAY<br />

25.6 cm<br />

6.4 cm<br />

0.2 cm<br />

0.006 cm<br />

0.0004 cm<br />

0.00001<br />

0 100 200 300 400 500 600 700 800<br />

STREAM VELOCITY (cm/sec)<br />

*This generalized graph shows the water velocity needed to<br />

maintain, but not start, movement. Variations occur due to<br />

differences in particle density and shape.<br />

Scheme for Igneous Rock Identification<br />

GRAIN<br />

SIZE<br />

TEXTURE<br />

IGNEOUS ROCKS<br />

ENVIRONMENT OF FORMATION<br />

EXTRUSIVE<br />

(Volcanic)<br />

INTRUSIVE<br />

(Plutonic)<br />

Obsidian<br />

(usually appears black)<br />

Pumice<br />

Vesicular Rhyolite<br />

Rhyolite<br />

Granite<br />

Pegmatite<br />

Vesicular<br />

Andesite<br />

Andesite<br />

Diorite<br />

Basaltic Glass<br />

Vesicular Basaltic Glass<br />

Vesicular<br />

Scoria<br />

Basalt<br />

Basalt<br />

Gabbro<br />

Dunite<br />

less than<br />

1 mm<br />

1 mm<br />

to<br />

10 mm<br />

10 mm<br />

or<br />

larger<br />

Glassy<br />

Fine<br />

Coarse<br />

Very<br />

Coarse<br />

Vesicular<br />

(gas<br />

pockets)<br />

Noncrystalline<br />

Peridotite<br />

Nonvesicular<br />

Nonvesicular<br />

CHARACTERISTICS<br />

LIGHT<br />

LOW<br />

FELSIC (Al)<br />

100%<br />

Potassium<br />

feldspar<br />

(pink to white)<br />

COLOR<br />

DENSITY<br />

COMPOSITION<br />

DARK<br />

HIGH<br />

MAFIC (Fe, Mg)<br />

100%<br />

MINERAL COMPOSITION<br />

(Relative by Volume)<br />

75%<br />

50%<br />

25%<br />

Quartz<br />

(clear to<br />

white)<br />

Plagioclase feldspar<br />

(white to gray)<br />

Biotite<br />

(black)<br />

Amphibole<br />

(black)<br />

Pyroxene<br />

(green)<br />

Olivine<br />

(green)<br />

75%<br />

50%<br />

25%<br />

0%<br />

0%<br />

6 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)


