21.05.2014 Views

Mass and Light distributions in Clusters of Galaxies - Henry A ...

Mass and Light distributions in Clusters of Galaxies - Henry A ...

Mass and Light distributions in Clusters of Galaxies - Henry A ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TELAVIVUNIVERSITY SCHOOLOFPHYSICS&ASTRONOMYaaia`-lzzhiqxaipe` RAYMONDANDBEVERLYSACKLER FACULTYOFEXACTSCIENCES xlw`qilxaaecpeniixy"r d<strong>in</strong>epexhq`edwiqitlxtqdzia miwiiecnmircnldhlewtd<br />

MASS AND LIGHT DISTRIBUTIONS<br />

IN<br />

CLUSTERS OF GALAXIES<br />

Thesis submitted for the degree doctor <strong>of</strong> philosophy<br />

by<br />

El<strong>in</strong>or Medez<strong>in</strong>ski<br />

Submitted to the senate <strong>of</strong> Tel-Aviv University<br />

June 24, 2011


This work was carried out under the supervision <strong>of</strong><br />

Dr. Tom Broadhurst & Pr<strong>of</strong>. Yoel Rephaeli<br />

The Raymond <strong>and</strong> Beverly Sackler School <strong>of</strong> Physics <strong>and</strong> Astronomy<br />

Tel-Aviv University


To my parents


Contents<br />

Abstract<br />

V<br />

Acknowledgments<br />

IX<br />

1 Introduction 1<br />

1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong> . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.1.1 Cluster <strong>Mass</strong> from the Virial Theorem . . . . . . . . . 3<br />

1.1.2 The “Miss<strong>in</strong>g <strong>Mass</strong> Problem” - Dark Matter . . . . . . 5<br />

1.1.3 Spatial <strong>Mass</strong> Distribution . . . . . . . . . . . . . . . . 6<br />

1.1.3.1 NFW Pr<strong>of</strong>ile . . . . . . . . . . . . . . . . . . 6<br />

1.1.4 Lum<strong>in</strong>osity Function <strong>of</strong> <strong>Galaxies</strong> <strong>in</strong> <strong>Clusters</strong> . . . . . . 8<br />

1.1.5 X-ray Observations <strong>of</strong> <strong>Clusters</strong> . . . . . . . . . . . . . . 9<br />

1.1.6 Sunyaev-Zel’dovich Measurements . . . . . . . . . . . . 10<br />

1.2 Gravitational Lens<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . 11<br />

1.2.1 Historical Overview . . . . . . . . . . . . . . . . . . . . 11<br />

1.2.2 Pr<strong>in</strong>ciples <strong>of</strong> Gravitational Lens<strong>in</strong>g . . . . . . . . . . . 13<br />

1.2.2.1 The Deflection Angle . . . . . . . . . . . . . . 13<br />

1.2.2.2 The Lens Equation . . . . . . . . . . . . . . . 15<br />

1.2.2.3 Magnification <strong>and</strong> Distortion . . . . . . . . . 16<br />

I


1.2.3 Weak Gravitational Lens<strong>in</strong>g . . . . . . . . . . . . . . . 18<br />

1.2.3.1 Measur<strong>in</strong>g Galaxy Shapes <strong>and</strong> Sizes . . . . . 19<br />

1.2.3.2 The KSB Method . . . . . . . . . . . . . . . . 20<br />

1.2.4 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong> as Gravitational Lenses . . . . . . 21<br />

1.2.4.1 Distortion measurements <strong>in</strong> <strong>Clusters</strong> . . . . . 21<br />

1.2.4.2 Systematics <strong>of</strong> the Methods . . . . . . . . . . 22<br />

1.2.4.2.1 Projection Effects . . . . . . . . . . . 22<br />

1.2.4.2.2 <strong>Mass</strong>-Sheet Degeneracy . . . . . . . 23<br />

1.2.4.2.3 PSF Effects . . . . . . . . . . . . . . 23<br />

1.2.4.2.4 Weak Lens<strong>in</strong>g Dilution . . . . . . . . 24<br />

1.3 The Structure <strong>of</strong> the Thesis . . . . . . . . . . . . . . . . . . . 25<br />

2 Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689 27<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.2 Subaru imag<strong>in</strong>g reduction <strong>and</strong> sample selection . . . . . . . . 31<br />

2.3 Distortion analysis <strong>of</strong> subaru images . . . . . . . . . . . . . . . 34<br />

2.4 Distortion analysis <strong>of</strong> ACS/HST images . . . . . . . . . . . . . 40<br />

2.5 Photometric redshifts . . . . . . . . . . . . . . . . . . . . . . . 44<br />

2.6 Weak lens<strong>in</strong>g dilution . . . . . . . . . . . . . . . . . . . . . . . 49<br />

2.7 Cluster light <strong>and</strong> color pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . 51<br />

2.8 Cluster lum<strong>in</strong>osity functions . . . . . . . . . . . . . . . . . . . 53<br />

2.9 M/L pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

2.10 Cluster mass pr<strong>of</strong>ile . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

2.11 Discussion <strong>and</strong> conclusions . . . . . . . . . . . . . . . . . . . . 65<br />

Appendix 2.A Cluster galaxy fraction from the lens<strong>in</strong>g dilution effect 67<br />

Appendix 2.B Non-l<strong>in</strong>ear effect <strong>in</strong> the reduced shear estimate . . . 69<br />

II


3 <strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11 75<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.2 Subaru data reduction . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.3 Sample selection from the color-color diagram . . . . . . . . . 81<br />

3.3.1 Cluster Members . . . . . . . . . . . . . . . . . . . . . 81<br />

3.3.2 Red Background <strong>Galaxies</strong> . . . . . . . . . . . . . . . . 82<br />

3.3.3 Blue Background <strong>and</strong> Foreground <strong>Galaxies</strong> . . . . . . . 84<br />

3.4 Evolutionary color tracks . . . . . . . . . . . . . . . . . . . . . 86<br />

3.5 Depth estimation from SDF/COSMOS . . . . . . . . . . . . . 88<br />

3.6 Weak lens<strong>in</strong>g analysis . . . . . . . . . . . . . . . . . . . . . . . 93<br />

3.7 Weak lens<strong>in</strong>g dilution . . . . . . . . . . . . . . . . . . . . . . . 96<br />

3.8 Cluster light pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . . . . . . 97<br />

3.9 M/L pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

3.9.1 Tidal <strong>and</strong> Ram-Pressure Stripp<strong>in</strong>g . . . . . . . . . . . 103<br />

3.10 Cluster lum<strong>in</strong>osity functions . . . . . . . . . . . . . . . . . . . 106<br />

3.11 Discussion <strong>and</strong> conclusions . . . . . . . . . . . . . . . . . . . . 109<br />

4 WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation 113<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

4.2 Subaru data reduction . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.3 Sample selection from the color-color diagram . . . . . . . . . 117<br />

4.4 Weak lens<strong>in</strong>g measurements . . . . . . . . . . . . . . . . . . . 122<br />

4.4.1 Formalism: Relative Distortion Strength . . . . . . . . 123<br />

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

4.5.1 Weak lens<strong>in</strong>g pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . . 125<br />

4.5.2 COSMOS photometric redshifts . . . . . . . . . . . . . 127<br />

4.5.3 Lens<strong>in</strong>g strength dependence on magnitude . . . . . . . 132<br />

4.5.4 Lens<strong>in</strong>g strength vs. redshift . . . . . . . . . . . . . . . 134<br />

4.6 Constra<strong>in</strong><strong>in</strong>g cosmological parameters . . . . . . . . . . . . . . 136<br />

4.7 Discussion <strong>and</strong> conclusions . . . . . . . . . . . . . . . . . . . . 137<br />

III


5 Discussion 139<br />

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

5.2 Further application <strong>of</strong> the methods <strong>in</strong> other work . . . . . . . 142<br />

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

5.3.1 MCT/CLASH . . . . . . . . . . . . . . . . . . . . . . . 144<br />

References 145<br />

IV


Abstract<br />

<strong>Clusters</strong> <strong>of</strong> galaxies are the most massive bound objects <strong>in</strong> the Universe.<br />

Their deep potential wells deflect the light <strong>of</strong> background galaxies creat<strong>in</strong>g<br />

lensed galactic images. Gravitational lens<strong>in</strong>g can be used as a diagnostic tool<br />

to determ<strong>in</strong>e the mass pr<strong>of</strong>iles <strong>of</strong> clusters. In the weak lens<strong>in</strong>g regime, the<br />

measurement <strong>of</strong> the cluster mass can be badly compromised by the presence<br />

<strong>of</strong> unlensed foreground <strong>and</strong> cluster members which dilute the true lens<strong>in</strong>g<br />

signal. In this thesis, I study galaxy clusters mass <strong>and</strong> light properties via<br />

weak lens<strong>in</strong>g observations. In the first part, I show the importance <strong>of</strong> carefully<br />

isolat<strong>in</strong>g background galaxies from foreground <strong>and</strong> cluster galaxies for a clean<br />

weak lens<strong>in</strong>g measurement, avoid<strong>in</strong>g dilution <strong>of</strong> the signal. The dilution is<br />

<strong>in</strong> turn used to determ<strong>in</strong>e the light properties <strong>of</strong> the clusters. The second<br />

focus <strong>of</strong> the work shows the use <strong>of</strong> the detailed measurements to determ<strong>in</strong>e<br />

the <strong>in</strong>crement <strong>of</strong> the weak lens<strong>in</strong>g signal with redshift, which is an important<br />

cosmological probe.<br />

Follow<strong>in</strong>g an <strong>in</strong>troduction to the field <strong>of</strong> galaxy clusters <strong>and</strong> gravitational<br />

lens<strong>in</strong>g <strong>in</strong> Chapter 1, I demonstrate my methods <strong>and</strong> results for four massive<br />

galaxy clusters <strong>in</strong> Chapters 2 <strong>and</strong> 3. In Chapter 2 I study cluster A1689<br />

(z = 0.183) with deep Subaru imag<strong>in</strong>g <strong>in</strong> the V <strong>and</strong> i ′ b<strong>and</strong>s, us<strong>in</strong>g the<br />

color-magnitude diagram <strong>and</strong> the weak lens<strong>in</strong>g signal to derive the lum<strong>in</strong>ous<br />

properties <strong>of</strong> cluster galaxies. The tangential distortion <strong>of</strong> galaxies bluer<br />

than the E/S0 sequence falls rapidly toward the cluster center relative to the<br />

lens<strong>in</strong>g signal <strong>of</strong> the background galaxies redder than the sequence. I use<br />

this dilution effect to derive the cluster light pr<strong>of</strong>ile <strong>and</strong> lum<strong>in</strong>osity function<br />

to large radius, with the advantage that no subtraction <strong>of</strong> far-field background<br />

counts is required. The light pr<strong>of</strong>ile has a constant decl<strong>in</strong><strong>in</strong>g slope<br />

, d log(L)/d log(r) = −1.12 ± 0.06 to the limit <strong>of</strong> the data, r < 2 h −1 Mpc,<br />

whereas the mass pr<strong>of</strong>ile steepens cont<strong>in</strong>uously with radius, such that M/L<br />

peaks at an <strong>in</strong>termediate radius, r ∼ 100 h −1 kpc. The cluster lum<strong>in</strong>osity<br />

function has a flat fa<strong>in</strong>t-end slope, α = −1.05 ± 0.05, <strong>in</strong>dependent <strong>of</strong> radius<br />

<strong>and</strong> with no fa<strong>in</strong>t upturn to M i ′ < −12. I show that the bluest objects are<br />

V


negligibly contam<strong>in</strong>ated by the cluster (V − i ′ < 0.2). Comb<strong>in</strong><strong>in</strong>g both the<br />

red <strong>and</strong> blue background populations I get an improved measurement <strong>of</strong> the<br />

mass pr<strong>of</strong>ile <strong>and</strong> derive constra<strong>in</strong>ts on the cluster concentration parameter,<br />

clearly exclud<strong>in</strong>g low-concentration cold dark matter pr<strong>of</strong>iles.<br />

As described <strong>in</strong> Chapter 3, the work was extended to three more <strong>in</strong>termediate<br />

redshift clusters, A1703 (z = 0.258), A370 (z = 0.375) <strong>and</strong> RXJ1347-11<br />

