21.05.2014 Views

LANGMUIR WAVES - THE BOHM-GROSS DISPERSION RELATION

LANGMUIR WAVES - THE BOHM-GROSS DISPERSION RELATION

LANGMUIR WAVES - THE BOHM-GROSS DISPERSION RELATION

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

and so on for v 1 and E 1 . From here, it is easy to see that we can make the substitutions<br />

∂<br />

→ −iω, ∇ → ik (11)<br />

∂t<br />

It is easiest to perform this substitution on Gauss’s Law to obtain an expression for E 1 :<br />

∇ · E 1 = − en e1<br />

ɛ 0<br />

With these substitutions, equations 8 and 9 become<br />

Plugging equation 13 into equation 12:<br />

→ ik · E 1 = − en e1<br />

ɛ 0<br />

(12)<br />

−iωn e1 + ik · n e0 v 1 = 0 ⇒ n e1 = n e0<br />

ω k · v 1 (13)<br />

Dotting both sides of equation 14 with k and rearranging:<br />

And putting this into equation 15:<br />

and finally putting in equation 12<br />

−iωmn e0 v 1 = −en e0 E 1 − iγk B T kn e1 (14)<br />

k · v 1 =<br />

ik · E 1 = −e n e0<br />

ωɛ 0<br />

k · v 1 (15)<br />

en e0<br />

iωmn e0<br />

k · E 1 + γk BT n e1<br />

ωmn e0<br />

k 2 (16)<br />

ik · E 1 = −e n e0<br />

ωmɛ 0<br />

en e0<br />

iωn e0<br />

k · E 1 − e n e0<br />

ωɛ 0<br />

γk B T n e1<br />

ωmn e0<br />

k 2 (17)<br />

− en e1<br />

ɛ 0<br />

This is really ugly. Let’s clean this up<br />

Multiplying through to solve for the frequency ω:<br />

= −e n e0 en e0 en e1<br />

− e n e0 γk B T n e1<br />

k 2 (18)<br />

ωmɛ 0 ωn e0 ɛ 0 ωɛ 0 ωmn e0<br />

1 = n e0e 2<br />

ω 2 mɛ 0<br />

+ γk BT<br />

ω 2 m k2 (19)<br />

ω 2 = n e0e 2<br />

mɛ 0<br />

+ γk BT<br />

m k2 ✷ (20)<br />

This is the so-called Bohm-Gross Dispersion Relation. If we define the electron plasma frequency<br />

ω 2 pe = n e0e 2<br />

mɛ 0<br />

(21)<br />

and the electron thermal velocity<br />

vth,e 2 = k BT<br />

m<br />

then the Bohm-Gross relationship can be written<br />

(22)<br />

ω 2 = ω 2 pe + γv 2 th,ek 2 ✷ (23)<br />

Note, in particular, that for ‘cold’ electrons, the frequency of oscillations reduces to the plasma<br />

frequency. If the electrons are cold, then the group velocity ∂ω/∂k = 0, so the wave does not<br />

propagate. A nonzero electron temperature yields a nonzero group velocity, so the wave will<br />

propagate.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!