21.05.2014 Views

QED3 Theory of High Temperature Superconductors • What is the ...

QED3 Theory of High Temperature Superconductors • What is the ...

QED3 Theory of High Temperature Superconductors • What is the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

QED 3 <strong>Theory</strong> <strong>of</strong><br />

<strong>High</strong> <strong>Temperature</strong> <strong>Superconductors</strong><br />

Zlatko Tešanović<br />

The Johns Hopkins University<br />

August 2002<br />

LT 23, August 20-27, 2002, Hiroshima, JAPAN<br />

Collaborators: Pr<strong>of</strong>. Marcel Franz (UBC), O. Vafek and A. Melikyan (JHU)<br />

• <strong>What</strong> <strong>is</strong> <strong>the</strong> Problem in HTS? An “Inverted” View<br />

• Protectorate <strong>of</strong> <strong>the</strong> Pairing Pseudogap<br />

• Vortices, Quasiparticles and Topological Frustration<br />

• QED 3 <strong>Theory</strong> <strong>of</strong> HTS – From d-wave Superconductor<br />

to Antiferromagnet via Strange Metal


Th<strong>is</strong> talk <strong>is</strong> based on:<br />

∗∗ M. Franz and ZT, Phys. Rev. Lett. 87, 257003 (2001).<br />

∗∗ ZT, O. Vafek and M. Franz, Phys. Rev. B 65, 180511(R) (2002). †<br />

∗∗ M. Franz, ZT and O. Vafek, cond-mat/0203333.<br />

∗∗ O. Vafek, A. Melikyan, MF and ZT, Phys. Rev. B 63, 134509 (2001).<br />

∗∗ M. Franz and ZT, Phys. Rev. Lett. 84, 554 (2000).<br />

∗∗ ZT, Phys. Rev. B 59, 6449 (1999) (particularly Appendix A).<br />

∗∗ I. F. Herbut and ZT, Phys. Rev. Lett. 76, 4588 (1996).<br />

∗∗ o<strong>the</strong>r related papers available at www.pha.jhu.edu/people/faculty/zbt.html<br />

† see also I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002).<br />

O<strong>the</strong>r significant papers on pseudogap and SC fluctuations:<br />

∗∗ J. Emery and S. A. Kivelson, Nature 374, 434 (1995).<br />

∗∗ L. Balents, M. P. A. F<strong>is</strong>her and C. Nayak, Phys. Rev. B 60, 1654 (1999).<br />

∗∗ A. K. Nguyen and A. Sudbø, Phys. Rev. B 60, 15307 (1999).<br />

∗∗ M. Franz and A. J. Mill<strong>is</strong>, Phys. Rev. B 58, 14572 (1998).<br />

∗∗ H. J. Kwon and A. T. Dorsey, Phys. Rev. B 59, 6438 (1999).<br />

∗∗ L. Marinelli, B. I. Halperin and S. Simon, Phys. Rev. B 62, 3448 (2000).


<strong>What</strong> <strong>is</strong> The Problem in high T c superconductors?<br />

• Superconducting state appears d x 2 −y2 “BCS-like”. Low energy<br />

fermionic quasiparticles seem to have only “weak” interactions.<br />

• In contrast, <strong>the</strong> “normal” state appears strange and non-Fermi<br />

liquid-like. Its fermionic excitations are strongly correlated.<br />

“Inverted” solution:<br />

• Today, everything seems to be a high temperature superconductor<br />

(cuprates, C 60 ’s, MgB 2 ,. . . ). The superconducting ground<br />

state <strong>is</strong> as common as normal metal.<br />

• Traditional paradigm: we must understand <strong>the</strong> normal state before<br />

we can understand <strong>the</strong> superconductor (Anderson, Pines,. . . ).<br />

We turn th<strong>is</strong> paradigm around. The “inverted paradigm” states:<br />

we must understand <strong>the</strong> superconductor before we can understand<br />

<strong>the</strong> adjacent “normal” state.<br />

• We construct a <strong>the</strong>ory in which <strong>the</strong> correlated BCS-BdG superconductor<br />

serves as <strong>the</strong> reference ground state.<br />

⇒<br />

The key<br />

questions: (i) how does such a superconductor become nonsuperconducting?<br />

(ii) what are <strong>the</strong> states adjacent to such a<br />

superconductor, i.e.<br />

what are its “failure modes” (Laughlin,<br />

LT23)? (iii) what <strong>is</strong> <strong>the</strong> <strong>the</strong>ory that assumes <strong>the</strong> role <strong>of</strong> Fermi<br />

liquid in <strong>the</strong> traditional paradigm?