(z = 0.451) imaged with Subaru <strong>in</strong> at least three b<strong>and</strong>s. With the multib<strong>and</strong><br />

data available here, I use the color-color diagram to demonstrate how<br />

the lens<strong>in</strong>g signal can be harnessed to separate cluster members from the<br />

foreground <strong>and</strong> background populations <strong>in</strong> a more secure <strong>and</strong> robust way,<br />

<strong>and</strong> identify several background galaxy populations <strong>of</strong> different nature for a<br />

weak lens<strong>in</strong>g measurement. The lum<strong>in</strong>osity functions <strong>of</strong> these clusters, when<br />

corrected for dilution, all have similar fa<strong>in</strong>t-end slopes, α ≃ −1.0, with no<br />

marked fa<strong>in</strong>t-end upturn to the magnitude limit <strong>of</strong> M R ≃ −15.0, but a mild<br />

radial gradient. Here too, for each <strong>of</strong> our clusters the M/L pr<strong>of</strong>ile peaks<br />

at <strong>in</strong>termediate radius, r ≃ 0.2r vir , at a level <strong>of</strong> 300 − 500(M/L R ) ⊙ , <strong>and</strong><br />

then falls steadily towards ∼ 100(M/L R ) ⊙ at the virial radius, similar to<br />

the mean field level. This behavior is likely due to the <strong>in</strong>tr<strong>in</strong>sic dearth <strong>of</strong><br />

late-type galaxies relative to early types nearer the center, whereas for the<br />

E/S0-sequence only a mild radial decl<strong>in</strong>e <strong>in</strong> M/L is found for each cluster.<br />

This can be expla<strong>in</strong>ed by the cont<strong>in</strong>ued conversion <strong>of</strong> disk galaxies <strong>in</strong>to S0<br />

galaxies, via tidal <strong>and</strong> gas stripp<strong>in</strong>g processes. I discuss this behavior <strong>in</strong> the<br />

context <strong>of</strong> detailed simulations where predictions for tidal stripp<strong>in</strong>g may now<br />

be tested accurately with observations.<br />

The amplitude <strong>of</strong> weak lens<strong>in</strong>g <strong>in</strong>creases with source redshift, <strong>and</strong> is<br />

proportional to the lens<strong>in</strong>g distance ratio, D ds /D s , ris<strong>in</strong>g steeply beh<strong>in</strong>d a<br />

lens <strong>and</strong> saturat<strong>in</strong>g at higher redshift. It provides, <strong>in</strong> pr<strong>in</strong>ciple, a model<strong>in</strong>dependent<br />

way <strong>of</strong> measur<strong>in</strong>g cosmological parameters. Us<strong>in</strong>g the multib<strong>and</strong><br />

Subaru dataset <strong>of</strong> the cluster A370, I explore this relation <strong>in</strong> Chapter<br />

4. Apply<strong>in</strong>g the selection methods I developed I further separate <strong>and</strong><br />

select from the color-color diagram several background populations <strong>of</strong> differ<strong>in</strong>g<br />

depths (0.6 < z < 3.8), <strong>in</strong>clud<strong>in</strong>g a prom<strong>in</strong>ent sample <strong>of</strong> distant dropout<br />

galaxies, with little overlap <strong>in</strong> redshift. I accurately measure their lens<strong>in</strong>g<br />

amplitude, tak<strong>in</strong>g account <strong>of</strong> the radial variation <strong>of</strong> the weak lens<strong>in</strong>g pr<strong>of</strong>ile.<br />

I def<strong>in</strong>e the depths <strong>of</strong> the lensed populations with reference to the COSMOS<br />

<strong>and</strong> GOODS field surveys. The predicted distance-redshift relation is confirmed<br />

for a wide range <strong>of</strong> cosmological models, albeit without the ability to<br />

dist<strong>in</strong>guish between models with only one cluster. Scal<strong>in</strong>g this result to our<br />

new approved HST /CLASH survey <strong>of</strong> ∼ 25 massive, relaxed clusters should<br />

provide a useful cosmological constra<strong>in</strong>t on the dark energy equation <strong>of</strong> state<br />

VI


parameter, w, complement<strong>in</strong>g exist<strong>in</strong>g techniques, with distance measurements<br />

cover<strong>in</strong>g the untested redshift range, 1 < z < 5.<br />

VII


Acknowledgments<br />

I would like to thank my PhD advisor, Dr. Tom Broadhurst, for his guidance<br />

<strong>and</strong> support. With great patience he taught me how to be an <strong>in</strong>quisitive<br />

researcher, f<strong>in</strong>d my niche <strong>in</strong> the world <strong>of</strong> astronomy, work <strong>in</strong>dependently,<br />

<strong>and</strong> above all gave me great <strong>in</strong>spiration with his unique <strong>in</strong>sight on science.<br />

I thank my advisor Pr<strong>of</strong>. Yoel Rephaeli, who guided <strong>and</strong> mentored me,<br />

helped with all the bumps along the way (<strong>and</strong> there were many...) <strong>and</strong> most<br />

importantly encouraged me to strive for excellence, <strong>in</strong> the major topics as<br />

well as the f<strong>in</strong>e pr<strong>in</strong>t.<br />

A special gratitude goes to my collaborator Dr. Keiichi Umetsu, who was<br />

every bit <strong>of</strong> an advisor to me. His skills, generosity, <strong>and</strong> endless patience <strong>in</strong><br />

hours <strong>of</strong> correspondence has made me a more careful <strong>and</strong> thorough scientist.<br />

I thank Txitxo Benítez for his important part <strong>in</strong> our work <strong>and</strong> his codes, but<br />

especially for open<strong>in</strong>g his home <strong>and</strong> family to me <strong>and</strong> giv<strong>in</strong>g me a home away<br />

from home dur<strong>in</strong>g my visits to Spa<strong>in</strong>. I thanks Dan Coe for his support <strong>and</strong><br />

his great code which I used. I also thank all my other collaborators - Holl<strong>and</strong><br />

Ford, Emilio Falco, Masamune Oguri, Nobuo Arimoto, Xu Kong, Masafumi<br />

Yagi <strong>and</strong> Andy Taylor.<br />

The past 8 years I spent <strong>in</strong> the department have passed quickly, due to<br />

the embrac<strong>in</strong>g surround<strong>in</strong>gs I have spent them <strong>in</strong>. My <strong>of</strong>fice has become my<br />

home, <strong>and</strong> my <strong>of</strong>fice mates my family. I owe the biggest gratitude to my<br />

closest friend <strong>and</strong> “tw<strong>in</strong> brother”, Assaf Horesh, who tolerated me through<br />

thick <strong>and</strong> th<strong>in</strong>, spent hours <strong>in</strong> discussions about important scientific issues<br />

<strong>and</strong> not-so-important “sessions”, <strong>and</strong> kept my sanity <strong>in</strong> check. I am especially<br />

grateful to Benny Trakhtenbrot, for his close friendship <strong>and</strong> for always<br />

mak<strong>in</strong>g me laugh the hardest. I am also thankful for Omer Bromberg for his<br />

friendship <strong>and</strong> support. I am grateful to Eran “papi” Ofek <strong>and</strong> “dod” Yiftah<br />

Lipk<strong>in</strong>, who practically raised me with lots <strong>of</strong> patience <strong>and</strong> care. I thank all<br />

the current <strong>and</strong> former students <strong>in</strong> the department with whom I have shared<br />

my time – Orly Gnat, Smadar Naoz, Keren Sharon, Evgeny Gorbikov, David<br />

Polishook, Ofer Yaron, Avi Shporer, Yifat Dzigan, Ir<strong>in</strong>a Dvork<strong>in</strong>, Sharon<br />

IX


Sadeh, Y<strong>in</strong>on Arieli, Doron Lemze, Adi Zitr<strong>in</strong>, Oded Spector, Or Graur, Ido<br />

F<strong>in</strong>kelman <strong>and</strong> Yossi Shvartzvald.<br />

I would like to thank all the faculty <strong>and</strong> research members at Tel Aviv<br />

University – Rennan Barkana, Sara Beck, Noah Brosch, Ben-Zion Kozlovsky,<br />

Elia Leibowitz, Amir Lev<strong>in</strong>son, Dan Maoz, Tsevi Mazeh, Ehud Nakar, Hagai<br />

Netzer, Amiel Sternberg, Elhanan Almozn<strong>in</strong>o, Marcella Cont<strong>in</strong>i, Itzhak<br />

Goldman <strong>and</strong> Shai Kaspi. A special thanks goes to the Wise Observatory<br />

staff <strong>and</strong> observers – Assaf Bervald, John Dan, Haim Mendelson, Sami Ben-<br />

Gigi, Ezra Mashal, Friedel Lo<strong>in</strong>ger, <strong>and</strong> Shai Kaspi.<br />

I am eternally grateful to my mom, who raised, educated, loved <strong>and</strong><br />

believed <strong>in</strong> me. She is my rock, my <strong>in</strong>spiration, <strong>and</strong> my heart. To my Father<br />

I am grateful for provid<strong>in</strong>g me with the thirst for knowledge, the love for<br />

science, <strong>and</strong> the tools <strong>and</strong> freedom to pursue my passion. I thank Motti<br />

Avrech, who has been a second father figure to me for most <strong>of</strong> my life.<br />

I am grateful to N. Kaiser for mak<strong>in</strong>g the IMCAT package publicly available.<br />

Work at Tel-Aviv University was supported by Israel Science Foundation<br />

grant 214/02. This research was based on data collected at Subaru<br />

Telescope <strong>and</strong> obta<strong>in</strong>ed from the SMOKA, which is operated by the Astronomy<br />

Data Center, National Astronomical Observatory <strong>of</strong> Japan.<br />

X


Chapter 1<br />

Introduction<br />

<strong>Clusters</strong> <strong>of</strong> galaxies are the most massive virialized objects <strong>in</strong> the Universe,<br />

<strong>and</strong> as such they gravitationally “pull” on the light travel<strong>in</strong>g from galaxies<br />

ly<strong>in</strong>g beh<strong>in</strong>d them. This is an example <strong>of</strong> an effect called “gravitational<br />

lens<strong>in</strong>g”. It has prompted a wide field <strong>of</strong> research <strong>and</strong> was established as a<br />

robust method to explore galaxy clusters. The dependence on various angular<br />

distances <strong>of</strong> the lens system means cosmology can be diagnosed via lens<strong>in</strong>g.<br />

In the past decade, with the improvement <strong>of</strong> observational <strong>in</strong>struments, <strong>and</strong><br />

the development <strong>of</strong> codes, many clusters have been studied <strong>in</strong> great detail<br />

with lens<strong>in</strong>g.<br />

The focus <strong>of</strong> my PhD was the study <strong>of</strong> mass <strong>and</strong> light properties <strong>of</strong> several<br />

clusters, us<strong>in</strong>g observations <strong>of</strong> both ground-based <strong>and</strong> space-based telescopes.<br />

I developed techniques to carefully isolate background galaxies for<br />

a clean weak lens<strong>in</strong>g measurement, <strong>and</strong> to identify the cluster based on its<br />

dilution <strong>of</strong> the weak lens<strong>in</strong>g signal. The reconstructed mass <strong>and</strong> light pr<strong>of</strong>iles<br />

<strong>of</strong> the clusters, which were resolved with unprecedented accuracy <strong>and</strong> detail,<br />

were used to explore <strong>in</strong>ner cluster properties, as well as to be compared<br />

with cosmological simulations <strong>of</strong> structure formation <strong>and</strong> test current cosmological<br />

models. The quality <strong>of</strong> the data <strong>and</strong> the extensive analysis allowed<br />

for a unique determ<strong>in</strong>ation <strong>of</strong> the <strong>in</strong>crement <strong>of</strong> the weak lens<strong>in</strong>g signal with<br />

redshift.<br />

1


Introduction<br />

In this <strong>in</strong>troduction, I will present an overview <strong>of</strong> galaxy clusters <strong>in</strong> the<br />

next section, followed by a historical overview <strong>and</strong> the basic theory <strong>of</strong> gravitational<br />

lens<strong>in</strong>g. In Chapter 2 I present the work done to derive the mass <strong>and</strong><br />

light properties <strong>of</strong> A1689 us<strong>in</strong>g the weak lens<strong>in</strong>g dilution effect. In Chapter 3<br />