INORGANIC LAND-DERIVED SEDIMENTARY ROCKS<br />

TEXTURE GRAIN SIZE COMPOSITION<br />

COMMENTS ROCK NAME MAP SYMBOL<br />

Clastic<br />

(fragmental)<br />

Pebbles, cobbles,<br />

and/or boulders<br />

embedded in sand,<br />

silt, and/or clay<br />

Sand<br />

(0.2 to 0.006 cm)<br />

Silt<br />

(0.006 to 0.0004 cm)<br />

Clay<br />

(less than 0.0004 cm)<br />

Scheme for Sedimentary Rock Identification<br />

Mostly<br />

quartz,<br />

feldspar, and<br />

clay minerals;<br />

may contain<br />

fragments of<br />

other rocks<br />

and minerals<br />

Rounded fragments<br />

Angular fragments<br />

Fine to coarse<br />

Very fine grain<br />

Compact; may split<br />

easily<br />

Conglomerate<br />

Breccia<br />

Sandstone<br />

Siltstone<br />

Shale<br />

CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS<br />

. . . . .<br />

. . . .<br />

. . . . .<br />

. . . .<br />

TEXTURE GRAIN SIZE COMPOSITION<br />

COMMENTS ROCK NAME MAP SYMBOL<br />

Crystalline<br />

Varied<br />

Varied<br />

Halite<br />

Gypsum<br />

Crystals from<br />

chemical<br />

precipitates<br />

and evaporites<br />

Rock Salt<br />

Rock Gypsum<br />

Varied<br />

Dolomite<br />

Dolostone<br />

Bioclastic<br />

Microscopic to coarse<br />

Calcite<br />

Cemented shell<br />

fragments or precipitates<br />

of biologic origin<br />

Limestone<br />

Varied<br />

Carbon<br />

From plant remains<br />

Coal<br />

TEXTURE<br />

Scheme for Metamorphic Rock Identification<br />

GRAIN<br />

TYPE OF<br />

SIZE COMPOSITION METAMORPHISM<br />

COMMENTS ROCK NAME<br />

MAP SYMBOL<br />

FOLIATED<br />

MINERAL<br />

ALIGNMENT<br />

BAND-<br />

ING<br />

Fine<br />

Fine<br />

to<br />

medium<br />

Medium<br />

to<br />

coarse<br />

MICA<br />

QUARTZ<br />

FELDSPAR<br />

AMPHIBOLE<br />

GARNET<br />

PYROXENE<br />

Regional<br />

(Heat and<br />

pressure<br />

increase<br />

with depth)<br />

Low-grade<br />

metamorphism of shale<br />

Foliation surfaces shiny from<br />

microscopic mica crystals<br />

Platy mica crystals visible from<br />

metamorphism of clay or<br />

feldspars<br />

High-grade metamorphism;<br />

some mica changed to feldspar;<br />

segregated by mineral type<br />

into bands<br />

Slate<br />

Phyllite<br />

Schist<br />

Gneiss<br />

Fine<br />

Variable<br />

Contact<br />

(Heat)<br />

Various rocks changed by<br />

heat from nearby<br />

magma/lava<br />

Hornfels<br />

NONFOLIATED<br />

Fine<br />

to<br />

coarse<br />

Coarse<br />

Quartz<br />

Calcite and/or<br />

dolomite<br />

Various minerals<br />

in particles<br />

and matrix<br />

Regional<br />

or<br />

Contact<br />

Metamorphism of quartz<br />

sandstone<br />

Metamorphism of<br />

limestone or dolostone<br />

Pebbles may be distorted<br />

or stretched<br />

Quartzite<br />

Marble<br />

Metaconglomerate<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 7


(Fossils not drawn to scale)<br />

GEOLOGIC HISTORY OF NEW YORK STATE<br />

A B C D E F G<br />

H I J<br />

K<br />

L<br />

M<br />

N<br />

O<br />

P<br />

Q<br />

R<br />

S<br />

T<br />

U<br />

V W X Y Z<br />

Cryptolithus<br />

Elliptocephala<br />

Valcouroceras<br />

Phacops Hexameroceras<br />

Centroceras Eucalyptocrinus Tetragraptus<br />

Manticoceras<br />

Ctenocrinus<br />

Dicellograptus<br />

Coelophysis<br />

Stylonurus<br />

Eurypterus Mastodont<br />

Beluga<br />

Whale<br />

Bothriolepis<br />

Cooksonia Naples Tree<br />