How Does a Superconductor Become Normal?<br />

In superconductors electrons form Cooper pairs: 〈c † ↑(r)c † ↓(r)〉 ∼<br />

∆(r). The order parameter ∆(r) <strong>is</strong> a complex wave function with<br />

amplitude |∆| and phase exp(iϕ(r)). In <strong>the</strong> superconducting state<br />

Cooper pairs are “Bose condensed” and 〈∆〉 ≠ 0.<br />

Superconducting vortex <strong>is</strong> a topological<br />

defect in ϕ (see arrows).<br />

If one goes around <strong>the</strong> vortex,<br />

ϕ winds by 2π (−2π around<br />

antivortex). The amplitude <strong>is</strong><br />

uniform except in <strong>the</strong> core where<br />

|∆| → 0.<br />

If vortices proliferate, through <strong>the</strong>rmal or quantum fluctuations,<br />

it <strong>is</strong> th<strong>is</strong> strong phase winding that ultimately destroys superconducting<br />

order: lim |r|→∞ 〈∆(r)∆ ∗ (0)〉 → 0 , 〈∆〉 = 0


T < T c<br />

T > T c<br />

τ<br />

τ<br />

x<br />

y<br />

x<br />

y<br />

Thermal/quantum proliferation <strong>of</strong> vortex loops (unbound vortexantivortex<br />

pairs) <strong>is</strong> <strong>the</strong> mechan<strong>is</strong>m <strong>of</strong> superconductor-to-normal transition<br />

(Kosterlitz-Thouless). Vortex fluctuations are particularly enhanced<br />

in copper oxides due to quasi 2D structure, high T c AND<br />

Important: in correlated dSC<br />

large ∆ x 2 −y 2 but small ρ s<br />

in <strong>the</strong> underdoped regime<br />

⇒ small penalty for<br />

tw<strong>is</strong>ting <strong>the</strong> phase: ρ s (∇ϕ) 2<br />

Vortices in a doped Mott Insulator:<br />

PA Lee, Nagaosa<br />

Franz & ZT<br />

DH Lee & Han<br />

Ogata


T<br />

Vortex Fluctuations in Underdoped Cuprates<br />

T<br />

Nernst<br />

T<br />

AF<br />

QED 3<br />

T c<br />

dSC<br />

*<br />

T < T ∗ – Strong SC Fluctuations<br />

Experimental Evidence:<br />

Uemura (Columbia),<br />

Ong (Princeton),<br />

Orenstein (Berkeley),<br />

F<strong>is</strong>cher (Geneva),<br />

Oda & Ido (Hokkaido),<br />

Below T ∗ (∼ 100-200 K) <strong>the</strong>re are strong fluctuations <strong>of</strong> Cooper<br />

pairs. These fluctuations involve both <strong>the</strong> amplitude and <strong>the</strong> phase<br />

<strong>of</strong> <strong>the</strong> SC order parameter. The phase fluctuations are dominant<br />

while <strong>the</strong> amplitude fluctuations are frozen below T ∗ . The true SC<br />

order sets in only at T c ≪ T ∗ . The strongest evidence for large<br />

vortex fluctuations in <strong>the</strong> pseudogap state (above T c and below<br />

T Nernst ) comes from Nernst effect experiments by Ong et al.<br />

x<br />

Phase fluctuations:<br />

Smooth (“spin waves”)<br />

Singular (vortices)<br />

⇒ Vortices are responsible for <strong>the</strong> SC transition at T c<br />

and are dominant fluctuations below T Nernst


Evidence for <strong>the</strong> pairing pseudogap, Oda, Ido et al. (Hokkaido)


HTS are unique not only because <strong>the</strong>y have such high T c and strong<br />

vortex-antivortex fluctuations. They are also d-wave superconductors,<br />

in contrast to conventional s-wave superconductors. ⇒<br />

Low energy effective <strong>the</strong>ory must contain FERMIONS !! Th<strong>is</strong> <strong>is</strong> in<br />

contrast to He-type (BOSON ONLY) models <strong>of</strong> SC fluctuations<br />