I present the further application <strong>of</strong> these methods to three more clusters:<br />

A1703, A370, <strong>and</strong> RXJ1347-11, <strong>and</strong> <strong>in</strong> Chapter 4 results are presented for<br />

the derived distance-redshift scal<strong>in</strong>g from measurements <strong>of</strong> weak lens<strong>in</strong>g <strong>of</strong><br />

galaxies <strong>in</strong> the background <strong>of</strong> A370. F<strong>in</strong>ally, <strong>in</strong> chapter 5 I summarize the<br />

work I have accomplished <strong>and</strong> present future surveys I am jo<strong>in</strong>tly carry<strong>in</strong>g<br />

out to extend the study done here to 25 more clusters.<br />

1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong><br />

Galaxy clusters are the largest gravitationally bound structures formed <strong>in</strong><br />

the universe, conta<strong>in</strong><strong>in</strong>g hundreds to thous<strong>and</strong>s <strong>of</strong> galaxies, <strong>and</strong> masses <strong>in</strong> the<br />

range 10 14 − 10 15.5 M⊙. Growth <strong>of</strong> structure <strong>in</strong> a Cold Dark Matter (CDM)<br />

model is hierarchical, with smaller scale perturbations collaps<strong>in</strong>g first to form<br />

galaxies, which then merge to form more massive objects. <strong>Clusters</strong> <strong>of</strong> galaxies<br />

are the most recent, largest phase <strong>of</strong> hierarchical cluster<strong>in</strong>g, <strong>and</strong> arise from the<br />

gravitational collapse <strong>of</strong> rare, high density perturbation peaks. <strong>Clusters</strong> are<br />

still dynamically evolv<strong>in</strong>g, relax<strong>in</strong>g, <strong>and</strong> accret<strong>in</strong>g matter <strong>and</strong> occasionally<br />

small clusters mostly along large scale filaments <strong>and</strong> superclusters. They can<br />

be detected out to large distances, serv<strong>in</strong>g as beacons prob<strong>in</strong>g the mass <strong>in</strong> the<br />

large scale structure, <strong>and</strong> to high redshifts, provid<strong>in</strong>g important <strong>in</strong>formation<br />

on the early universe.<br />

Galaxy clusters can provide constra<strong>in</strong>ts on cosmological parameters <strong>and</strong><br />

models, complementary to other methods such as CMB, SNe-Ia <strong>and</strong> cosmic<br />

shear measurements. As the most massive structures <strong>in</strong> the Universe,<br />

they form the high-mass end <strong>of</strong> the mass function <strong>of</strong> gravitationally-bound<br />

halos (Press & Schechter 1974), <strong>and</strong> its development as a function <strong>of</strong> redshift<br />

is an effective test <strong>of</strong> the hierarchical structure formation scenario <strong>and</strong><br />

is highly sensitive to cosmological scenarios (see Voit 2005, for a review).<br />

2


1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong><br />

The space density <strong>of</strong> clusters <strong>in</strong> the local universe has been used to measure<br />

the amplitude <strong>of</strong> density perturbations on ∼ 10 Mpc scales. Study<strong>in</strong>g the<br />

mass distribution with<strong>in</strong> clusters is another probe <strong>of</strong> the non-l<strong>in</strong>ear growth<br />

<strong>of</strong> structures. Numerical N-body <strong>and</strong> hydrodynamical simulations make clear<br />

predictions for the structure <strong>of</strong> clusters, for example that they should have<br />

a universal density pr<strong>of</strong>ile (Dub<strong>in</strong>ski & Carlberg 1991; Navarro et al. 1996)<br />

<strong>and</strong> that their observable properties should satisfy some predicted scal<strong>in</strong>g relations.<br />

Compar<strong>in</strong>g these predictions with observations is an important test<br />

<strong>of</strong> CDM models.<br />

<strong>Clusters</strong> form through the collapse <strong>of</strong> cosmic matter over a region <strong>of</strong> several<br />

megaparsecs. Cosmic baryons, which represent approximately 10–15%<br />

<strong>of</strong> the mass content <strong>of</strong> the Universe, follow the dynamically dom<strong>in</strong>ant dark<br />

matter dur<strong>in</strong>g the collapse. They fall <strong>in</strong>to the gravitational potential <strong>of</strong> the<br />

cluster dark matter halo so formed, while the collapse <strong>and</strong> the subsequent<br />

adiabatic compression <strong>and</strong> shocks heat the <strong>in</strong>tra-cluster medium (ICM). Hot<br />

gas permeat<strong>in</strong>g the cluster potential well is then assembled, reach<strong>in</strong>g temperatures<br />

<strong>of</strong> several 10 7 K, <strong>and</strong> as it becomes fully ionized emits via thermal<br />

bremsstrahlung <strong>in</strong> the X-ray b<strong>and</strong>. Typically, clusters <strong>of</strong> galaxies have total<br />

masses which exceed 1 × 10 14 M ⊙ , with some ∼ 85% <strong>in</strong> DM, ∼ 12% <strong>in</strong> IC<br />

gas, <strong>and</strong> the rest <strong>in</strong> galaxies.<br />

The ma<strong>in</strong> methods used to determ<strong>in</strong>e the cluster mass are through the<br />

cluster galaxy velocities, through the effect <strong>of</strong> gravitational lens<strong>in</strong>g, through<br />

X-ray observations <strong>of</strong> the hot diffuse gas component, <strong>and</strong> through the Sunyaev-<br />

Zel’dovich (SZ) effect. In this section, I review our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the basic<br />

properties <strong>of</strong> clusters formation, their mass, <strong>distributions</strong> <strong>and</strong> lum<strong>in</strong>osity<br />

functions. I review the methods <strong>of</strong> X-ray <strong>and</strong> SZ observations <strong>of</strong> clusters.<br />

The field <strong>of</strong> gravitational lens<strong>in</strong>g, which is the effect I rely on <strong>in</strong> my work, is<br />

reviewed more thoroughly <strong>in</strong> the next section.<br />

1.1.1 Cluster <strong>Mass</strong> from the Virial Theorem<br />

Zwicky (1933) was the first to apply the virial theorem to estimate cluster<br />

masses. A cluster mass is estimated by assum<strong>in</strong>g all cluster galaxies are<br />

3


Introduction<br />

bound <strong>in</strong> a self-gravitat<strong>in</strong>g structure.<br />

Were they not bound, they would<br />

disperse <strong>in</strong> a typical cross<strong>in</strong>g time <strong>of</strong> ∼ 10 9 ! yr. S<strong>in</strong>ce they appear relaxed,<br />

this assumption seems likely. A limit on the mass can therefore come from<br />

the b<strong>in</strong>d<strong>in</strong>g condition,<br />

where E is the total energy, T is the k<strong>in</strong>etic energy,<br />

<strong>and</strong> W is the gravitational energy,<br />

E = T + W < 0 (1.1)<br />

T = 1 ∑<br />

m i vi 2 , (1.2)<br />

2<br />

W = − 1 2<br />

i<br />

∑<br />

i≠j<br />

Gm i m j<br />

r ij<br />

, (1.3)<br />

m i <strong>and</strong> v i are the galaxy mass <strong>and</strong> velocity, <strong>and</strong> r ij is the separation between<br />

galaxies i <strong>and</strong> j.<br />

Differentiat<strong>in</strong>g the system’s moment <strong>of</strong> <strong>in</strong>ertia I = ∑ i m iri<br />

2<br />

respect to time gives the equation <strong>of</strong> motion <strong>of</strong> galaxies,<br />

twice with<br />

1 d 2 I<br />

2 dt = ∑ 2 i<br />

m i r˙<br />

2 i + ∑ i<br />

m i ¨r i · r i = 2T + W. (1.4)<br />

In a stationary system, the left h<strong>and</strong> side is set to zero, so<br />

W = −2T, (1.5)<br />

which is known as the Virial relation. The mass <strong>of</strong> an isolated, spherically<br />

symmetric, bound system is therefore<br />

M tot = R G〈v 2 〉<br />

G<br />

, (1.6)<br />

where we def<strong>in</strong>e a mass-weighted velocity dispersion 〈v 2 〉 ≡ ∑ i m iv i /M tot ,<br />

4


1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong><br />

<strong>and</strong> a gravitational radius<br />

R G ≡ 2M 2 tot<br />

[ ∑<br />

i≠j<br />

m i m j<br />

r ij<br />

] −1<br />

≈ 2M 2 tot<br />

[ ∑<br />

i≠j<br />

m i m j<br />

r ⊥,ij<br />

] −1<br />

. (1.7)<br />

The approximation gives R G <strong>in</strong> terms <strong>of</strong> the observable projected galaxy<br />

separation r ⊥,ij <strong>in</strong> the plane <strong>of</strong> the sky (Limber & Mathews 1960). The<br />

velocities can be evaluated from the radial velocity distribution 〈v 2 〉 = 3σ 2 r,<br />

where σ r is the radial velocity dispersion. Substitut<strong>in</strong>g this <strong>in</strong> eq. 1.6 we have<br />

M tot = 3R [<br />

]<br />

Gσr<br />

2 2 [ ]<br />

G = 7 × σ r RG<br />

1014 M ⊙ . (1.8)<br />

1000 km/sec Mpc<br />

For a typical rich cluster, σ r ∼10 3 km/sec <strong>and</strong> R G ∼1 Mpc, so the mass is <strong>of</strong><br />

order M tot ∼ 10 15 M ⊙ .<br />

1.1.2 The “Miss<strong>in</strong>g <strong>Mass</strong> Problem” - Dark Matter<br />

Analyses <strong>of</strong> clusters measure surpris<strong>in</strong>gly high masses, especially compared<br />

to the typical total lum<strong>in</strong>osity <strong>of</strong> a cluster, L tot ∼ 10 13 L ⊙ . Commonly, mass<br />

is compared to lum<strong>in</strong>osity by calculat<strong>in</strong>g the mass-to-light ratio, typically,<br />

( M<br />

L<br />

)<br />

tot<br />

( )<br />

M⊙<br />

≃ 300 h . (1.9)<br />

L ⊙<br />

This exceeds the value <strong>of</strong> lum<strong>in</strong>ous galaxies which ranges from M/L B ≈<br />

1 − 12 M ⊙ /L ⊙ by more than a factor <strong>of</strong> 10. This discrepancy means less<br />

than 10% <strong>of</strong> the cluster mass is <strong>in</strong> stars <strong>in</strong> lum<strong>in</strong>ous galaxies. This is the<br />

“miss<strong>in</strong>g mass” problem, first suggested by Zwicky (1933), who measured<br />

the nearby Coma cluster mass from galaxy velocity dispersions.<br />

Zwicky<br />

(1937) postulated that there is a need for a non-st<strong>and</strong>ard mass component<br />

to expla<strong>in</strong> these measurements. Current measurements <strong>in</strong>dicate that about<br />

85% <strong>of</strong> the mass is made <strong>of</strong> this dark component. As <strong>of</strong> yet, the nature <strong>of</strong><br />

DM is unknown, but is fairly certa<strong>in</strong> to be non-baryonic, non-radiat<strong>in</strong>g, cold<br />

matter <strong>in</strong>teract<strong>in</strong>g practically through gravitation alone.<br />

5<br />

Quantify<strong>in</strong>g the


Introduction<br />

nature <strong>and</strong> distribution <strong>of</strong> DM are two <strong>of</strong> the most important open issues <strong>in</strong><br />

cosmology.<br />

1.1.3 Spatial <strong>Mass</strong> Distribution<br />

Most regular clusters show a centrally condensed number density distribution<br />

<strong>of</strong> cluster galaxies, i.e., the galaxy density <strong>in</strong>creases towards the center. If<br />

the cluster is not significantly elliptical (see caveats, Sheth et al. 2001; J<strong>in</strong>g &<br />

Suto 2002; Oguri et al. 2005; Corless & K<strong>in</strong>g 2007), then it is usually taken<br />

to be spherically symmetric. Most models that describe the distribution<br />

require at least five parameters, such at the position <strong>of</strong> the cluster center,<br />

the central projected density, <strong>and</strong> two scale distances, the core radius r c , <strong>and</strong><br />

the truncation radius, e.g., r vir for DM halos. Assum<strong>in</strong>g galaxies trace DM<br />