Aneurophyton<br />

Condor<br />

Lichenaria Pleurodictyum Platyceras Mucrospirifer<br />

Cystiphyllum Maclurites Eospirifer<br />

Eon<br />

Millions of years ago<br />

0<br />

500<br />

1000<br />

2000<br />

3000<br />

4000<br />

4600<br />

PHANERO-<br />

ZOIC<br />

P R E C A M B R I A N<br />

ARCHEAN PROTEROZOIC<br />

L<br />

A<br />

T<br />

E<br />

M<br />

IDDLE<br />

E<br />

A<br />

R<br />

L<br />

Y<br />

L<br />

A<br />

T<br />

E<br />

M<br />

I<br />

D<br />

D<br />

L<br />

E<br />

E<br />

A<br />

R<br />

L<br />

Y<br />

Oldest<br />

multicellular<br />

life<br />

First<br />

appearance<br />

of sexually<br />

reproducing<br />

organisms<br />

Era<br />

Transition to<br />

atmosphere<br />

containing<br />

oxygen<br />

Oldest microfossils<br />

Geochemical evidence<br />

for oldest biological<br />

fixing of carbon<br />

Oldest known rocks<br />

Estimated time of origin<br />

of <strong>Earth</strong> and solar system<br />

CENOZOIC<br />

MESOZOIC<br />

PALEOZOIC<br />

QUATERNARY<br />

TERTIARY<br />

NEOGENE<br />

PALEOGENE<br />

CRETACEOUS<br />

JURASSIC<br />

TRIASSIC<br />

PERMIAN<br />

CARBONIF-<br />

EROUS<br />

Period Epoch Life on <strong>Earth</strong><br />

PENNSYLVANIAN<br />

DEVONIAN<br />

SILURIAN<br />

MISSISSIPPIAN<br />

ORDOVICIAN<br />

CAMBRIAN<br />

Millions of years ago<br />

HOLOCENE 0<br />

0.01<br />

PLEISTOCENE 1.6 Humans, mastodonts, mammoths<br />

PLIOCENE Large carnivores<br />

5.3<br />

MIOCENE Abundant grazing mammals<br />

24 Earliest grasses<br />

OLIGOCENE Large running mammals<br />

EOCENE<br />

33.7<br />

Many modern groups of mammals<br />

54.8<br />

PALEOCENE<br />

65 Extinction of dinosaurs and ammonoids<br />

Earliest placental mammals<br />

LATE Climax of dinosaurs and ammonoids<br />

Earliest flowering plants<br />

Decline of brachiopods<br />

EARLY Diverse bony fishes<br />

142<br />

LATE<br />

MIDDLE<br />

EARLY<br />

206<br />

LATE<br />

MIDDLE<br />

EARLY<br />

251<br />

LATE<br />

EARLY<br />

290<br />

LATE<br />

EARLY<br />

323<br />

LATE<br />

EARLY<br />

362<br />

LATE<br />

MIDDLE<br />

EARLY<br />

LATE<br />

EARLY<br />

LATE<br />

MIDDLE<br />

EARLY<br />

LATE<br />

MIDDLE<br />

EARLY<br />

418<br />

443<br />

Earliest birds<br />

Abundant dinosaurs and ammonoids<br />

Modern coral groups appear<br />

Earliest dinosaurs and mammals with<br />

abundant cycads and conifers<br />

Extinction of many kinds of marine<br />

animals, including trilobites<br />

First mammal-like reptiles<br />

Earliest reptiles<br />

Extensive coal-forming forests<br />

Abundant sharks and amphibians<br />

Large and numerous scale trees<br />

and seed ferns<br />

Earliest amphibians, ammonoids, sharks<br />

Extinction of armored fish, other<br />

fish abundant<br />

Earliest insects<br />

Earliest land plants and animals<br />

Peak development of eurypterids<br />

Invertebrates dominant<br />

– mollusks become abundant<br />

Diverse coral and echinoderms<br />

Graptolites abundant<br />

490<br />

Earliest fish<br />

Algal reefs<br />

Burgess shale fauna<br />

Earliest chordates, diverse trilobites<br />

Earliest trilobites<br />

Earliest marine animals with shells<br />

544<br />

580 Ediacaran fauna<br />

Soft-bodied organisms<br />

Rock<br />

Record<br />

in<br />

NYS<br />

Time Distribution of Fossils<br />

(Including Important Fossils of <strong>New</strong> <strong>York</strong>)<br />