+<br />

+<br />

+ +<br />

s-wave superconductors: The gap function<br />

∆(k) does not change sign on <strong>the</strong> Fermi<br />

surface. The quasiparticle spectrum <strong>is</strong><br />

gapped: E(k) = ± √ (ε(k) − µ) 2 + |∆| 2<br />

-<br />

+<br />

+<br />

-<br />

d-wave superconductors: The gap function<br />

∆(k) changes sign on <strong>the</strong> Fermi<br />

surface. The quasiparticle spectrum <strong>is</strong><br />

gapless near <strong>the</strong> nodes, where ∆(k) → 0<br />

E(k) = ± √ (ε(k) − µ) 2 + |∆(k)| 2 ∼ ±|k|<br />

⇒ Massless Dirac Fermions !! ⇐


Superconductor<br />

“Normal”<br />

-<br />

+<br />

-<br />

+<br />

τ<br />

+ -<br />

τ<br />

+ -<br />

x<br />

y<br />

x<br />

y<br />

In correlated dSC we must consider two types <strong>of</strong> degrees <strong>of</strong> freedom:<br />

fluctuating vortices and nodal quasiparticles (vortices in k-space),<br />

and <strong>the</strong>ir mutual interactions generated by <strong>the</strong> pairing term in H eff :<br />

H t−J ⇒ H eff ⇒ ∆(r)c † ↑(r)c † ↓(r) + (· · ·)<br />

where ∆(r) = ∆ 0 exp(iϕ(r)). The physical coupling should be<br />

through ∂ϕ, due to <strong>the</strong> global U(1) gauge invariance. But, to<br />

extract ∂ϕ, we must take a “square-root” <strong>of</strong> exp(iϕ(r)).


Some Notorious Square Roots<br />

√<br />

a2 + b 2 = c ⇒ Pythagoras’ Theorem<br />

( √ 5 − 1)/2 ⇒ Penrose Tiles<br />

√ −1 = i ⇒ Complex Analys<strong>is</strong><br />

√ˆp2 + m 2 = α · ˆp + βm ⇒ Dirac equation, S = 1 2<br />

√<br />

f(z) ⇒ Riemann sheet<br />

<strong>What</strong> <strong>is</strong> <strong>the</strong> square-root <strong>of</strong> exp(iϕ(r)) appearing in exp(iϕ)c † ↑c † ↓ ?<br />

exp(iϕ(r)/2) looks nice but it introduces half-vortices and leads to<br />

branch cuts and non-single valued wavefunctions.<br />

Is <strong>the</strong>re ano<strong>the</strong>r way <strong>of</strong> taking a “square-root” <strong>of</strong> exp(iϕ(r)) which<br />

does not lead to branch cuts and keeps (hc/2e) vortices whole?


FT Singular Gauge Transformation †<br />

Eliminate <strong>the</strong> phase ϕ(r, τ) from <strong>the</strong> pairing term ˆ∆:<br />

c † ↑ → exp (iϕ A)c † ↑ , c† ↓ → exp (iϕ B)c † ↓ ,<br />

where ϕ A +ϕ B → ϕ ; exp(iϕ) = exp(iϕ A ) exp(iϕ B )<br />

ϕ A(B) (r, τ) <strong>is</strong> <strong>the</strong> singular part <strong>of</strong> <strong>the</strong> phase due to A(B) vortex<br />

defects. A and B are a convenient but arbitrary div<strong>is</strong>ion <strong>of</strong> vortex<br />

defects into two equivalent groups.<br />

+<br />

-<br />

A<br />

The figure shows a convenient<br />

choice <strong>of</strong> sets A and B for<br />

+<br />

-<br />

+<br />

+<br />

- -<br />

B<br />

fluctuating vortices. (↑, ↓)<br />

symmetry <strong>is</strong> restored after<br />

summation over all vortex<br />

configurations.<br />

† M. Franz and ZT, Phys. Rev. Lett. 84, 554 (2000); O. Vafek, A. Melikyan, M.<br />

Franz and ZT, Phys. Rev. B 63, 134509 (2001)


Quasiparticle-Vortex Interactions I<br />

An (hc/2e) vortex <strong>is</strong> seen by a quasiparticle as a confined state<br />