(or vice versa), their <strong>distributions</strong> should generally be similar. One useful<br />

DM density pr<strong>of</strong>ile that was used <strong>in</strong> my work is the NFW model.<br />

1.1.3.1 NFW Pr<strong>of</strong>ile<br />

N-body simulations <strong>of</strong> st<strong>and</strong>ard CDM predict a universal DM halo pr<strong>of</strong>ile,<br />

with a low-concentration pr<strong>of</strong>ile for cluster-sized halos. The logarithmic slope<br />

<strong>of</strong> the density pr<strong>of</strong>ile decreases monotonically toward the center, <strong>and</strong> is much<br />

shallower <strong>in</strong> the center than a pure isothermal pr<strong>of</strong>ile <strong>in</strong>side a characteristic<br />

radius <strong>of</strong> r 100 kpc/h, but lack<strong>in</strong>g a constant density core. A supposedly<br />

universal form for DM halos was deduced from N-body simulations (Navarro<br />

et al. 1997, hereafterNFW),<br />

ρ(r) =<br />

δ c(M vir ) ¯ ρ(z)<br />

(r/r s )(1 + r/r s ) 2 (1.10)<br />

where r s is a scale radius, δ c is a (dimensionless) characteristic density excess,<br />

¯ρ(z) = ρ crit Ω M (z) is the mean density at collapse, <strong>and</strong> ρ crit ≡ 3H(z) 2 /8πG is<br />

the critical density on the Universe. The virial radius r vir is def<strong>in</strong>ed accord<strong>in</strong>g<br />

6


1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong><br />

to the spherical collapse model so that<br />

M vir = 4π 3 ∆ vir ¯ρr 3 vir (1.11)<br />

Where ∆ vir is the critical overdensity. It has been approximated by Kitayama<br />

& Suto (1996) to be<br />

∆ vir ≃ 18π 2 (1 + 0.4093w 0.9052<br />

f ), (1.12)<br />

<strong>and</strong> w f ≡ 1/Ω f − 1, <strong>and</strong> Ω f is the density parameter at z f . The condition<br />

that the total mass <strong>in</strong>side r vir is M vir relates the characteristic density δ c <strong>and</strong><br />

the concentration parameter c = c vir ≡ r vir /r s via<br />

δ c = ∆ vir<br />

3<br />

c 3<br />

ln(1 + c) − c/(1 + c) . (1.13)<br />

Both optical <strong>and</strong> X-ray observations seem to <strong>in</strong>dicate that this pr<strong>of</strong>ile is a<br />

good representation <strong>of</strong> the underly<strong>in</strong>g cluster mass pr<strong>of</strong>ile, at least outside the<br />

<strong>in</strong>nermost region (Carlberg et al. 1997). Is it shallower than an isothermal<br />

pr<strong>of</strong>ile at smaller radii <strong>and</strong> steeper at large radii, chang<strong>in</strong>g gradually from<br />

an approximate power law p = −1 fall<strong>of</strong>f near the center to p = −3 beyond<br />

r s . The transition <strong>of</strong> the density pr<strong>of</strong>ile from shallow to steep can also be<br />

expressed <strong>in</strong> terms <strong>of</strong> the concentration parameter, c. This free parameter<br />

varies systematically with mass, where lower-mass halos tend to have higher<br />

concentrations s<strong>in</strong>ce they formed earlier <strong>in</strong> time, when the overall density <strong>of</strong><br />

the Universe was much higher. Typical concentration parameters for simulated<br />

clusters are <strong>in</strong> the range c ∼4 − 10 (Navarro et al. 1997) with a rather<br />

wide dispersion (J<strong>in</strong>g 2000).<br />

The NFW pr<strong>of</strong>ile was deduced also from higher resolution simulations<br />

(Navarro et al. 2004), albeit somewhat steeper <strong>in</strong>ner pr<strong>of</strong>iles are also claimed<br />

(Moore et al. 1999), where some measure <strong>in</strong>tr<strong>in</strong>sic variation <strong>in</strong> slopes that<br />

is related to the assembly history <strong>of</strong> a cluster (Tasitsiomi et al. 2004). This<br />

characteristic can be exam<strong>in</strong>ed by measur<strong>in</strong>g the mass distribution <strong>in</strong> clusters,<br />

<strong>and</strong> can add to our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the evolution processes <strong>in</strong> cluster<br />

7


Introduction<br />

assembly.<br />

1.1.4 Lum<strong>in</strong>osity Function <strong>of</strong> <strong>Galaxies</strong> <strong>in</strong> <strong>Clusters</strong><br />

The lum<strong>in</strong>osity function (LF) <strong>of</strong> galaxies <strong>in</strong> a cluster gives the distribution<br />

<strong>of</strong> lum<strong>in</strong>osities <strong>of</strong> galaxies. LFs are <strong>of</strong>ten def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> magnitudes,<br />

m ∝ −2.5 log 10 (L). There are several LF forms commonly used. Schechter<br />

(1976) <strong>in</strong>troduced an analytic approximation for the differential LF<br />

φ(L)dL = N ∗ (L/L ∗ ) −α e −L/L∗ d(L/L ∗ ) (1.14)<br />

where L ∗ is a characteristic lum<strong>in</strong>osity, <strong>and</strong> α is the fa<strong>in</strong>t-end slope. The parameter<br />

N ∗ is a useful measure <strong>of</strong> the richness <strong>of</strong> the cluster. The parameter<br />

L ∗ usually denotes the break <strong>in</strong> the LF, hence it represents a characteristic<br />

lum<strong>in</strong>osity <strong>of</strong> cluster galaxies. It is found that L ∗ is similar for many clusters,<br />

correspond<strong>in</strong>g to an absolute magnitude <strong>of</strong> MV<br />

∗ ≈ −21.9 + 5 log 10 h 50 . The<br />

advantages <strong>of</strong> the Schechter function are that it is analytical <strong>and</strong> cont<strong>in</strong>uous.<br />

An expression for the mass function similar to the Schechter form was predicted<br />

by a simple analytical model for galaxy formation (Press & Schechter<br />

1974).<br />

While the Schechter function serves as a good fit to the majority <strong>of</strong> clusters,<br />

there are a number <strong>of</strong> clusters that show a departure from it. These<br />

departures <strong>in</strong>clude variations <strong>in</strong> the values <strong>of</strong> M ∗ <strong>and</strong> α, correspond<strong>in</strong>g to<br />

the cluster morphology (Oemler 1974; Dressler 1978). They probably stem<br />

from the conditions <strong>of</strong> the cluster at its formation epoch. Variations <strong>in</strong> the<br />

steepness <strong>of</strong> the bright end may reflect evolutionary changes, such as tidal<br />

<strong>in</strong>teractions or merg<strong>in</strong>g <strong>of</strong> massive galaxies (Richstone 1975; Hausman & Ostriker<br />

1978). For example, steep bright-end <strong>of</strong>ten fits to clusters that have<br />

bright cD galaxies, <strong>in</strong>dicat<strong>in</strong>g many massive galaxies were merged to form<br />

the cD (Dressler 1978).<br />

8


1.1 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong><br />

1.1.5 X-ray Observations <strong>of</strong> <strong>Clusters</strong><br />

X-ray observations probe the gas component <strong>of</strong> the cluster. It has been<br />

established that the majority <strong>of</strong> the baryonic matter is <strong>in</strong> the form <strong>of</strong> hot<br />

<strong>in</strong>tracluster (IC) gas, with only about 3% resid<strong>in</strong>g with<strong>in</strong> stars <strong>in</strong> galaxies.<br />

Prob<strong>in</strong>g IC gas can reveal unique <strong>in</strong>sight <strong>in</strong>to the physical processes that<br />

govern galaxy formation, <strong>and</strong> the gas properties can be used to determ<strong>in</strong>e<br />

the total cluster mass, <strong>in</strong> clusters that are <strong>in</strong> hydrostatic equilibrium.<br />

Spectral X-ray observations yield the gas temperature, <strong>in</strong> the range <strong>of</strong><br />

3−15 keV, while its density is determ<strong>in</strong>ed from the spatial pr<strong>of</strong>ile <strong>of</strong> the (thermal<br />

Bremsstrahlung) emission. Spectroscopic measurements <strong>of</strong> the emission<br />

l<strong>in</strong>es (mostly <strong>of</strong> the strong K α l<strong>in</strong>e complex <strong>of</strong> Fe 24+ ) reveal that IC gas<br />

is metal enriched with typically 1/3 solar abundances. X-ray imag<strong>in</strong>g has<br />

progressed significantly <strong>in</strong> the past decade by detailed measurements with<br />

the Ch<strong>and</strong>ra <strong>and</strong> XMM-Newton telescopes that yield high-resolution spatial<br />

mapp<strong>in</strong>g <strong>of</strong> the distribution <strong>of</strong> <strong>in</strong>tracluster gas. From measurement <strong>of</strong> the<br />

temperature <strong>and</strong> density pr<strong>of</strong>iles the gas pressure <strong>and</strong> entropy <strong>distributions</strong><br />

can be derived. When comb<strong>in</strong><strong>in</strong>g density <strong>and</strong> temperature pr<strong>of</strong>iles the total<br />

mass <strong>of</strong> the cluster can be deduced from a solution <strong>of</strong> the hydrostatic<br />

equilibrium equation. Detailed X-ray images can also yield <strong>in</strong>formation on<br />

whether the cluster is relaxed or has substructure due to ongo<strong>in</strong>g dynamical<br />

processes, such as merg<strong>in</strong>g <strong>of</strong> galaxies or groups.<br />

Many clusters seem to be <strong>in</strong> hydrostatic equilibrium. Assum<strong>in</strong>g spherical<br />

symmetry, the total gravitat<strong>in</strong>g mass with<strong>in</strong> the virial radius R is then,<br />

M(< R) = − k (<br />

BT R d ln ρg<br />

Gµm p d ln R + d ln T )<br />

, (1.15)<br />

d ln R<br />

where ρ g is the gas density, <strong>and</strong> µm p is the mean mass per plasma particle.<br />

Thus, the total cluster mass can be <strong>in</strong>ferred from X-ray measurements <strong>of</strong> the<br />

gas density <strong>and</strong> temperature pr<strong>of</strong>iles. IC gas is commonly modeled with a<br />

9


Introduction<br />

β density pr<strong>of</strong>ile, (Cavaliere & Fusco-Femiano 1976), where<br />

ρ g (r) = ρ g,0<br />

[1 +<br />

( r<br />

r c<br />

) 2<br />

] −3β/2<br />

, (1.16)<br />

<strong>and</strong> β ≡ µm p σr/k 2 B T is the ratio <strong>of</strong> the k<strong>in</strong>etic (gauged by the velocity dispersion<br />

σ r , mostly <strong>of</strong> the DM) energy <strong>and</strong> thermal gas energy, <strong>and</strong> r c is<br />

the core radius. This pr<strong>of</strong>ile describes isothermal gas <strong>in</strong> hydrostatic equilibrium<br />

with<strong>in</strong> the potential well associated with a K<strong>in</strong>g (1962) DM density<br />

pr<strong>of</strong>ile ρ(r) ∝ [1 + (r/r c ) 2 ] −3/2 . Beta models describe the observed X-ray<br />

surface-brightness reasonably well at radii r c − 3r c with a 〈β〉 ≈ 2/3, but underestimate<br />

the density <strong>in</strong> central cool<strong>in</strong>g cores <strong>of</strong> clusters (Jones & Forman<br />

1984). There is also a possible trend toward lower β <strong>in</strong> poor clusters. These<br />

discrepancies arise partly s<strong>in</strong>ce the IC gas is not strictly isothermal. Acquir<strong>in</strong>g<br />

a full description <strong>of</strong> the temperature distribution is difficult, especially<br />

for high-redshift clusters.<br />

There are <strong>in</strong>herent limitations <strong>in</strong> construct<strong>in</strong>g X-ray density pr<strong>of</strong>iles <strong>and</strong><br />

total mass estimates; these stem from the assumptions <strong>of</strong> hydrostatic equilibrium<br />

