05.05.2014 Views

E - Onera

E - Onera

E - Onera

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Harald Schneider | Institute of Ion-Beam Physics and Materials Research | Semiconductor Spectroscopy Division<br />

Rosencher‘s Optoelectronic Day Onéra 24.05.2011<br />

Optical Nonlinearities in Quantum Wells<br />

Harald Schneider<br />

Helmholtz-Zentrum Dresden Rossendorf<br />

Institute of Ion-Beam Physics and Materials Research<br />

Dresden, Germany


Outline<br />

Introduction<br />

Optical Rectification<br />

Harmonic Generation & Two-Photon Absorption<br />

Difference-Frequency Generation<br />

Conclusion<br />

2


Optical nonlinearities in QW: Classification<br />

Our focus today:<br />

Resonant intersubband (intraband) nonlinearities<br />

Not covered (but also interesting):<br />

Interband optical nonlinearities<br />

CB<br />

e2<br />

e1<br />

• Electro-optical effects<br />

e.g., quantum-confined Stark effect<br />

intensity and phase modulators<br />

• Excitonic nonlinearities<br />

Marginally covered:<br />

Mixed interband/intersubband nonlinearities<br />

hh1<br />

lh1<br />

hh2<br />

lh2<br />

VB<br />

3


Optical nonlinearities involving intersubband transitions<br />

Second-order<br />

Optical rectification E. Rosencher et al., APL 55 1597 (1989)<br />

Second-harmonic generation M.M. Fejer et al., PRL 62, 1041 (1989)<br />

Difference-frequency mixing C. Sirtori et al., APL 65, 445 (1994)<br />

Sum-frequency mixing H.C. Liu et al., IEEE JQE 31, 1659 (1995)<br />

Third-order<br />

Four-wave mixing D. Warlod et al., APL 59, 2932 (1991)<br />

Third-harmonic generation C. Sirtori et al., PRL 68, 1010 (1992)<br />

Dc Kerr effect A. Sa’ar et al., APL 61, 1263 (1992)<br />

Two-photon absorption E. Dupont et al., APL 65, 1560 (1994)<br />

4


ITQW Conference<br />

1991 Cargèse<br />

2011 Badesi<br />

5


… often used for nonlinear<br />

wavelength conversion<br />

integrated with quantum<br />

cascade lasers<br />

7<br />

Nature 391, 464 (1998)