<strong>of</strong> a U(1) “doppleron” and a Z 2 “berryon”:<br />

2e<br />

vortex<br />

qp (e)<br />

Doppler shift:<br />

ω → ω ′ = ω − ⃗v s (⃗r) · ⃗k<br />

⃗v s (⃗r) - superfluid velocity<br />

Volovik (’93)<br />

• However, Doppler shift provides only “half” <strong>of</strong> <strong>the</strong> phase:<br />

2e<br />

vortex<br />

qp (e)<br />

Berry phase † :<br />

supplies additional<br />

∆ϕ = π ; Berry gauge<br />

field describes topological<br />

frustration experienced by<br />

BdG quasiparticles in<br />

presence <strong>of</strong> vortices<br />

† M. Franz and ZT, Phys. Rev. Lett. 84, 554 (2000)


Quasiparticle-Vortex Interactions II<br />

We call new, singularly gauge transformed, quasiparticles Topological<br />

Fermions. Interactions <strong>of</strong> TFs with vortices are described by<br />

<strong>the</strong> BdG Hamiltonian for d-wave superconductor:<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

ˆD<br />

ˆD − 1<br />

2m (ˆp − mvB s ) 2 ⎟<br />

+ ɛ F<br />

1<br />

2m (ˆp + mvA s ) 2 − ɛ F<br />

⎠ ,<br />

ˆD = ∆ 0<br />

p 2 [ˆp x + m<br />

F 2 (vA sx − vsx)][ˆp B y + m 2 (vA sy − vsy)]<br />

B<br />

and vs ζ = 1 m (¯h∇φ ζ − e cA), ζ = A, B.<br />

• Doppler gauge field v µ = 1 2 (∂ µϕ A +∂ µ ϕ B ) couples to “charge”<br />

<strong>of</strong> topological fermions (µ = x, y, τ)<br />

(Me<strong>is</strong>sner coupling).<br />

• Berry gauge field a µ = 1 2 (∂ µϕ A − ∂ µ ϕ B ) couples to “spin” <strong>of</strong><br />

topological fermions (µ = x, y, τ) (minimal coupling). ⇒<br />

⇒<br />

Doppler gauge field <strong>is</strong> massive due to Me<strong>is</strong>sner effect <strong>of</strong><br />

TFs. Berry gauge field must remain massless since d-wave SC <strong>is</strong><br />

spin singlet. The only way to make a µ massive <strong>is</strong> to bind vortices<br />

into finite loops – th<strong>is</strong> <strong>is</strong> what happens in <strong>the</strong> superconducting state.


QED 3 in Cuprates<br />

M. Franz and ZT, PRL 87, 257003 (2001)<br />

The low energy quasiparticles are located at <strong>the</strong> four nodal points<br />

<strong>of</strong> <strong>the</strong> d-wave gap function denoted as (1, ¯1) and (2, ¯2). Linearizing<br />

<strong>the</strong> spectrum near <strong>the</strong> nodes leads to <strong>the</strong> effective Lagrangian:<br />

L QED =<br />

∑<br />

α=1,¯1<br />

+ ∑<br />

α=2,¯2<br />

Ψ † α[D τ − iv F D x σ 3 − iv ∆ D y σ 1 ]Ψ α<br />

Ψ † α[D τ − iv F D y σ 3 − iv ∆ D x σ 1 ]Ψ α + L 0 , (1)<br />

Ψ † α <strong>is</strong> two-component spinor, α <strong>is</strong> node index, D µ = ∂ µ + ia µ and:<br />

L 0 [a µ ] = K τ (∂ × a) 2 τ/(2π 2 ) + K d (∂ × a) 2 d/(2π 2 ) . (2)<br />

Key parameters <strong>of</strong> <strong>the</strong> <strong>the</strong>ory are v F , v ∆ , N and K τ,d ∝ ξ sc (x, T ) .<br />

Effective Lagrangian (1,2) for low energy quasiparticles interacting<br />

with fluctuating unbound vortices (〈∆〉 = 0)<br />

An<strong>is</strong>otropic Euclidean quantum electrodynamics <strong>of</strong> massless<br />