<strong>and</strong> spherical symmetry, <strong>and</strong> gas isothermality. Nonetheless, the<br />

methodology <strong>of</strong> determ<strong>in</strong><strong>in</strong>g the gas properties from X-ray observations, <strong>and</strong><br />

the total mass pr<strong>of</strong>iles from strong <strong>and</strong> weak lens<strong>in</strong>g measurements is very<br />

useful when applied to relaxed, low-redshift clusters for which spatially resolved<br />

Ch<strong>and</strong>ra <strong>and</strong> XMM-Newton images <strong>of</strong> the temperature <strong>and</strong> density<br />

<strong>distributions</strong> <strong>in</strong>dicate relatively low level <strong>of</strong> (projected) structure.<br />

1.1.6 Sunyaev-Zel’dovich Measurements<br />

The SZ effect is a unique observational probe <strong>of</strong> galaxy clusters, detectable<br />

at radio <strong>and</strong> microwave wavelengths. It is a small spectral distortion <strong>in</strong> the<br />

cosmic microwave background (CMB) spectrum caused by Compton scatter<strong>in</strong>g<br />

<strong>of</strong> CMB photons <strong>of</strong>f hot ICM electrons (Sunyaev & Zeldovich 1972). As<br />

the number <strong>of</strong> photons is conserved <strong>in</strong> the scatter<strong>in</strong>g, the SZ effect causes<br />

a decrease <strong>in</strong> the <strong>in</strong>tensity <strong>of</strong> CMB at low frequencies ( 218 GHz) <strong>and</strong> an<br />

10


1.2 Gravitational Lens<strong>in</strong>g<br />

<strong>in</strong>crease at higher frequencies. The shape <strong>of</strong> the distorted spectrum <strong>of</strong> the<br />

thermal component <strong>of</strong> the effect depends on the Compton y-parameter,<br />

∫<br />

y =<br />

n e<br />

k B T e<br />

m e c 2 σ T dl, (1.17)<br />

which is essentially a l<strong>in</strong>e <strong>of</strong> sight <strong>in</strong>tegral <strong>of</strong> the gas pressure.<br />

The important features <strong>of</strong> the SZ effect are that its signal is <strong>in</strong>dependent<br />

<strong>of</strong> redshift, unlike optical or X-ray surface brightnesses, <strong>and</strong> that it directly<br />

probes the gas pressure, or thermal energy density, along the l<strong>in</strong>e <strong>of</strong> sight.<br />

These properties make the SZ effect a unique <strong>and</strong> powerful observational tool<br />

for detect<strong>in</strong>g distant clusters.<br />

SZ <strong>and</strong> X-ray observations are complementary to each other, specifically<br />

<strong>in</strong> the outskirts <strong>of</strong> clusters where the X-ray surface-brightness is difficult to<br />

observe, but the SZ signal rema<strong>in</strong>s substantial. The SZ distortion is l<strong>in</strong>ear<br />

<strong>in</strong> the gas density, whereas X-ray emission is proportional to n 2 e. This means<br />

X-ray measures the gas <strong>in</strong> the center <strong>of</strong> the cluster with better resolution, but<br />

that the SZ effect is more suitable for trac<strong>in</strong>g the gas across a much larger<br />

region <strong>of</strong> the cluster.<br />

1.2 Gravitational Lens<strong>in</strong>g<br />

1.2.1 Historical Overview<br />

The deflection <strong>of</strong> light rays by gravity was predicted by E<strong>in</strong>ste<strong>in</strong>’s General<br />

Relativity (GR). E<strong>in</strong>ste<strong>in</strong>’s calculation <strong>of</strong> the magnitude <strong>of</strong> deflection by the<br />

gravitatioal field <strong>of</strong> the sun was confirmed <strong>in</strong> 1919 when angular shifts <strong>of</strong><br />

stars close to the Sun’s edge were measured dur<strong>in</strong>g a total solar eclipse.<br />

This served as a confirmation <strong>of</strong> GR, <strong>and</strong> light deflection <strong>and</strong> other related<br />

phenomena are called “Gravitational Lens<strong>in</strong>g”.<br />

Observ<strong>in</strong>g multiple images <strong>of</strong> sources be<strong>in</strong>g lensed is another result <strong>of</strong><br />

the theory. Although E<strong>in</strong>ste<strong>in</strong> had thought that multiple images due to<br />

11


Introduction<br />

stellar-scale lens<strong>in</strong>g are unlikely to be resolved, Zwicky (1937) argued that<br />

multiple images due to lens<strong>in</strong>g by galaxies will lie at large enough angles to<br />

be observed <strong>and</strong> would serve as another measure <strong>of</strong> galaxy masses. Such<br />

an <strong>in</strong>dependent method was needed <strong>in</strong> order to test the emerg<strong>in</strong>g evidence<br />

that galaxies weigh about two orders <strong>of</strong> magnitude more than their stellar<br />

content. The first example <strong>of</strong> multiple images due to gravitational lens<strong>in</strong>g was<br />

discovered when a double-imaged quasar was measured by Walsh, Carswell, &<br />

Weymann (1979). The two images <strong>of</strong> QSO 0957+561 were shown to be <strong>of</strong> the<br />

same quasar be<strong>in</strong>g lensed by a foreground galaxy. This discovery transformed<br />

gravitational lens<strong>in</strong>g from a theoretical idea to a valid experimental field with<br />

cosmological applications.<br />

More examples <strong>of</strong> lens<strong>in</strong>g soon followed. In the massive Abell 370 cluster,<br />

a peculiar “r<strong>in</strong>g-like” shape was discovered by Soucail et al. (1987a) <strong>and</strong><br />

<strong>in</strong>dependently by Lynds & Petrosian (1986), thought at first to be the result<br />

<strong>of</strong> galaxy/galaxy <strong>in</strong>teractions <strong>in</strong> the cluster itself. It was only later recognized<br />

to be a strong lens<strong>in</strong>g “giant arc”, occurr<strong>in</strong>g when the source is ly<strong>in</strong>g beh<strong>in</strong>d<br />

the lens close to a caustic (Soucail et al. 1987b; Paczynski 1987).<br />

Apart from these spectacular examples <strong>of</strong> strong lens<strong>in</strong>g which are quite<br />

rare <strong>and</strong> are only seen <strong>in</strong> the center, clusters overall coherently distort (<strong>and</strong><br />

amplify) fa<strong>in</strong>ter background galaxies on a weaker scale, referred to as “weak<br />

lens<strong>in</strong>g” (Fort et al. 1988). Us<strong>in</strong>g these observations to reconstruct <strong>in</strong> a<br />

model-<strong>in</strong>dependent way the two-dimensional mass map <strong>of</strong> the cluster was<br />

suggested by Kaiser & Squires (1993) <strong>and</strong> has been subsequently measured<br />

for many clusters (Bonnet et al. 1993; Smail & Dick<strong>in</strong>son 1995; Broadhurst<br />

et al. 1995). In the past decade major improvements have been made <strong>in</strong><br />

the field <strong>of</strong> weak lens<strong>in</strong>g, due to the development <strong>of</strong> algorithms that robustly<br />

measures accurate galaxy shapes by overcom<strong>in</strong>g <strong>in</strong>herent systematics (Kaiser<br />

et al. 1995), <strong>and</strong> on the other level the recent construction <strong>of</strong> large telescopes<br />

with wide-field cameras that enable imag<strong>in</strong>g <strong>of</strong> clusters to their virial radius<br />

with <strong>in</strong>creas<strong>in</strong>gly higher resolution. This set the ground for numerous cluster<br />

mass reconstruction studies both <strong>in</strong> the strong (Kneib et al. 1996; Hammer<br />

et al. 1997; S<strong>and</strong> et al. 2002; Gavazzi et al. 2003; S<strong>and</strong> et al. 2004; Broadhurst<br />

et al. 2005a; Sharon et al. 2005) <strong>and</strong> weak lens<strong>in</strong>g regimes (Kneib et al. 2003;<br />

12


1.2 Gravitational Lens<strong>in</strong>g<br />

Broadhurst et al. 2005b; Limous<strong>in</strong> et al. 2007; Jee et al. 2009).<br />

The cosmic shear technique is based on measur<strong>in</strong>g the distortions to<br />

galaxies <strong>in</strong>duced by the Large Scale Structure (LSS). Formalisms that crosscorrelate<br />

the foreground structures along the l<strong>in</strong>e <strong>of</strong> sight with the distribution<br />

<strong>of</strong> background images were developed (Wittman et al. 2001; Ja<strong>in</strong><br />

& Taylor 2003; Bacon et al. 2003; Taylor et al. 2007). Cosmic shear was<br />

recently statistically detected <strong>in</strong> large r<strong>and</strong>om patches <strong>of</strong> the sky <strong>in</strong>clud<strong>in</strong>g<br />

the COMBO-17 fields (Brown et al. 2003; Kitch<strong>in</strong>g et al. 2007) <strong>and</strong> the<br />

COSMOS field (<strong>Mass</strong>ey et al. 2007). These cosmic shear surveys provide a<br />

direct measurement <strong>of</strong> the LSS, <strong>and</strong> can be compared to theories <strong>of</strong> structure<br />

formation, thereby open<strong>in</strong>g wide prospects for study<strong>in</strong>g cosmology. To usefully<br />

derive cosmological parameters from general cosmic shear work, deep<br />

all-sky surveys have been proposed (e.g., LSST 1 , DES 2 , JDEM 3 , EUCLID 4 )<br />

<strong>and</strong> will commence <strong>in</strong> the com<strong>in</strong>g decade.<br />

1.2.2 Pr<strong>in</strong>ciples <strong>of</strong> Gravitational Lens<strong>in</strong>g<br />

In Figure 1.1 a typical case <strong>of</strong> gravitational lens<strong>in</strong>g is portrayed. If a mass<br />

at redshift z d deflects light from a source at z s , <strong>and</strong> its size is much smaller<br />

than the angular diameter distances D d (observer to lens) <strong>and</strong> D ds (lens to<br />

source), the deflection can be describes by two straight light rays as <strong>in</strong> the<br />

figure. The angle between the two l<strong>in</strong>es is called the “deflection angle” ˆ⃗α,<br />

which depends on the mass.<br />

1.2.2.1 The Deflection Angle<br />

In the simple case <strong>of</strong> deflection by a po<strong>in</strong>t mass M, where the light ray travels<br />

far enough from the horizon <strong>of</strong> the lens, i.e., it’s impact parameter is much<br />

1 http://www.lsst.org/lsst<br />

2 https://www.darkenergysurvey.org/<br />

3 http://jdem.gsfc.nasa.gov<br />

4 http://sci.esa.<strong>in</strong>t/science-e/www/object/<strong>in</strong>dex.cfm?fobjectid=42266<br />

13


Introduction<br />

Figure 1.1 – Sketch <strong>of</strong> a typical gravitational lens system.<br />

larger than the Schwarzschild radius <strong>of</strong> the lens, ξ ≫ R S = 2GM/c 2 , GR<br />

gives the deflection angle,<br />

ˆα = 4GM<br />

c 2 ξ , (1.18)<br />

which is twice the classical Newtonian gravity result (e.g., Futamase 1995).<br />

Consider<strong>in</strong>g a more general case <strong>of</strong> three-dimensional mass distribution,<br />

with volume density ρ(⃗r), the total deflection angle is then<br />

ˆ⃗α( ξ) ⃗ = 4G ∑<br />

dm(ξ<br />

′<br />

c 2 1 , ξ 2, ′ r 3) ⃗ ′ ξ − ξ ⃗′<br />

| ξ ⃗ − ξ ⃗′ | 2<br />

= 4G ∫ ∫<br />

d 2 ξ ′ dr<br />

c<br />

3ρ(ξ ′ 1, ′ ξ 2, ′ r ′ ξ<br />

3) ⃗ − ξ ⃗′<br />

2<br />

| ξ ⃗ − ξ ⃗′ | . (1.19)<br />

2<br />

14


1.2 Gravitational Lens<strong>in</strong>g<br />

If we <strong>in</strong>stead def<strong>in</strong>e a two-dimensional surface mass density<br />