Outline<br />

Introduction<br />

Optical Rectification<br />

Harmonic Generation & Two-Photon Absorption<br />

Difference-Frequency Generation<br />

Conclusion<br />

8


Nonlinear susceptibility<br />

<br />

(2)<br />

0,max<br />

<br />

q T<br />

2<br />

3 2<br />

2<br />

2<br />

0<br />

2<br />

N1<br />

N2<br />

1212<br />

T 2 dephasing time<br />

12 |<br />

1| z<br />

| 2 |<br />

12 2 | z | 2 1| z<br />

|1<br />

More than 10 3 higher nonlinearity than in bulk GaAs<br />

Additional contribution due to T 1 , which is ~10x longer than T 2 !<br />

9


Sainte Chapelle, Paris<br />

Little devil who holds the electron<br />

at its place, thus preventing it from<br />

returning back to the ground state<br />

10


Semiclassical<br />

"rectification efficiency"<br />

<br />

(2)<br />

0,max<br />

<br />

3<br />

q T2<br />

<br />

2<br />

2<br />

<br />

0<br />

T 2 dephasing time<br />

storage time<br />

2<br />

N1<br />

N2<br />

1212<br />

<br />

More than 10 6 higher efficiency than in GaAs!<br />

11


12<br />

Several periods with thick inter-well barriers


From rectification to detection …<br />

Thin inter-period barriers<br />

dc photocurrent!<br />

13


Optimization<br />

high absorption strength<br />

high escape probability<br />

high capture probability<br />

small tunneling probability<br />

Low-noise QWIP<br />

1: excitation zone<br />

2: drift zone<br />

3: capture zone<br />

4: tunnel barrier zone<br />

no tunneling<br />

no thermal re-emission<br />

high tunneling probability<br />

14


ENERGY (meV)<br />

Parameters and subbands<br />

20 periods<br />

4.8 nm GaAs:Si<br />

45.0 nm AlGaAs x=0.26<br />

4x10 11<br />

1<br />

cm -2 excitation<br />

zone<br />

2<br />

drift zone<br />

1.8 nm GaAs 3<br />

1.8 nm AlGaAs x=0.26 capture<br />

3.0 nm GaAs zone<br />

0.6 nm AlAs 4<br />

1.8 nm AlGaAs x=0.26 tunnel<br />

0.6 nm AlAs barrier<br />

3.6 nm AlGaAs x=0.26 zone<br />

250<br />

200<br />

150<br />

100<br />

50<br />

1<br />

2<br />

3<br />

4<br />

0<br />

0 20 40 60 80 100 120<br />

POSITION (nm)<br />

15<br />

Appl. Phys. Lett. 71, 2646 (1997)