Dirac fermions in (2+1)-dimensions (QED 3 ).<br />


Electron (Quasiparticle) Propagator<br />

G(x, x ′ ) ≈ 〈exp(i ∫ x ′<br />

x a µ ds µ (Γ))[ ˜Ψ(x) ˜Ψ † (x ′ )] 11 〉, where x = (r, τ).<br />

• The real electron propagator can be computed from <strong>the</strong> TF propagator<br />

in a gauge in which 〈exp(i ∫ x ′<br />

x ds µ a µ )〉 = 1 (Franz and ZT):<br />

Real electron propagator (Franz and ZT):<br />

⇒ G α (p) = p/<br />

p 2−η<br />

⇐<br />

η = 16/3π 2 N ∼ = 0.27 (N = 2) <strong>is</strong> <strong>the</strong> anomalous dimension <strong>of</strong> real<br />

electrons (η ≪ 1). The Fermi liquid description <strong>of</strong> quasiparticles<br />

breaks down ⇒ Non-Fermi liquid in <strong>the</strong> pseudogap state !!<br />

Phase Vortex Loops Berryons Nodal Fermions<br />

dSC Bound Massive Free – Coherent<br />

Pseudogap Unbound Massless Interacting – Incoherent


ARPES in Cuprates<br />

ARPES measures <strong>the</strong> spectral function <strong>of</strong> electrons:<br />

A(k, ω) = 1 π Im [G α(k, ω)] 11 ∝ Im<br />

p/<br />

[v 2 Fk 2 x + v 2 ∆k 2 y − ω 2 ] 1−(η/2)<br />

EDC<br />

MDC<br />

ω ω<br />

−1.5 −1.0 −0.5 0.0 0.5<br />

ω, v F<br />

k x<br />

0.0 0.5 1.0<br />

v F<br />

k x<br />

Algebraic Fermi liquid: Spectral function exhibits Luttinger-like<br />

behavior in <strong>the</strong> “normal” (pseudogap) state – Σ ′′ α(k, ω) finite only<br />

inside <strong>the</strong> cone defined by ω 2 > vFk 2 x 2 + v∆k 2 y<br />

2<br />

M. Franz and ZT, PRL 87, 257003 (2001)<br />

Coherent d-wave quasiparticles (η = 0) appear only in <strong>the</strong> true<br />

phase-ordered superconducting state (ZX Shen, LT23)


BdG Chiral Symmetry and HTS Phase Diagram I<br />

2<br />

1<br />

1<br />

Q Q<br />

22 11<br />

Q<br />

12<br />

2<br />

In L QED we can group four nodal<br />

fermions, (1 ↔ ¯1), (2 ↔ ¯2), into two<br />

four-component massless Dirac fermions<br />

⇒ N = 2 QED 3 ⇒<br />

L QED = ¯ψ n c µ,n γ µ D µ ψ n + L 0 [a µ ] + (· · ·) ,<br />

n labels (1, ¯1) and (2, ¯2) pairs <strong>of</strong> nodes, c τ,n = 1, c x,1 = c y,2 = v F ,<br />

c x,2 = c y,1 = v ∆ , and γ 0 = σ 3 ⊗σ 3 , γ 1 = −σ 3 ⊗σ 1 , γ 2 = −σ 3 ⊗σ 2 ,<br />

{γ µ , γ ν } = 2δ µν .<br />

• L QED has a U(2) global symmetry for each pair <strong>of</strong> nodes<br />

generated by 1 ⊗ 1, γ 3 , −iγ 5 and 1 2 [γ 3, γ 5 ], where γ 3 = σ 1 ⊗ 1 and<br />

γ 5 = iσ 2 ⊗1 anticommute with all γ µ ’s. Th<strong>is</strong> BdG chiral symmetry<br />