Lettered circles indicate the approximate time of existence of a specific<br />

index fossil (e.g. Fossil A lived at the end of the Early Cambrian).<br />

TRILOBITES<br />

B<br />

A<br />

NAUTILOIDS<br />

AMMONOIDS<br />

C F G<br />

E<br />

D<br />

CRINOIDS<br />

I<br />

H<br />

<strong>Earth</strong>’s<br />

first forest<br />

GRAPTOLITES<br />

DINOSAURS<br />

L<br />

K<br />

J<br />

EURYPTERIDS<br />

O<br />

MAMMALS<br />

N<br />

M<br />

VASCULAR PLANTS<br />

Q<br />

P<br />

S<br />

PLACODERM<br />

FISH BIRDS<br />

R<br />

<strong>Earth</strong>’s first<br />

coral reef<br />

CORALS<br />

V<br />

U<br />

T<br />

GASTROPODS<br />

X<br />

W<br />

BRACHIOPODS<br />

Z<br />

Y<br />

Rifting<br />

Tectonic<br />

Events<br />

Affecting<br />

Northeast<br />

North<br />

America<br />

Passive Margin<br />

Rifting<br />

Passive Margin<br />

Subduction<br />

Continental Collision<br />

Transform Collision<br />

Important Geologic<br />

Events in <strong>New</strong> <strong>York</strong><br />

Advance and retreat of last continental ice<br />

Uplift of Adirondack region<br />

Sands and shales underlying Long Island and <strong>State</strong>n<br />

Island deposited on margin of Atlantic Ocean<br />

Development of passive continental margin<br />

Initial opening of Atlantic Ocean<br />

North America and Africa separate<br />

Intrusion of Palisades sill<br />

Pangea begins to break up<br />

Extensive erosion<br />

Appalachian (Alleghanian) Orogeny<br />

caused by collision of North America<br />

and Africa along transform margin,<br />

forming Pangea<br />

Catskill Delta forms<br />

Erosion of Acadian Mountains<br />

Acadian Orogeny caused by collision of<br />

North America and Avalon and closing<br />

of remaining part of Iapetus Ocean<br />

Salt and gypsum deposited in evaporite basins<br />

Erosion of Taconic Mountains; Queenston Delta forms<br />

Taconian Orogeny caused by closing of<br />

western part of Iapetus Ocean and<br />

collision between North America and<br />

volcanic island arc<br />

Iapetus passive margin forms<br />

Rifting and initial opening of Iapetus Ocean<br />

Erosion of Grenville Mountains<br />

Grenville Orogeny: Ancestral Adirondack<br />

Mtns. and Hudson Highlands formed<br />

Inferred Position of<br />

<strong>Earth</strong>’s Landmasses<br />

TERTIARY<br />

CRETACEOUS<br />

TRIASSIC<br />

ORDOVICIAN<br />

59 million<br />

years<br />

ago<br />

119 million<br />

years<br />

ago<br />

232 million<br />

years<br />

ago<br />

DEVONIAN/MISSISSIPPIAN 362 million<br />

years<br />

ago<br />

458 million<br />

years<br />

ago<br />

Stromatolites<br />

1300<br />

8 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 9<br />

96-001TN (rev) 11/2006


Inferred Properties of <strong>Earth</strong>’s Interior<br />

ATLANTIC OCEAN<br />

MID-ATLANTIC<br />

RIDGE<br />

DENSITY (g/cm 3 )<br />

2.7 continental crust<br />

3.0 oceanic crust<br />

MOHO<br />

PACIFIC<br />

OCEAN<br />

C<br />

ASCADES<br />

T<br />

RENCH<br />

NORTH<br />

AMERICA<br />

4<br />

CRUST<br />

RIGID<br />

MANTLE<br />

LITHOSPHERE<br />

ASTHENOSPHERE (PLASTIC MANTLE)<br />

STIFFER<br />

MANTLE<br />

OUTER CORE (IRON?)<br />

INNER CORE<br />

IRON & NICKEL<br />

3.3–5.5<br />

9.9–12.1<br />

12.7–13.0<br />

PRESSURE<br />

(millions of atmospheres)<br />

3<br />

2<br />

1<br />

0<br />

EARTH’S CENTER<br />

TEMPERATURE (°C)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

? ?<br />

?<br />

MELTING POINT<br />

?<br />

MANTLE<br />

?<br />

?<br />

?<br />

?<br />

?<br />

ACTUAL TEMPERATURE<br />

MELTING POINT<br />

1000<br />

PARTIAL MELTING OF<br />

ULTRAMAFIC MANTLE<br />

0<br />

0 1000 2000 3000 4000 5000 6000<br />

DEPTH (km)<br />

10 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)