∫<br />

Σ( ξ) ⃗ ≡ dr 3ρ(ξ ′ 1, ′ ξ 2, ′ r 3) ′ (1.20)<br />

which is the mass density projected on the image plane, then the deflection<br />

angle is simply<br />

ˆ⃗α( ⃗ ξ) = 4G<br />

c 2<br />

∫<br />

d 2 ξ ′ Σ( ⃗ ξ ′ ) ⃗ ξ − ⃗ ξ ′<br />

| ⃗ ξ − ⃗ ξ ′ | 2 . (1.21)<br />

1.2.2.2 The Lens Equation<br />

The basic lens equation relates the true angular position <strong>of</strong> the source, ⃗ β, to<br />

its lensed image position on the sky, ⃗ θ<br />

⃗β = ⃗ θ − D ds<br />

D s<br />

⃗ˆα(Ds ⃗ θ) ≡ ⃗ θ − ⃗α( ⃗ θ) , (1.22)<br />

(see Figure 1.1).<br />

expressed as<br />

Here ⃗α( ⃗ θ) is the scaled deflection angle, which can be<br />

⃗α( ⃗ θ) = ⃗ ∇ θ ψ = 1 π<br />

∫<br />

κ( ⃗ θ ′ ) ⃗ θ − ⃗ θ ′<br />

| ⃗ θ − ⃗ θ ′ | 2 d2 θ ′ , (1.23)<br />

where ψ is the deflection potential, <strong>and</strong> κ( ⃗ θ), called the convergence, is the<br />

dimensionless surface mass density, def<strong>in</strong>ed as<br />

κ( θ) ⃗ ≡ Σ(D ⃗ dθ)<br />

with Σ cr = c2<br />

Σ cr 4πG<br />

D s<br />

D ds D d<br />

. (1.24)<br />

Σ cr is a characteristic value <strong>of</strong> surface mass density that marks the dist<strong>in</strong>ction<br />

between “strong” <strong>and</strong> “weak” lenses.<br />

It can be readily shown that κ( ⃗ θ) satisfies Poisson’s Equation,<br />

⃗∇ 2 θψ = 2κ( ⃗ θ) , (1.25)<br />

s<strong>in</strong>ce ψ( ⃗ θ) is equivalent to a two-dimensional gravitational potential, which<br />

15


Introduction<br />

<strong>in</strong> turn can be written as,<br />

⃗ψ( ⃗ θ) = 1 π<br />

∫<br />

κ( ⃗ θ ′ ) ln | ⃗ θ − ⃗ θ ′ |d 2 θ ′ . (1.26)<br />

1.2.2.3 Magnification <strong>and</strong> Distortion<br />

As presented above, ⃗ θ describes the image angular position <strong>of</strong> a source at ⃗ β.<br />

The image shape will differ from the source shape because light bundles are<br />

deflected differentially. Giant arcs <strong>in</strong> clusters are an extreme example <strong>of</strong> such<br />

a distortion.<br />

The local properties <strong>of</strong> the lens mapp<strong>in</strong>g from the source plane to the lens<br />

plane are expressed by the Jacobian matrix,<br />

A( θ) ⃗ ≡ ∂⃗ (<br />

) (<br />

)<br />

β<br />

∂θ ⃗ = δ ij −<br />

∂2 ψ 1 − κ − γ 1 −γ 2<br />

=<br />

∂θ i ∂θ j −γ 2 1 − κ + γ 1<br />

, (1.27)<br />

where the components <strong>of</strong> the shear tensor, γ = γ 1 + γ 2 = |γ|e 2iφ , are def<strong>in</strong>ed<br />

as the l<strong>in</strong>ear comb<strong>in</strong>ations <strong>of</strong> ψ ij ,<br />

γ 1 ( ⃗ θ) = 1 2 (ψ 11 − ψ 22 ) ≡ γ( ⃗ θ) cos[2φ( ⃗ θ)] , (1.28)<br />

γ 2 ( ⃗ θ) = ψ 12 = ψ 21 ≡ γ( ⃗ θ) s<strong>in</strong>[2φ( ⃗ θ)] .<br />

<strong>and</strong> as <strong>in</strong> eq. 1.25, κ( ⃗ θ) satisfies<br />

κ( ⃗ θ) = 1 2 (ψ 11 + ψ 22 ) = 1 2 trψ ij (1.29)<br />

The shear describes the anisotropy <strong>of</strong> the lens mapp<strong>in</strong>g, turn<strong>in</strong>g a circle<br />

<strong>in</strong>to an ellipse, where |γ| is the magnitude <strong>of</strong> the shear <strong>and</strong> φ is its orientation.<br />

The convergence κ results <strong>in</strong> isotropic magnification <strong>of</strong> a source. Figure 1.2<br />

describes such mapp<strong>in</strong>g, <strong>in</strong> the presence <strong>of</strong> both κ <strong>and</strong> γ, turn<strong>in</strong>g a circle<br />

<strong>in</strong>to an ellipse with major <strong>and</strong> m<strong>in</strong>or axes<br />

a = (1 − κ + γ) −1 , b = (1 − κ − γ) −1 (1.30)<br />

16


1.2 Gravitational Lens<strong>in</strong>g<br />

Figure 1.2 – Illustration <strong>of</strong> the effects <strong>of</strong> convergence <strong>and</strong> shear on a circular source.<br />

Convergence magnifies the image isotropically, <strong>and</strong> shear deforms it to an ellipse.<br />

The magnification is then,<br />

µ = 1<br />

det A = 1<br />

(1 − κ) 2 − |γ| 2 . (1.31)<br />

Po<strong>in</strong>ts <strong>in</strong> the lens plane where the determ<strong>in</strong>ant equals zero, i.e. locations<br />

<strong>of</strong> <strong>in</strong>f<strong>in</strong>ite magnification, form closed curves, which are called critical curves.<br />

Their equivalent curves <strong>in</strong> the source plane are called caustics. Images along<br />

these curves will be magnified <strong>and</strong> distorted substantially.<br />

Strong lens<strong>in</strong>g occurs when the gravitational potential is extremely large,<br />

called a supercritical lens, where Σ ≥ Σ cr , <strong>and</strong> the shear <strong>and</strong> convergence are<br />

strong enough [see][](Hattori et al. 1999), <strong>of</strong>ten lead<strong>in</strong>g to multiple images <strong>of</strong><br />

a suitably positioned source. The effect causes great amplification <strong>and</strong> shear,<br />

<strong>of</strong>ten visible <strong>in</strong> centers <strong>of</strong> massive clusters as large distorted arcs ly<strong>in</strong>g near<br />

the critical curves. These have been observed with high quality <strong>and</strong> great<br />

detail with the Advanced Camera for Surveys (ACS) aboard the Hubble Space<br />

Telescope (HST ). Some examples <strong>of</strong> giant arcs can be seen <strong>in</strong> the clusters<br />

Abell 370 <strong>and</strong> Abell 2218 (see Figure 1.3).<br />

17


Introduction<br />

Figure 1.3 – Examples <strong>of</strong> gravitationally lensed arcs <strong>in</strong> galaxy clusters. Left: Galaxy<br />

cluster Abell 370. Right: Giant arcs <strong>in</strong> Abell 2218.<br />

1.2.3 Weak Gravitational Lens<strong>in</strong>g<br />

Beyond this region, where κ ≪ 1 <strong>and</strong> |γ| ≪ 1, a weaker effect is <strong>in</strong>duced,<br />

therefore called weak-lens<strong>in</strong>g. The distortion <strong>and</strong> magnification here are so<br />

small that the effect is statistical <strong>in</strong> nature – it can only be measured by<br />

averag<strong>in</strong>g over thous<strong>and</strong>s <strong>of</strong> galaxies. As galaxies are elliptical by nature,<br />

one cannot deduce the potential field from a s<strong>in</strong>gle image (except for giant<br />

arcs as shown above, where the distortion is extreme). However, assum<strong>in</strong>g<br />

galaxy orientations are r<strong>and</strong>omly distributed, a coherent distortion can be<br />

measured from a large sample <strong>of</strong> galaxies, if the net ellipticity is higher than<br />

the Poisson noise <strong>of</strong> the <strong>in</strong>tr<strong>in</strong>sic galaxy ellipticity distribution.<br />

lens<strong>in</strong>g the reduced shear g is def<strong>in</strong>ed as,<br />

In weak<br />

g( ⃗ θ) ≡ γ(⃗ θ)<br />

1 − κ( ⃗ θ) . (1.32)<br />

The reduced shear is the actual quantity accessible through measurements <strong>of</strong><br />

image ellipticities. I will demonstrate below that <strong>in</strong> the weak lens<strong>in</strong>g limit,<br />

γ ≈ g ≈ 〈e〉 . Us<strong>in</strong>g this relation, measur<strong>in</strong>g image ellipticities can be used to<br />

2<br />

deduce the lens<strong>in</strong>g quantities.<br />

18


1.2 Gravitational Lens<strong>in</strong>g<br />

1.2.3.1 Measur<strong>in</strong>g Galaxy Shapes <strong>and</strong> Sizes<br />

With the surface brightness I( ⃗ θ) measured for a galaxy at ⃗ θ, we def<strong>in</strong>e the<br />

tensor <strong>of</strong> second brightness moments,<br />

Q ij =<br />

∫<br />

d 2 θW [I( θ)](θ ⃗ α − ¯θ i )(θ j − ¯θ j )<br />

∫<br />

d2 θW [I( θ)] ⃗ , i, j ∈ 1, 2, (1.33)<br />

where the center ¯⃗ θ <strong>of</strong> the shape is def<strong>in</strong>ed as<br />

¯⃗θ =<br />

∫<br />

d 2 θW [I( ⃗ θ)] ⃗ θ<br />

∫<br />

d2 θW [I( ⃗ θ)]<br />

(1.34)<br />

<strong>and</strong> W [I( θ)] ⃗ is a properly chosen weight function, e.g., <strong>in</strong> our case a Gaussian<br />

w<strong>in</strong>dow function.<br />

The size <strong>of</strong> the object can be found from the determ<strong>in</strong>ant <strong>of</strong> the tensor<br />

Q,<br />

ω = (Q 11 Q 22 − Q 2 12) 1/2 . (1.35)<br />

We def<strong>in</strong>e the shape <strong>of</strong> the image by the complex ellipticity<br />

e ≡ Q 11 − Q 22 + 2iQ 12<br />

Q 11 + Q 22<br />

. (1.36)<br />

For the case <strong>of</strong> an elliptical galaxy, this simplifies to<br />

e = 1 − r2<br />

1 + r 2 e2iϑ (1.37)<br />

where r ≤ 1 is the axis ratio <strong>of</strong> the elliptical isophote, <strong>and</strong> the phase is twice<br />

the position angle <strong>of</strong> the major axis, ϑ.<br />

Thus, the ellipticity is the same<br />

if the galaxy image is rotated by π, s<strong>in</strong>ce a rotation <strong>of</strong> an ellipse leaves it<br />

unchanged.<br />

Def<strong>in</strong><strong>in</strong>g the complex ellipticity <strong>of</strong> the <strong>in</strong>tr<strong>in</strong>sic source <strong>in</strong> analogy to<br />

eq. 1.36 with <strong>in</strong> terms <strong>of</strong> the tensor Q (s)<br />

ij <strong>of</strong> the source, leads to<br />

e (s) =<br />

e − 2g + g2 e ∗<br />

1 + |g| 2 − 2R[ge ∗ ]<br />

(1.38)<br />

19


Introduction<br />

(Schneider & Seitz 1995), where the asterisk denotes complex conjugation,<br />

<strong>and</strong> g is the reduced shear as def<strong>in</strong>ed <strong>in</strong> eq. 1.32. This equation demonstrates<br />

that the reduced shear is the only lens<strong>in</strong>g-related quantity accessible through<br />

image ellipticity measurements. Based on the assumption that the sources are<br />

r<strong>and</strong>omly oriented, the expectation value <strong>of</strong> the <strong>in</strong>tr<strong>in</strong>sic (unlensed) source<br />

ellipticity e (s) is assumed to vanish, 〈e (s) 〉 = 0. Replac<strong>in</strong>g this expectation<br />

value by the average over a local ensemble <strong>of</strong> image ellipticities, Schneider &<br />