<strong>is</strong> broken by two “mass” terms:<br />

m ch ¯ψn ψ n and m PT ¯ψn<br />

1<br />

2<br />

[γ 3 , γ 5 ]ψ n


BdG Chiral Symmetry and HTS Phase Diagram II †<br />

T<br />

AF/<br />

SDW<br />

(CSB)<br />

£¡£¡£¡£<br />

¤¡¤¡¤¡¤<br />

¤¡¤¡¤¡¤<br />

£¡£¡£¡£<br />

£¡£¡£¡£<br />

¤¡¤¡¤¡¤<br />

¤¡¤¡¤¡¤<br />

£¡£¡£¡£<br />

T*<br />

QED<br />

3<br />

¡ ¢¡¢¡¢<br />

¡ ¢¡¢¡¢<br />

¢¡¢¡¢ ¡<br />

T c<br />

(a)<br />

CSB<br />

(b)<br />

CSB<br />

dSC<br />

FL<br />

dSC<br />

dSC<br />

x<br />

We begin with<br />

m ch = m PT = 0.<br />

However, m ch ≠ 0 can be<br />

generated spontaneously<br />

(but not m PT ≠ 0 !!) ⇒<br />

Chiral Symmetry<br />

Breaking (CSB) ⇒<br />

Three Phases <strong>of</strong> our QED 3 :<br />

• Superconductor: a µ <strong>is</strong> massive, ψ n <strong>is</strong> massless.<br />

• Chiral Symmetric QED 3 : th<strong>is</strong> phase exhibits non-Fermi liquid<br />

behavior and <strong>is</strong> <strong>the</strong> reference symmetric state <strong>of</strong> <strong>the</strong> pseudogap<br />

regime – Th<strong>is</strong> Algebraic Fermi liquid plays <strong>the</strong> role <strong>of</strong> <strong>the</strong> “Fermi<br />

liquid <strong>the</strong>ory” for <strong>the</strong> pseudogap state. Both a µ and ψ n are massless.<br />

• CSB QED 3 : finite m ch <strong>is</strong> dynamically generated through spontaneous<br />

chiral symmetry breaking (CSB) and ψ n gains mass. a µ<br />

remains massless and confines spinons (topological fermions).<br />

† ZT, O. Vafek and M. Franz, PRB 65, 180511(R) (2002) (cond-mat/0110253)


QED 3 Unified <strong>Theory</strong> (QUT) <strong>of</strong> HTS †<br />

2<br />

1<br />

1<br />

Q Q<br />

22 11<br />

Q<br />

12<br />

2<br />

In m ch ¯ψn ψ n <strong>the</strong> “mass” m ch acts as<br />

order parameter for bilinears 〈 ¯ψ n ψ n 〉<br />

<strong>of</strong> topological fermions ψ n . If v F ≠ v ∆ ,<br />

<strong>the</strong> chiral manifold <strong>of</strong> <strong>the</strong>se bilinears<br />

has a U(1)×U(1) degeneracy for each<br />

pair <strong>of</strong> nodes.<br />

<strong>What</strong> are <strong>the</strong> states in <strong>the</strong> BdG chiral manifold?<br />

〈c † ↑αc ↑ᾱ − c † ↓αc ↓ᾱ 〉 + h.c. (cos SDW)<br />

i〈c † ↑αc ↑ᾱ − c † ↑ᾱc ↑α 〉 + (↑→↓)<br />

(sin SDW)<br />

Th<strong>is</strong> <strong>is</strong> an incommensurate SDW at wavevectors ±Q 1¯1 and ±Q 2¯2.<br />

It <strong>is</strong> <strong>the</strong> dominant state as x → 0 due to umklapp processes.<br />

⇒ QUT predicts antiferromagnet<strong>is</strong>m at low doping<br />

⇒ dSC → “strange metal” → SDW (AF) ⇐<br />

⇐<br />

† ZT, O. Vafek and M. Franz, Phys. Rev. B 65, 180511(R) (2002) (condmat/0110253);<br />

I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002).


QED 3 Unified <strong>Theory</strong> (QUT) <strong>of</strong> HTS<br />

SDW <strong>is</strong> a 2D incommensurate antiferromagnetic<br />

insulator. In QED 3 <strong>the</strong>ory<br />

its spinon excitations are confined.<br />

Th<strong>is</strong> SDW <strong>is</strong> a progenitor <strong>of</strong> Neel (Mott-<br />

-Hubbard) antiferromagnet at half-filling.<br />

The two join smoothly as x → 0.<br />

BdG chiral symmetry<br />

breaking leads to <strong>the</strong><br />

opening <strong>of</strong> a small gap<br />

in <strong>the</strong> nodes <strong>of</strong> <strong>the</strong> large<br />

d x 2 −y2 pairing pseudogap.<br />

2∆ SDW


Spin and charge ordering near a vortex within QED 3 <strong>the</strong>ory:<br />