Average Chemical Composition<br />

of <strong>Earth</strong>’s Crust, Hydrosphere, and Troposphere<br />

ELEMENT<br />

(symbol)<br />

Percent by<br />

Mass<br />

CRUST HYDROSPHERE TROPOSPHERE<br />

Percent by<br />

Volume<br />

Percent by<br />

Volume<br />

Percent by<br />

Volume<br />

Oxygen (O)<br />

Silicon (Si)<br />

Aluminum (Al)<br />

Iron (Fe)<br />

Calcium (Ca)<br />

Sodium (Na)<br />

Magnesium (Mg)<br />

Potassium (K)<br />

Nitrogen (N)<br />

Hydrogen (H)<br />

Other<br />

46.40<br />

28.15<br />

8.23<br />

5.63<br />

4.15<br />

2.36<br />

2.33<br />

2.09<br />

0.66<br />

94.04<br />

0.88<br />

0.48<br />

0.49<br />

1.18<br />

1.11<br />

0.33<br />

1.42<br />

0.07<br />

33.0<br />

66.0<br />

1.0<br />

21.0<br />

78.0<br />

1.0<br />

TRAVEL TIME (minutes)<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

<strong>Earth</strong>quake P-wave and S-wave Travel Time<br />

S<br />

P<br />

1 2 3 4 5 6 7 8<br />

EPICENTER DISTANCE (×10 3 km)<br />

9 10<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 11


1<br />

–33<br />

–28<br />

–24<br />

–21<br />

–18<br />

–14<br />

–12<br />

–10<br />

–7<br />

–5<br />

–3<br />

–1<br />

1<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

19<br />

21<br />

23<br />

25<br />

27<br />

29<br />

2<br />

–36<br />

–28<br />

–22<br />

–18<br />

–14<br />

–12<br />

–8<br />

–6<br />

–3<br />

–1<br />

1<br />

3<br />

6<br />

8<br />

11<br />

13<br />

15<br />

17<br />

19<br />

21<br />

23<br />

25<br />

27<br />

0<br />

–20<br />

–18<br />

–16<br />

–14<br />

–12<br />

–10<br />

–8<br />

–6<br />

–4<br />

–2<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

26<br />

28<br />

30<br />

–20<br />

–18<br />

–16<br />

–14<br />

–12<br />

–10<br />

–8<br />

–6<br />

–4<br />

–2<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

26<br />

28<br />

30<br />

3<br />

–29<br />

–22<br />

–17<br />

–13<br />

–9<br />

–6<br />

–4<br />

–1<br />

1<br />

4<br />

6<br />

9<br />

11<br />

13<br />

15<br />

17<br />

20<br />

22<br />

24<br />

26<br />

4<br />

–29<br />

–20<br />

–15<br />

–11<br />

–7<br />

–4<br />

–2<br />

1<br />

4<br />

6<br />

9<br />

11<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

5<br />

–24<br />

–17<br />

–11<br />

–7<br />

–5<br />

–2<br />

1<br />

4<br />

7<br />

9<br />

12<br />

14<br />

16<br />

18<br />

21<br />

23<br />

6<br />

–19<br />

–13<br />

–9<br />

–5<br />

–2<br />

1<br />

4<br />

7<br />

10<br />

12<br />

14<br />

17<br />

19<br />

21<br />

7<br />

–21<br />

–14<br />

–9<br />

–5<br />

–2<br />

1<br />

4<br />

7<br />

10<br />

12<br />

15<br />

17<br />

19<br />

8<br />

–14<br />

–9<br />

–5<br />

–1<br />

2<br />

4<br />

8<br />

10<br />

13<br />

16<br />

18<br />

9<br />

–28<br />

–16<br />

–10<br />

–6<br />

–2<br />

2<br />

5<br />

8<br />

11<br />

14<br />

16<br />

10<br />

–17<br />

–10<br />

–5<br />

–2<br />

3<br />

6<br />

9<br />

11<br />

14<br />

11<br />

–17<br />

–10<br />

–5<br />

–1<br />

2<br />

6<br />

9<br />

12<br />

12<br />

–19<br />

–10<br />

–5<br />

–1<br />

3<br />

7<br />

10<br />

13<br />

–19<br />

–10<br />

–5<br />

0<br />

4<br />

8<br />

14<br />

–19<br />

–10<br />

–4<br />

1<br />

5<br />

15<br />

–18<br />

–9<br />

–3<br />

1<br />

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)<br />

Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)<br />

Dry-Bulb<br />

Temperature<br />

(°C)<br />

1<br />

28<br />

40<br />

48<br />

55<br />

61<br />

66<br />

71<br />

73<br />

77<br />

79<br />

81<br />

83<br />

85<br />

86<br />

87<br />

88<br />

88<br />

89<br />

90<br />

91<br />

91<br />

92<br />

92<br />

92<br />

93<br />

93<br />

2<br />

11<br />

23<br />

33<br />

41<br />

48<br />

54<br />

58<br />

63<br />

67<br />

70<br />

72<br />

74<br />

76<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

86<br />

0<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

–20<br />

–18<br />

–16<br />

–14<br />

–12<br />

–10<br />

–8<br />

–6<br />

–4<br />

–2<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

26<br />

28<br />

30<br />

3<br />

13<br />

20<br />

32<br />

37<br />

45<br />

51<br />

56<br />

59<br />

62<br />

65<br />

67<br />

69<br />

71<br />

72<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

4<br />

11<br />

20<br />

28<br />

36<br />

42<br />

46<br />

51<br />

54<br />

57<br />

60<br />

62<br />

64<br />

66<br />

68<br />

69<br />

70<br />

71<br />

72<br />

5<br />

1<br />

11<br />

20<br />

27<br />

35<br />

39<br />

43<br />

48<br />

50<br />

54<br />

56<br />

58<br />

60<br />

62<br />

64<br />

65<br />

66<br />

6<br />

6<br />

14<br />

22<br />

28<br />

33<br />

38<br />

41<br />

45<br />

48<br />

51<br />

53<br />

55<br />

57<br />

59<br />

61<br />

7<br />

10<br />

17<br />

24<br />

28<br />

33<br />

37<br />

40<br />

44<br />

46<br />

49<br />

51<br />

53<br />

55<br />

8<br />

6<br />

13<br />

19<br />

25<br />

29<br />

33<br />

36<br />

40<br />

42<br />

45<br />

47<br />

49<br />

9<br />

4<br />

10<br />

16<br />

21<br />

26<br />

30<br />

33<br />

36<br />

39<br />

42<br />

44<br />

10<br />

2<br />

8<br />

14<br />

19<br />

23<br />

27<br />

30<br />

34<br />

36<br />

39<br />

11<br />

1<br />

7<br />

12<br />

17<br />

21<br />

25<br />

28<br />

31<br />

34<br />

12<br />

1<br />

6<br />

11<br />

15<br />

20<br />

23<br />

26<br />

29<br />

13<br />

5<br />

10<br />

14<br />

18<br />

21<br />

25<br />

14<br />

4<br />

9<br />

13<br />

17<br />

20<br />

15<br />

4<br />

9<br />

12<br />

16<br />

Dry-Bulb<br />

Temperature<br />

(°C)<br />

12 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)<br />

Dewpoint Temperatures (°C)<br />

Relative Humidity (%)