CURRENT (A)<br />

Response at 300 K background temperature<br />

• Photovoltage due to<br />

thermal background<br />

radiation<br />

10 -8<br />

cold shield<br />

T B<br />

=300 K, 45° facet<br />

T B<br />

=300 K, grating<br />

(expected)<br />

10 -7 120x120 µm 2<br />

• Background limited<br />

performance<br />

10 -9<br />

10 -10<br />

65 K<br />

-4 -3 -2 -1 0 1<br />

BIAS VOLTAGE (V)<br />

16


DETECTIVITY (cmHz 1/2 /W)<br />

“Low-Noise” QWIP<br />

• same D * as for conventional QWIPs<br />

• both polarities demonstrated<br />

other polarity<br />

• carrier density<br />

PC QWIP 8 x 10 10 cm -2<br />

“Low-Noise” 4 x 10 11 cm -2<br />

Photoconductive QWIP<br />

" Low-Noise" QWIP in PC mode<br />

fit to all data<br />

10 10 77 K<br />

45° facet geometry<br />

20 periods<br />

8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5<br />

LONG WAVELENGTH CUTOFF (µm)<br />

Physica E 7, 101 (2000)<br />

17


640 x 512 “Low-Noise” QWIP FPA<br />

NETD = 9.6 mK<br />

7.4 - 9.2 µm<br />

f/2, 30 ms, 60 K<br />

18<br />

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer 2007<br />

AIM


Outline<br />

Introduction<br />

Optical Rectification<br />

Harmonic Generation & Two-Photon Absorption<br />

Difference-Frequency Generation<br />

Conclusion<br />

19


Nonlinear susceptibility for SHG<br />

N1<br />

N2<br />

1223<br />

31<br />

(2) 2<br />

2 ,max<br />

~ T2<br />

<br />

Dipole moments<br />

µ 12 , µ 23 , µ 31 0<br />

Need asymmetry<br />

SHG in step QWs<br />

Up to 3 orders of magnitude more efficient than in bulk GaAs<br />

20


High-efficiency SHG<br />

conversion possible<br />

provided that we can beat<br />

the losses…<br />

21


Nonlinear susceptibility<br />

(2)<br />

3 ,max<br />

~ NT12T23T3412233441<br />

µ 12 , µ 23 , µ 34 µ 41 0<br />

T 12 , T 23 , T 34 dephasing times<br />

22


Intracavity SHG and THG in quantum cascade lasers<br />

23<br />

T. Moseley et al., Opt. Express 12, 2972 (2004)<br />

C. Gmachl et al., IEEE JQE 39, 1345 (2003)


50 µW<br />

80 K<br />

298 K<br />

6 µW<br />

Efficiency 0.13 mW/W 2 (RT), 0.04 mW/W 2 (80K), 19 mW/W 2 (theory)<br />

Deviation due to higher lateral modes, detuning from resonance, …<br />

24


Two-photon absorption<br />

TPA coefficient<br />

<br />

~<br />

, max<br />

N<br />

D<br />

2<br />

12<br />

23T2<br />

12<br />

<br />

( 3)<br />

<br />

T 2 dephasing time 21<br />

T e dephasing time associated with state 3<br />

Independent of µ 31 (in contrast to SHG)<br />

TPA works with a symmetric QW structure!<br />

T<br />

e<br />

E 2<br />

E 3<br />

E 1<br />

E 3<br />

Semiclassical (analogy with opt. rectification)<br />

"Sequential TPA"<br />

<br />

N<br />

D<br />

2step,max<br />

~ 12234<br />

12<br />

T 1 lifetime for 21<br />

T<br />

1<br />

T<br />

2<br />

T<br />

e<br />

E 2<br />

E 1<br />

25


QWIPs with quadratic power dependence<br />

Resonant two-photon QWIP<br />

3<br />

2<br />

1<br />

E 3 - E 2 = E 2 - E 1<br />

Standard QWIP<br />

2<br />

1<br />

• Photocurrent (power) ²<br />

stronger signal if two pulses overlap in time<br />

• photocurrent<br />

power density<br />

26


norm. Photocurrent<br />

Time Resolution of Two-Photon-QWIP<br />

Autocorrelation measurements<br />

using 170 fs mid-IR pulses<br />

• 8:1 peak-to-background-ratio<br />

nearly ideal autocorrelation<br />

for small delay times<br />

8<br />

6<br />

4<br />

2<br />

= 10.4µm<br />

Bias = 1V<br />

T = 77K<br />

Sub-ps time resolution<br />

Influence of intermediate state<br />

on detector response<br />

• Oscillations decrease exponentially<br />

phase relaxation T 2<br />

• Exponential behavior of the "wings“<br />

intersubband relaxation T 1<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-1 0 1<br />

Delay Time (ps)<br />

ideal autocorrelation<br />

of 165 fs pulse<br />

IR Phys. Technol. 47, 182 (2005)<br />

27


Photocurrent (a. u.)<br />

Photocurrent (a. u.)<br />

Determining T 1 and T 2 by numerical fits<br />

8<br />

6<br />

well doped<br />

experimental<br />

numerical fit<br />

8<br />

6<br />

modulation doped<br />

experiment<br />

numerical fit<br />

4<br />

2<br />

= 10.4 µm<br />

Bias = 1 V<br />

T = 77 K<br />

4<br />

2<br />

=10.6µm<br />

Bias = 0.2 V<br />

T=70K<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Delay Time (ps)<br />

well doped<br />

mod.<br />

doped<br />

T 1 530 fs 750 fs<br />

T 2 120 fs 240 fs<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Delay Time (ps)<br />

28<br />

Appl. Phys. Lett. 91, 191116 (2007)