Seitz (1995) showed that this is equivalent to<br />

∑<br />

i<br />

w i<br />

e i − δ g<br />

1 − R[δ g e ∗ i ] = 0 . (1.39)<br />

Here, δ g ≡ 2g/(1 + |g| 2 ) is the complex distortion (Schneider & Seitz 1995),<br />

which is a function <strong>of</strong> g that is <strong>in</strong>variant under g → 1/g ∗ , <strong>and</strong> w i is a statistical<br />

weight for the ith object.<br />

e (s) = 0, we have<br />

Thus, for an <strong>in</strong>tr<strong>in</strong>sically circular source with<br />

e =<br />

2g<br />

1 + |g| 2 . (1.40)<br />

In the weak limit, where κ ≪ 1 <strong>and</strong> |γ| ≪ 1, eq. 1.38 reduces to e (s)<br />

e − 2g ≈ e − 2γ.<br />

Assum<strong>in</strong>g the r<strong>and</strong>om orientations <strong>of</strong> the background<br />

sources, we average observed ellipticities over a sufficient number <strong>of</strong> images<br />

to obta<strong>in</strong><br />

〈e〉 ≈ 2g ≈ 2γ. (1.41)<br />

≈<br />

1.2.3.2 The KSB Method<br />

For practical applications <strong>of</strong> weak lens<strong>in</strong>g shape measurements, we must<br />

take <strong>in</strong>to account various observational effects such as noise <strong>in</strong> the shape<br />

measurement due to readout <strong>and</strong>/or sky background, <strong>and</strong> smear<strong>in</strong>g <strong>of</strong> the<br />

lens<strong>in</strong>g signal due to isotropic/anisotropic po<strong>in</strong>t-spread function (PSF) effects.<br />

Thus, one cannot simply use eq. 1.41 to measure the gravitational<br />

shear field. Kaiser, Squires, & Broadhurst (1995, hereafter KSB) used explicitly<br />

the Gaussian weight function <strong>in</strong> calculations <strong>of</strong> noisy shape moments<br />

to calibrate the effect <strong>of</strong> see<strong>in</strong>g, <strong>and</strong> derived <strong>in</strong> the limit <strong>of</strong> l<strong>in</strong>ear anisotropies<br />

20


1.2 Gravitational Lens<strong>in</strong>g<br />

a transformation that relates the unlensed (<strong>in</strong>tr<strong>in</strong>sic) <strong>and</strong> lensed (observed)<br />

ellipticities, expressed as<br />

e α = e (s)<br />

α + P g αβ g β + P q αβ q β (1.42)<br />

where q β is a kernel which measures the PSF anisotropy, P q αβ<br />

is the “smear<br />

polarizability tensor”, <strong>and</strong> P g αβ<br />

is the “shear polarizability tensor”, both <strong>of</strong><br />

which can be estimated. In practice, q( θ) ⃗ can be estimated us<strong>in</strong>g image<br />

ellipticities <strong>of</strong> foreground stars, for which both e (s) <strong>and</strong> g vanish, so,<br />

q ∗ α = (P ∗ q ) −1<br />

αβ eβ ∗ (1.43)<br />

As before, assum<strong>in</strong>g 〈e (s) 〉 vanishes, we have a l<strong>in</strong>ear relation between the<br />

averaged image ellipticity <strong>and</strong> the reduced shear,<br />

g α = 〈(P g ) −1<br />

αβ (e − P q q) β 〉. (1.44)<br />

A careful calibration <strong>of</strong> P g is crucial for accurate measurements <strong>of</strong> the weak<br />

lens<strong>in</strong>g signal.<br />

1.2.4 <strong>Clusters</strong> <strong>of</strong> <strong>Galaxies</strong> as Gravitational Lenses<br />

Here I summarize basic quantities <strong>and</strong> techniques used for measur<strong>in</strong>g cluster<br />

weak lens<strong>in</strong>g pr<strong>of</strong>iles.<br />

1.2.4.1 Distortion measurements <strong>in</strong> <strong>Clusters</strong><br />

The shape distortion <strong>of</strong> an object due to lens<strong>in</strong>g is described by the complex<br />

reduced shear, g = g 1 + ig 2 ≡ γ/(1 − κ), as described above (eq. 1.32). To<br />

measure the cluster <strong>in</strong>duced distortion, we form a cluster-oriented coord<strong>in</strong>ate<br />

system, <strong>and</strong> measure the tangential distortion <strong>and</strong> the 45 ◦ -rotated component<br />

(Tyson & Fischer 1995),<br />

g + ≡ g T = −(g 1 cos 2ϕ + g 2 s<strong>in</strong> 2ϕ), g × = −(g 1 cos 2ϕ + g 2 s<strong>in</strong> 2ϕ) (1.45)<br />

21


Introduction<br />

where ϕ is the position angle <strong>of</strong> an object relative to the cluster center, <strong>and</strong><br />

the uncerta<strong>in</strong>ty <strong>in</strong> the g + <strong>and</strong> g × measurement is<br />

σ + = σ × = σ g / √ 2 ≡ σ (1.46)<br />

<strong>in</strong> terms <strong>of</strong> the RMS error σ g on the complex distortion measurement, g. The<br />

+-component, g + , is a measure <strong>of</strong> the tangential coherence <strong>of</strong> the shape distortions<br />

<strong>of</strong> background sources due to weak lens<strong>in</strong>g. On the other h<strong>and</strong>, the<br />

×-component, g × , corresponds to divergence-free, curl-type distortion patterns.<br />

To improve the statistical significance <strong>of</strong> the distortion measurement,<br />

we calculate the weighted average <strong>of</strong> the g + <strong>and</strong> its weighted error as<br />

∑<br />

i<br />

〈g + (θ n )〉 ≡ 〈g T (θ n )〉 =<br />

u g,i g<br />

∑ T,i<br />

i u , (1.47)<br />

g,i<br />

√ ∑<br />

i<br />

σ + (θ n ) ≡ σ T (θ n ) =<br />

u2 g,i σ2 i<br />

( ∑ i u g,i) 2 , (1.48)<br />

where the <strong>in</strong>dex i runs over all <strong>of</strong> the galaxies located with<strong>in</strong> the n-th annulus<br />

with a median radius <strong>of</strong> θ n , <strong>and</strong> u g,i is the <strong>in</strong>verse variance weight for i-th<br />

object, u g,i = 1/(σ 2 g,i + α 2 ), where α 2 is a s<strong>of</strong>ten<strong>in</strong>g constant variance. In our<br />

work, we choose α = 0.4, which is a typical value <strong>of</strong> the mean RMS ¯σ g over<br />

the background sample.<br />

The tangential reduced shear g + (θ) as a function <strong>of</strong> radius is a useful,<br />

direct observable <strong>in</strong> cluster weak lens<strong>in</strong>g, be<strong>in</strong>g free from the mass sheet<br />

degeneracy (see 1.2.4.2.2): it does not require a non-local mass reconstruction,<br />

<strong>and</strong> one can easily assess its error propagation. Furthermore, the g ×<br />

component can be used as a useful null check for systematic effects.<br />

1.2.4.2 Systematics <strong>of</strong> the Methods<br />

1.2.4.2.1 Projection Effects The ma<strong>in</strong> systematic afflict<strong>in</strong>g mass reconstruction<br />

us<strong>in</strong>g gravitational lens<strong>in</strong>g is that lens<strong>in</strong>g measures projected<br />

mass. Hence, <strong>in</strong>terpret<strong>in</strong>g lens<strong>in</strong>g measurements <strong>in</strong>to three-dimensional masses<br />

necessitates the assumption <strong>of</strong> spherical symmetry <strong>of</strong> the system. Projection<br />

22


1.2 Gravitational Lens<strong>in</strong>g<br />

effects can range from slight biases aris<strong>in</strong>g from triaxiality <strong>of</strong> clusters, to large<br />

uncerta<strong>in</strong>ties <strong>in</strong> the mass estimates due to l<strong>in</strong>e-<strong>of</strong>-sight mergers <strong>of</strong> clusters <strong>of</strong><br />

comparable sizes.<br />

1.2.4.2.2 <strong>Mass</strong>-Sheet Degeneracy Add<strong>in</strong>g a constant mass sheet to<br />

κ does not affect the image ellipticities, s<strong>in</strong>ce it causes only an isotropic<br />

expansion <strong>of</strong> the images. This transformations is equivalent to scal<strong>in</strong>g the<br />

Jacobian matrix A by some scalar multiple λA, result<strong>in</strong>g <strong>in</strong><br />

A ′ = λA = λ<br />

(<br />

)<br />

1 − κ − γ 1 −γ 2<br />

−γ 2 1 − κ + γ 1<br />

which is equivalent to the follow<strong>in</strong>g transformations <strong>of</strong> κ <strong>and</strong> γ,<br />

, (1.49)<br />

1 − κ ′ = λ(1 − κ), γ ′ = λγ. (1.50)<br />

This transformation evidently leaves the reduced shear g = γ/(1 − κ) <strong>in</strong>variant<br />

under this scal<strong>in</strong>g. This <strong>in</strong>variance ambiguity is referred to as the<br />

mass-sheet degeneracy. It was orig<strong>in</strong>ally discovered by Falco et al. (1985)<br />

<strong>and</strong> further highlighted by Schneider & Seitz (1995). The ambiguity can<br />

be broken by measur<strong>in</strong>g the magnification effect, because µ is not <strong>in</strong>variant<br />

under the transformation, as<br />

µ( ⃗ θ) → λ 2 µ( ⃗ θ). (1.51)<br />

Measur<strong>in</strong>g the magnification bias has been suggested by Broadhurst et al.<br />

(1995) us<strong>in</strong>g galaxy number-counts. Another approach is the use <strong>of</strong> wide-field<br />

imag<strong>in</strong>g with field-<strong>of</strong>-view larger than the clusters, <strong>in</strong> which case the lens<strong>in</strong>g<br />

effect vanishes at the boundaries <strong>of</strong> the field, thus break<strong>in</strong>g the degeneracy.<br />

1.2.4.2.3 PSF Effects The ma<strong>in</strong> difficulty <strong>of</strong> weak lens<strong>in</strong>g measurements<br />

is due to po<strong>in</strong>t-spread function (PSF) effects, aris<strong>in</strong>g from the telescope/CCD<br />

response <strong>and</strong>/or atmospheric see<strong>in</strong>g. The atmospheric see<strong>in</strong>g,<br />

which is a term describ<strong>in</strong>g the result <strong>of</strong> atmospheric turbulence, causes smear-<br />

23


Introduction<br />

<strong>in</strong>g <strong>of</strong> the image, thus dilut<strong>in</strong>g or even eras<strong>in</strong>g the real lens<strong>in</strong>g signal. S<strong>in</strong>ce<br />

galaxies have angular sizes below 1 ′′ , the required see<strong>in</strong>g for observations<br />

should also be below 1 ′′ . Such a limit is not commonly met <strong>in</strong> many observational<br />

sites. The anisotropy <strong>in</strong> the PSF <strong>in</strong>duced by the telescope optics<br />

results <strong>in</strong> systematic image ellipticities. The PSF has an effect <strong>of</strong> 8 − 10%,<br />

whereas the weak lens<strong>in</strong>g signal is comparable or less (only about 1 − 3% for<br />

cosmic shear). It is therefore crucial to model <strong>and</strong> remove the systematic effects<br />

<strong>of</strong> the PSF with high accuracy. Given that PSF varies significantly with<br />

different telescope/CCD configurations <strong>and</strong> atmospheric situation, this is not<br />

a simple task. A number <strong>of</strong> lens<strong>in</strong>g methods are now able to model this quite<br />

well, e.g., the Kaiser, Squires, & Broadhurst (1995) method described above<br />

(1.2.3.2), generally us<strong>in</strong>g stars along the field to sample the PSF, with robust<br />

algorithms for model<strong>in</strong>g <strong>and</strong> deconvolv<strong>in</strong>g the effect (Heymans et al. 2006;<br />

<strong>Mass</strong>ey et al. 2007a, for a recent review <strong>and</strong> comparison <strong>of</strong> all methods).<br />

1.2.4.2.4 Weak Lens<strong>in</strong>g Dilution It is crucial <strong>in</strong> cluster weak lens<strong>in</strong>g<br />

analysis to carefully select background galaxies <strong>in</strong> order to avoid contam<strong>in</strong>ation<br />

by the lens<strong>in</strong>g cluster <strong>and</strong>/or foreground galaxies. The <strong>in</strong>clusion <strong>of</strong> such<br />

unlensed galaxies reduces the lens<strong>in</strong>g signal, particularly at smaller distances<br />

from the cluster center, where the cluster is relatively dense. When exclud<strong>in</strong>g<br />

only a narrow b<strong>and</strong> conta<strong>in</strong><strong>in</strong>g the obvious E/S0 sequence, follow<strong>in</strong>g common<br />

practice, the lens<strong>in</strong>g signal <strong>of</strong> the rema<strong>in</strong>der is found to fall rapidly<br />

towards the cluster center, <strong>in</strong> contrast to the uncontam<strong>in</strong>ated population <strong>of</strong><br />

background galaxies ly<strong>in</strong>g redward <strong>of</strong> the cluster sequence (Broadhurst et al.<br />