Temperature<br />

Pressure<br />

Water boils<br />

Human body<br />

temperature<br />

Room<br />

temperature<br />

Ice melts<br />

Fahrenheit Celsius Kelvin<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

–20<br />

–40<br />

–60<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

380<br />

370<br />

360<br />

350<br />

340<br />

330<br />

320<br />

310<br />

300<br />

290<br />

280<br />

270<br />

260<br />

250<br />

240<br />

230<br />

220<br />

Weather Map Symbols<br />

one<br />

atmosphere<br />

1013.2 mb<br />

millibars<br />

1040.0<br />

1036.0<br />

1032.0<br />

1028.0<br />

1024.0<br />

1020.0<br />

1016.0<br />

1012.0<br />

1008.0<br />

1004.0<br />

1000.0<br />

996.0<br />

992.0<br />

988.0<br />

984.0<br />

inches<br />

30.70<br />

30.60<br />

30.50<br />

30.40<br />

30.30<br />

30.20<br />

30.10<br />

30.00<br />

29.90<br />

29.80<br />

29.70<br />

29.60<br />

29.50<br />

29.40<br />

29.30<br />

29.20<br />

29.10<br />

29.00<br />

Station Model<br />

Temperature (°F)<br />

Present weather<br />

Visibility (mi)<br />

Dewpoint (°F)<br />

Wind speed<br />

28<br />

1<br />

2<br />

✱<br />

27<br />

whole feather = 10 knots<br />

half feather = 5 knots<br />

total = 15 knots<br />

Amount of cloud cover<br />

(approximately 75% covered)<br />

196<br />

+19/<br />

.25<br />

Barometric pressure<br />

(1019.6 mb)<br />

Barometric trend<br />

(a steady 1.9-mb rise<br />

the past 3 hours)<br />

Precipitation<br />

(inches past 6 hours)<br />

Wind direction<br />

(from the southwest)<br />

(1 knot = 1.15 mi/hr)<br />

980.0<br />

976.0<br />

972.0<br />

968.0<br />

28.90<br />

28.80<br />

28.70<br />

28.60<br />

28.50<br />

Drizzle<br />

✱<br />

Snow<br />

Rain<br />

Sleet<br />

Present Weather Air Masses<br />

Front Symbols Hurricane<br />

Smog<br />

Freezing<br />

Rain<br />

Hail<br />

Fog<br />

Thunderstorms<br />

∞<br />

Haze<br />

Rain<br />

Showers<br />

✱<br />

Snow<br />

Showers<br />

cA continental arctic<br />

cP continental polar<br />

cT continental tropical<br />

mT maritime tropical<br />

mP maritime polar<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 13<br />

Cold<br />

Warm<br />

Stationary<br />

Occluded


Selected Properties<br />

of <strong>Earth</strong>’s Atmosphere<br />

km 150<br />

mi<br />

Temperature<br />

Zones<br />

Atmospheric<br />

Pressure<br />

Water<br />

Vapor<br />

75<br />

100<br />

Thermosphere<br />

Altitude<br />

50<br />

Mesopause<br />

Mesosphere<br />

50<br />

25<br />

Stratopause<br />

Stratosphere<br />

Sea Level<br />

0<br />

0<br />

Tropopause<br />

Troposphere<br />

–100° 0° 100°<br />

–90° –55° 15°<br />

Temperature (°C)<br />

10 –4<br />

10 –3<br />

10 –2<br />

10 –1<br />

10 0<br />

Pressure (atm)<br />

0 20 40<br />

Concentration<br />

(g/m 3 )<br />

cm<br />

0.000,000,000,1<br />

0.000,000,001<br />

0.000,000,01<br />

0.000,000,1<br />

0.000,001<br />

0.000,01<br />

0.000,1<br />

0.001<br />

Electromagnetic Spectrum<br />

0.01<br />

0.1<br />

1.0<br />

10<br />

100<br />

1,000<br />

cm<br />

10 –10<br />

10 –9 10 –8 10 –7 10 –6 10 –5 10 –4 10 –3 10 –2 10 –1 10 0 10 1 10 2 10 3<br />

Gamma rays<br />

x rays<br />

Microwaves<br />

Ultraviolet<br />

Visible<br />

Infrared<br />

Radio waves<br />

Decreasing Wavelength<br />

Visible Light<br />

Increasing Wavelength<br />

Violet Blue Green Yellow Orange Red<br />

4.0 × 10 –5<br />

4.3 × 10 –5<br />

4.9 × 10 –5<br />

5.3 × 10 –5<br />

5.8 × 10 –5<br />

6.3 × 10 –5<br />

7.0 × 10 –5<br />

DRY<br />

N.E.<br />

WET<br />

S.W.<br />

WINDS<br />

DRY<br />

N.E.<br />

WINDS<br />

WET<br />

S.E.<br />

WINDS<br />

DRY<br />

N.W.<br />

WINDS<br />

WET<br />

S.E.<br />

DRY<br />

60° N<br />

60° S<br />

30° N<br />

30° S<br />

0°<br />

Tropopause<br />

Polar Front Jet Stream<br />

Polar Front<br />

Subtropical<br />

Jet Streams<br />

Planetary Wind<br />

and Moisture Belts<br />

in the Troposphere<br />

The drawing to the left shows<br />

the locations of the belts near<br />

the time of an equinox. The<br />

locations shift somewhat with<br />

the changing latitude of the<br />

Sun’s vertical ray. In the<br />

Northern Hemisphere, the belts<br />

shift northward in summer and<br />

southward in winter.<br />

Polar Front Jet Stream<br />

14 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)