30<br />

a spin magnetization<br />

30<br />

b spin magnetization FT<br />

M. Franz, D. Sheehy and ZT,<br />

PRL 88, 257005 (2002)<br />

25<br />

25<br />

20<br />

20<br />

a charge density<br />

b charge density FT<br />

15<br />

15<br />

30<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

0.68<br />

0.66<br />

0.64<br />

0.62<br />

20<br />

30<br />

25<br />

20<br />

15<br />

10<br />

30<br />

25<br />

c staggered magnetization<br />

d staggered magnetization<br />

10<br />

20<br />

10<br />

5<br />

0<br />

30 0 5 10 15 20 25 30<br />

20<br />

15<br />

10<br />

0.5<br />

0.25<br />

0<br />

0.25<br />

0.5<br />

20<br />

30<br />

30<br />

25<br />

20<br />

c integrated LDOS<br />

30<br />

25<br />

20<br />

d integrated LDOS FT<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

10<br />

20<br />

30<br />

10<br />

15<br />

10<br />

15<br />

10<br />

5<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

0<br />

0 5 10 15 20 25 30<br />

Coex<strong>is</strong>tence <strong>of</strong> SDW/CDW and dSC orders:<br />

Incommensurate SDW at Q SDW = π(1 ± δ SDW , 1 ± δ SDW ) with δ SDW = 1 4<br />

.<br />

Incommensurate CDW at Q CDW = π(±δ CDW , 0), π(0, ±δ CDW ) with δ CDW = 1 2 .<br />

CDW pattern cons<strong>is</strong>tent with H<strong>of</strong>fman et al.


QED 3 Unified <strong>Theory</strong> (QUT) <strong>of</strong> HTS<br />

O<strong>the</strong>r states in [U(1)×U(1)] 2 (v F ≠ v ∆ ) BdG chiral manifold:<br />

i〈ψ ↑α ψ ↓α − ψ ↑ᾱ ψ ↓ᾱ 〉 + h.c.<br />

(dipSC)<br />

Th<strong>is</strong> <strong>is</strong> a d+ip phase-incoherent superconductor. It <strong>is</strong> written in<br />

terms <strong>of</strong> topological fermions ψ σα (r, τ) instead <strong>of</strong> <strong>the</strong> original nodal<br />

quasiparticles c σα (r, τ). Th<strong>is</strong> state breaks parity but preserves time<br />

reversal, translational invariance and superconducting U(1) symmetries.<br />

All continuous chiral rotations between SDW and dipSC are<br />

also included as well as “diagonal stripes” – combinations <strong>of</strong><br />

(1, ¯1) SCDW and (2, ¯2) dipSC.<br />

When v F = v ∆ <strong>the</strong> BdG chiral manifold <strong>is</strong> enlarged to U(2)×U(2):<br />

1<br />

√<br />

2<br />

〈c † ↑1c ↑2 + c † ↑¯2 c ↑¯1 + h.c.〉 + (↑→↓)<br />

(CDW)<br />

1<br />

√<br />

2<br />

〈ψ ↑1 ψ ↓2 + ψ ↑¯2ψ ↓¯1 + h.c.〉 + (↑↔↓) (SCDW) ⇒


QED 3 Unified <strong>Theory</strong> (QUT) <strong>of</strong> HTS<br />

These are superpositions <strong>of</strong> one-dimensional p-h and p-p states,<br />

an incommensurate CDW accompanied by a non-uniform phaseincoherent<br />

superconductor (SCDW) at wavevectors ±Q 12 and ±Q¯2¯1<br />

⇒<br />

QUT “stripes”<br />

i〈ψ ↑1 ψ ↓1 + ψ ↑¯1ψ ↓¯1 + h.c.〉 + (1 → 2)<br />

(d<strong>is</strong>SC)<br />

Th<strong>is</strong> <strong>is</strong> a phase-incoherent d+<strong>is</strong> superconductor.<br />

Large U(2)×U(2) BdG chiral manifold <strong>of</strong> nearly degenerate<br />

states provides means to unify <strong>the</strong> phenomenology<br />

<strong>of</strong> cuprates within <strong>the</strong> universal framework <strong>of</strong> QED 3 <strong>the</strong>ory<br />

and emerges as a likely culprit behind complexity <strong>of</strong><br />

<strong>the</strong> HTS phase diagram.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!