Signal (arb. units)<br />

Signal (arb. units)<br />

Quadratic Autocorrelation at Room Temperature<br />

6<br />

4<br />

interferometric<br />

intensity<br />

autocorrelation<br />

300 K<br />

InGaAs/AlGaAs<br />

6.2 nm QW<br />

= 5.4 µm<br />

6<br />

4<br />

EXP<br />

FIT<br />

2<br />

2<br />

0<br />

0<br />

-4 -2 0 2 4 -0.02 0.00 0.02 0.04 0.06<br />

Time (ps)<br />

Time (ps)<br />

Interferometric autocorrelation 6:1 (ideally 8:1)<br />

Intensity autocorrelation 2.2:1 (ideally 3:1)<br />

Fringes<br />

(1-cos) 2 shape<br />

FWHM 3.7 ps<br />

FEL pulse width 2.6 ps<br />

29<br />

H. Schneider et al., Appl. Phys. Lett. 93, 101114 (2008)


Photocurrent (arb. u.)<br />

THz Two-Photon QWIP<br />

8<br />

6<br />

4<br />

2<br />

Interferometric autocorrelation<br />

Intensity autocorrelation<br />

= 42 µm<br />

9.5 K, 0.5 V<br />

18 nm GaAs/AlGaAs QWs<br />

6<br />

4<br />

2<br />

0<br />

-0.4 0.0 0.4<br />

0<br />

-10 -5 0 5 10<br />

Time Delay (ps)<br />

Operation below the Reststrahlenband at 42 µm (7 THz)<br />

FWHM 6.2 ps 4.4 ps FEL pulse width<br />

30<br />

H. Schneider et al., Opt. Express 17, 12279 (2009)


Interferometric autocorrelation of modelocked QCL<br />

C. Y. Wang et al.,<br />

Opt. Express 17, 12931 (2009)<br />

Pulse diagnostics<br />

• Pulse width<br />

• Chirp<br />

• Photon correlation<br />

31


32<br />

Autocorrelation of amplified<br />

spontaneous emission source


Outline<br />

Introduction<br />

Optical Rectification<br />

Harmonic Generation & Two-Photon Absorption<br />

Difference-Frequency Generation<br />

Conclusion<br />

33


34<br />

DFG at around 60 µm


• 3 stacks: DFG region, QCL1 (8.4 µm), QCL2 (9.5 µm)<br />

• 100 nW output power (0.5 µW/W 2 external efficiency) at 78 K<br />

• Up to 100 µW expected after further optimization<br />

35


intensity (counts)<br />

THz/NIR nonlinear optics with exciton levels in quantum wells<br />

THz sideband generation<br />

TiSa<br />

NIR<br />

FEL<br />

FEL<br />

Sideband energies<br />

sample<br />

n = NIR ± n FEL<br />

n = 0,±1,±2,<br />

125000<br />

100000<br />

75000<br />

50000<br />

25000<br />

n=-2<br />

*100<br />

n=-1<br />

*1000<br />

FEL energy 8.9 meV<br />

NIRlaser<br />

/1000<br />

-NIR wavelength 791.9nm<br />

-NIR power 230 kW/cm²<br />

-FEL-power 13 kW/cm²<br />

-efficiency here 0.03%<br />

n=+1<br />

*1000<br />

n=+2<br />

n=+4<br />

n=+3<br />

*1000<br />

*1000<br />

0<br />

1540 1550 1560 1570 1580 1590 1600 1610<br />

energy (meV)<br />

• Best efficiency if THz energy is resonant with 1s-2p intraexcitonic transition<br />

36<br />

M. Wagner et al., Appl. Phys. Lett. 94, 241105 (2009)


Absorption (-log(T))<br />

hh(1s)<br />

hh(2s/p)<br />

lh(1s)<br />

High-field physics with FEL: Excitons dressed by THz beams<br />

Autler-Townes (AT) effect for intra-excitonic transitions<br />

e 2<br />

weak ……. strong THz field<br />

e 1<br />

hh 1<br />

lh 1<br />

exciton<br />

9 meV<br />

hh(2p)<br />

ħ THz<br />

hh(1s)<br />

hh-exciton<br />

<br />

<br />

Rabi frequency<br />

E 21<br />

/ <br />

Observation of AT splitting<br />

• interband absorption under<br />

intense THz pumping of<br />

hh(1s) – hh(2p) transition<br />

3<br />

2<br />

1<br />

0<br />

3<br />

NIR Energy (meV)<br />

1560 1580 1600<br />

0<br />

130<br />

220<br />

330<br />

650<br />

THz<br />

Peak<br />

Intensity<br />

(kW/cm²)<br />

37<br />

M. Wagner et al., Phys. Rev. Lett. 105, 167401 (2010)<br />

2


NIR photon energy (meV)<br />

energy splitting (meV)<br />

Dependence on THz frequency and intensity<br />

1572<br />

1568<br />

130 kW/cm²<br />

4.4 kV/cm<br />

6<br />

4<br />

measured<br />

linear fit<br />

1564<br />

1560<br />

4 6 8 10 12 14 16 18 20<br />

THz photon energy (meV)<br />

Anticrossing<br />

experiment<br />

model<br />

unperturbed exciton<br />

• As expected from<br />

the two-level model<br />

also quantitatively!<br />

• Deviations at very<br />

high intensities<br />

2<br />

0<br />

0 5 10 15 20 25 30<br />

(THz peak intensity) 1/2 (kW/cm 2 ) 1/2<br />

On-resonance energy splitting<br />

(THz peak intensity) 1/2<br />

electric field<br />

38<br />

M. Wagner et al., Phys. Rev. Lett. 105, 167401 (2010)


Conclusion<br />

QW = great system for constructing huge optical nonlinearities<br />

• Dipole moments on the order of the QW width<br />

• Model system with taylorable (2) , (3)<br />

• Custom-design of resonances for enhanced nonlinearity<br />

But still much room for improvements…<br />

• New geometries, e.g., photonic crystal structures for higher efficiency?<br />

• New concepts, e.g., shorten the "radiatíve lifetime" using a microresonator?<br />

• Other nonlinearities, e.g., two photon emission?<br />

Jamais la nature ne nous trompe; c’est toujours nous<br />

qui nous trompons.<br />

Jean-Jacques Rousseau<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!