Luminosity and Temperature of Stars<br />

(Name in italics refers to star shown by a + )<br />

Luminosity (Relative to the Sun)<br />

1,000,000<br />

Massive<br />

Stars<br />

10,000<br />

100<br />

1<br />

0.01<br />

Small<br />

Stars<br />

0.0001<br />

Blue<br />

Supergiants<br />

Blue Stars<br />

Rigel<br />

+<br />

Main Sequence<br />

+ Sirius<br />

Red<br />

Dwarfs<br />

Barnard’s<br />

Star +<br />

20,000 10,000 5,000 2,500<br />

Temperature (°C)<br />

White Stars<br />

Color<br />

Supergiants<br />

Polaris +<br />

White Dwarfs<br />

+ Procyon B<br />

+<br />

+<br />

Sun<br />

Yellow Stars<br />

Red Giants<br />

Betelgeuse<br />

+<br />

+ Aldebaran<br />

Alpha Centauri<br />

Red Stars<br />

Luminosity is the<br />

brightness of stars<br />

compared to the<br />

brightness of our<br />

Sun as seen from<br />

the same distance<br />

from the observer.<br />

Solar System Data<br />

Object<br />

Mean Distance<br />

from Sun<br />

(millions of km)<br />

Period<br />

of<br />

Revolution<br />

Period<br />

of<br />

Rotation<br />

Eccentricity<br />

of<br />

Orbit<br />

Equatorial<br />

Diameter<br />

(km)<br />

Mass<br />

(<strong>Earth</strong> = 1)<br />

Density<br />

(g/cm 3 )<br />

Number<br />

of<br />

Moons<br />

SUN — — 27 days — 1,392,000 333,000.00 1.4 –<br />

MERCURY 57.9 88 days 59 days 0.206 4,880 0.553 5.4 0<br />

VENUS 108.2 224.7 days 243 days 0.007 12,104 0.815 5.2 0<br />

EARTH 149.6 365.26 days 23 hr 0.017 12,756 1.00 5.5 1<br />

56 min<br />

4 sec<br />

MARS 227.9 687 days 24 hr 0.093 6,787 0.1074 3.9 2<br />

37 min<br />

23 sec<br />

JUPITER 778.3 11.86 years 9 hr 0.048 142,800 317.896 1.3 16<br />

50 min<br />

30 sec<br />

SATURN 1,427 29.46 years 10 hr 0.056 120,000 95.185 0.7 18<br />

14 min<br />

URANUS 2,869 84.0 years 17 hr 0.047 51,800 14.537 1.2 21<br />

14 min<br />

NEPTUNE 4,496 164.8 years 16 hr 0.009 49,500 17.151 1.7 8<br />

EARTH’S 149.6 27.3 days 27 days 0.055 3,476 0.0123 3.3 —<br />

MOON<br />

(0.386 from <strong>Earth</strong>)<br />

8 hr<br />

<strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006) 15


Properties of Common Minerals<br />

HARD- COMMON DISTINGUISHING<br />

LUSTER NESS COLORS CHARACTERISTICS USE(S) MINERAL NAME COMPOSITION*<br />

Metallic Luster<br />

Either<br />

Nonmetallic Luster<br />

1–2<br />

2.5<br />

5.5–6.5<br />

6.5<br />

1–6.5<br />

1<br />

2<br />

2<br />

2–2.5<br />

2.5<br />

2.5–3<br />

3<br />

3.5<br />

4<br />

5–6<br />

5.5<br />

6<br />

6<br />

6.5<br />

7<br />

7<br />

CLEAVAGE<br />

FRACTURE<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔<br />

silver to<br />

gray<br />

metallic<br />

silver<br />

black to<br />

silver<br />

brassy<br />

yellow<br />

metallic silver or<br />

earthy red<br />

white to<br />

green<br />

yellow to<br />

amber<br />

white to<br />

pink or gray<br />

colorless to<br />

yellow<br />

colorless to<br />

white<br />

black to<br />

dark brown<br />

colorless<br />

or variable<br />

colorless<br />

or variable<br />

colorless or<br />

variable<br />

black to<br />

dark green<br />

black to<br />

dark green<br />

white to<br />

pink<br />

white to<br />

gray<br />

green to<br />

gray or brown<br />

colorless or<br />

variable<br />

dark red<br />

to green<br />

black streak,<br />

greasy feel<br />

very dense (7.6 g/cm 3 ),<br />

gray-black streak<br />

attracted by magnet,<br />

black streak<br />

green-black streak,<br />

cubic crystals<br />

red-brown streak<br />

greasy feel<br />

easily melted,<br />

may smell<br />

easily scratched<br />

by fingernail<br />

flexible in<br />

thin sheets<br />

cubic cleavage,<br />

salty taste<br />

flexible in<br />

thin sheets<br />

bubbles<br />

with acid<br />

bubbles with acid<br />

when powdered<br />

cleaves in<br />

4 directions<br />

cleaves in<br />

2 directions at 90°<br />

cleaves at<br />

56° and 124°<br />

cleaves in<br />

2 directions at 90°<br />

cleaves in 2 directions,<br />

striations visible<br />

commonly light green<br />

and granular<br />

glassy luster, may form<br />

hexagonal crystals<br />

glassy luster, often seen as red<br />

grains in NYS metamorphic rocks<br />

pencil lead,<br />

lubricants<br />

ore of<br />

lead<br />

ore of<br />

iron<br />

ore of<br />

sulfur<br />

ore<br />

of iron<br />

talcum powder,<br />

soapstone<br />

vulcanize rubber,<br />

sulfuric acid<br />

plaster of paris<br />

and drywall<br />

electrical<br />

insulator<br />

food additive,<br />

melts ice<br />

electrical<br />

insulator<br />

cement,<br />

polarizing prisms<br />

source of<br />

magnesium<br />

hydrofluoric<br />

acid<br />

mineral<br />

collections<br />

mineral<br />

collections<br />

ceramics<br />

and glass<br />

ceramics<br />

and glass<br />

furnace bricks<br />

and jewelry<br />

glass, jewelry,<br />

and electronics<br />

jewelry and<br />

abrasives<br />

Graphite<br />

Galena<br />

Magnetite<br />

Pyrite<br />

Hematite<br />

Talc<br />

Sulfur<br />

Gypsum<br />

(Selenite)<br />

Muscovite Mica<br />

Halite<br />

Biotite Mica<br />

Calcite<br />

Dolomite<br />

Fluorite<br />

Pyroxene<br />

(commonly Augite)<br />

Amphiboles<br />

(commonly Hornblende)<br />

Potassium Feldspar<br />

(Orthoclase)<br />

Plagioclase Feldspar<br />

(Na-Ca Feldspar)<br />

Olivine<br />

Quartz<br />

Garnet<br />

(commonly Almandine)<br />

*Chemical Symbols: Al = aluminum Cl = chlorine H = hydrogen Na = sodium S = sulfur<br />

C = carbon F = fluorine K = potassium O = oxygen Si = silicon<br />

Ca = calcium Fe = iron Mg = magnesium Pb = lead Ti = titanium<br />

✔ = dominant form of breakage<br />

C<br />

PbS<br />

Fe 3 O 4<br />

FeS 2<br />

Fe 2 O 3<br />

Mg 3 Si 4 O 10 (OH) 2<br />

S<br />

CaSO 4 •2H 2 O<br />

KAl 3 Si 3 O 10 (OH) 2<br />

NaCl<br />

K(Mg,Fe) 3<br />

AlSi 3 O 10 (OH) 2<br />

CaCO 3<br />

CaMg(CO 3 ) 2<br />

CaF 2<br />

(Ca,Na) (Mg,Fe,Al)<br />

(Si,Al) 2 O 6<br />

CaNa(Mg,Fe) 4 (Al,Fe,Ti) 3<br />

Si 6 O 22 (O,OH) 2<br />

KAlSi 3 O 8<br />

(Na,Ca)AlSi 3 O 8<br />

(Fe,Mg) 2 SiO 4<br />

SiO 2<br />

Fe 3 Al 2 Si 3 O 12<br />

16 <strong>Earth</strong> <strong>Science</strong> <strong>Reference</strong> <strong>Tables</strong> — 2001 Edition (Revised November 2006)<br />

DET 633TN

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!