2005b).<br />

Other calibration issues <strong>in</strong> the cluster mass measurement arise from the<br />

redshift distribution <strong>of</strong> the background population which has to be taken <strong>in</strong>to<br />

account. In the work presented here I elaborate on <strong>and</strong> attempt to correct<br />

for both these effects.<br />

24


1.3 The Structure <strong>of</strong> the Thesis<br />

1.3 The Structure <strong>of</strong> the Thesis<br />

The thesis consists <strong>of</strong> two ma<strong>in</strong> scientific efforts: A detailed study <strong>of</strong> several<br />

clusters <strong>of</strong> galaxies with weak gravitational lens<strong>in</strong>g, <strong>and</strong> an <strong>in</strong>itial attempt to<br />

make cosmological deductions from the study. On one level, I developed new<br />

procedures to maximize <strong>and</strong> improve the way weak lens<strong>in</strong>g is measured <strong>in</strong><br />

clusters, focus<strong>in</strong>g on a careful selection <strong>of</strong> galaxies for weak lens<strong>in</strong>g analysis,<br />

while benefit<strong>in</strong>g from the “dilution” to learn about the cluster light properties.<br />

This work is presented <strong>in</strong> Chapter 2 for the first cluster exam<strong>in</strong>ed, Abell<br />

1689. This work was extended to three more high-mass clusters, as described<br />

<strong>in</strong> Chapter 3. On the other level, I exam<strong>in</strong>ed the distance-redshift relation<br />

from the weak lens<strong>in</strong>g <strong>of</strong> selected samples <strong>of</strong> background galaxies beh<strong>in</strong>d one<br />

<strong>of</strong> the explored clusters, A370, <strong>and</strong> led the way to a new cosmological probe<br />

based on this detectable behavior, as discussed <strong>in</strong> Chapter 4.<br />

25


Chapter 2<br />

Us<strong>in</strong>g Weak Lens<strong>in</strong>g Dilution<br />

to Improve Measurements <strong>of</strong><br />

the Lum<strong>in</strong>ous <strong>and</strong> Dark Matter<br />

<strong>in</strong> A1689<br />

A version <strong>of</strong> this chapter has been published as Medez<strong>in</strong>ski, E. et al. 2007,<br />

ApJ, 663, 717.<br />

2.1 Introduction<br />

The <strong>in</strong>fluence <strong>of</strong> “Dark matter” is strik<strong>in</strong>gly evident <strong>in</strong> the centers <strong>of</strong> massive<br />

galaxy clusters, where large velocity dispersions are measured <strong>and</strong> giant<br />

arcs are <strong>of</strong>ten visible. Cluster masses may be estimated by several<br />

means, lead<strong>in</strong>g to exceptionally high central mass-to-light ratios, M/L R ∼<br />

100 − 300h(M/L R ) ⊙ (Carlberg et al. 2001), far exceed<strong>in</strong>g both the mass <strong>of</strong><br />

stars compris<strong>in</strong>g the light <strong>of</strong> the cluster galaxies <strong>and</strong> the mass <strong>of</strong> plasma<br />

derived from X-ray emission <strong>and</strong> the SZ effect. Reasonable consistency is<br />

claimed between dynamical, hydrodynamical <strong>and</strong> lens<strong>in</strong>g-based estimates <strong>of</strong><br />

27


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

cluster masses, support<strong>in</strong>g the conventional underst<strong>and</strong><strong>in</strong>g <strong>of</strong> gravity. However,<br />

the high mass-to-light ratio requires that an unconventional nonbaryonic<br />

dark material <strong>of</strong> unclear orig<strong>in</strong> dom<strong>in</strong>ates the mass <strong>of</strong> clusters.<br />

In detail, discrepancies are <strong>of</strong>ten reported between masses derived from<br />

strong lens<strong>in</strong>g <strong>and</strong> X-ray measurements, with the claimed X-ray masses <strong>of</strong>ten<br />

lower <strong>in</strong> the centers <strong>of</strong> clusters. High resolution X-ray emission <strong>and</strong> temperature<br />

maps reveal that the majority <strong>of</strong> local clusters undergo repeated merg<strong>in</strong>g<br />

with sub-clumps, <strong>and</strong> obvious shock fronts are seen <strong>in</strong> some cases (Markevitch<br />

et al. 2002; Reiprich et al. 2004). The double cluster 1E 0657–56 (a.k.a.,<br />

the “bullet” cluster, z = 0.296) is the most extreme example studied, where<br />

the associated gas forms a flattened lum<strong>in</strong>ous shock-heated structure ly<strong>in</strong>g<br />

between the two large dist<strong>in</strong>ct clusters, clearly <strong>in</strong>dicat<strong>in</strong>g these two bodies<br />

collided recently at a high relative velocity (Markevitch et al. 2004), with<br />

the gas rema<strong>in</strong><strong>in</strong>g <strong>in</strong> between while the cluster galaxies have passed through<br />

each other relatively collisionlessly. Very <strong>in</strong>terest<strong>in</strong>gly, the weak lens<strong>in</strong>g signal<br />

follows the double structure <strong>of</strong> the clusters, rather than the gas <strong>in</strong> between,<br />

cleanly demonstrat<strong>in</strong>g that the bulk <strong>of</strong> the matter is collisionless <strong>and</strong><br />

dark (Clowe et al. 2004). This system favors the st<strong>and</strong>ard cold dark matter<br />

(CDM) scenario, places a restrictive limit on the <strong>in</strong>teraction cross-section <strong>of</strong><br />

any fermionic dark matter, <strong>and</strong> disfavors a class <strong>of</strong> alternative gravity theories<br />

<strong>in</strong> which only baryons are present (Clowe et al. 2004). Smaller but significant<br />

discrepancies <strong>of</strong> the same sort are also claimed for other <strong>in</strong>teract<strong>in</strong>g clusters<br />

(Natarajan et al. 2002; Jee et al. 2005).<br />

Many clusters show no apparent signs <strong>of</strong> significant ongo<strong>in</strong>g <strong>in</strong>teraction;<br />

these have centrally symmetric X-ray emission <strong>and</strong> little obvious substructure<br />

(Allen 1998), <strong>and</strong> for some <strong>of</strong> these the lens<strong>in</strong>g <strong>and</strong> X-ray (or dynamical)<br />

derived masses are claimed to agree, as would be expected for relaxed systems<br />

(e.g., Arabadjis et al. 2002; R<strong>in</strong>es et al. 2003; Diaferio et al. 2005).<br />

More generally, s<strong>in</strong>ce the dyanmics <strong>of</strong> dark matter <strong>and</strong> most cluster galaxies<br />

is essentially collisionless, we would expect them to have similar radial pr<strong>of</strong>iles.<br />

Bias<strong>in</strong>g <strong>in</strong>herent <strong>in</strong> hierarchical growth may significantly modify this<br />

similarity (Kauffmann et al. 1997), <strong>and</strong> dynamical friction is expected to<br />

concentrate the relatively more massive galaxies <strong>in</strong> the core. These together<br />

28


2.1 Introduction<br />

with tidal effects may help to account for the unique properties <strong>of</strong> cD galaxies.<br />

Hence comparisons <strong>of</strong> the mass pr<strong>of</strong>ile with the light pr<strong>of</strong>ile <strong>of</strong> the cluster<br />

galaxies are expected to provide an additional <strong>in</strong>sight <strong>in</strong>to the formation <strong>of</strong><br />

clusters <strong>and</strong> the nature <strong>of</strong> dark matter.<br />

Recent improvements <strong>in</strong> the quality <strong>of</strong> data useful for weak <strong>and</strong> strong<br />

lens<strong>in</strong>g studies now allow the construction <strong>of</strong> much more def<strong>in</strong>itive mass pr<strong>of</strong>iles<br />

that are sufficiently precise to test the predictions <strong>of</strong> popular models,<br />

relatively free <strong>of</strong> major assumptions. The <strong>in</strong>ner mass pr<strong>of</strong>iles <strong>of</strong> several clusters<br />

have been constra<strong>in</strong>ed <strong>in</strong> some detail via lens<strong>in</strong>g, us<strong>in</strong>g multiply lensed<br />

background galaxies (Kneib et al. 1996; Hammer et al. 1997; S<strong>and</strong> et al. 2002;<br />

Gavazzi et al. 2003; S<strong>and</strong> et al. 2004; Broadhurst et al. 2005a; Sharon et al.<br />

2005). The statistical effects <strong>of</strong> weak lens<strong>in</strong>g have been used to extend the<br />

mass pr<strong>of</strong>ile to larger radii. The mass pr<strong>of</strong>iles derived from these observations<br />

have been claimed to show NFW-like behaviour (Navarro, Frenk, & White<br />

1997), with a cont<strong>in</strong>uous flatten<strong>in</strong>g towards the center, but with higher density<br />

concentrations than expected. This is particularly evident for A1689, for<br />

which we have constructed the highest quality lens<strong>in</strong>g based mass pr<strong>of</strong>ile to<br />

date, comb<strong>in</strong><strong>in</strong>g over 100 multiply-lensed images <strong>and</strong> weak lens<strong>in</strong>g effects <strong>of</strong><br />

distortion <strong>and</strong> magnification from Subaru (Broadhurst et al. 2005a,b).<br />

A lesson learned from this earlier work is the importance <strong>of</strong> carefully<br />

select<strong>in</strong>g a background population to avoid contam<strong>in</strong>ation by the lens<strong>in</strong>g<br />

cluster. It is not enough to simply exclude a narrow b<strong>and</strong> conta<strong>in</strong><strong>in</strong>g the<br />

obvious E/S0 sequence, follow<strong>in</strong>g common practice, because the lens<strong>in</strong>g signal<br />

<strong>of</strong> the rema<strong>in</strong>der is found to fall rapidly towards the cluster center, <strong>in</strong><br />

contrast to the uncontam<strong>in</strong>ated population <strong>of</strong> background galaxies ly<strong>in</strong>g redward<br />

<strong>of</strong> the cluster sequence (Broadhurst et al. 2005b). In the well studied<br />

case <strong>of</strong> A1689, there has been a long st<strong>and</strong><strong>in</strong>g discrepancy between the strong<br />

<strong>and</strong> weak lens<strong>in</strong>g effects, with the weak lens<strong>in</strong>g signal underpredict<strong>in</strong>g the observed<br />

E<strong>in</strong>ste<strong>in</strong> radius by a factor <strong>of</strong> ∼ 2.5 (Clowe & Schneider 2001; Bardeau<br />

et al. 2005), based only on a m<strong>in</strong>imal rejection <strong>of</strong> obvious cluster members<br />

us<strong>in</strong>g one or two-b<strong>and</strong> photometry.<br />

In our recent weak lens<strong>in</strong>g analysis <strong>of</strong> Subaru images <strong>of</strong> A1689 the above<br />

29


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

behavior was found when we rejected only the cluster sequence <strong>in</strong> the same<br />

way as others. This resulted <strong>in</strong> a relatively shallow trend <strong>of</strong> the weak lens<strong>in</strong>g<br />

signal with radius <strong>and</strong> consequently an underprediction <strong>of</strong> the E<strong>in</strong>ste<strong>in</strong><br />

radius account<strong>in</strong>g for the earlier discrepancy (Broadhurst et al. 2005b) . If,<br />

however, one selects only objects redder than the cluster sequence for the<br />

lens<strong>in</strong>g analysis, then the weak tangential distortion cont<strong>in</strong>ues to rise all the<br />

way to the E<strong>in</strong>ste<strong>in</strong> radius <strong>in</strong> very good agreement with the strong lens<strong>in</strong>g<br />

strength. This red population is naturally expected to comprise only<br />

background galaxies, made redder by relatively large k-corrections <strong>and</strong> with<br />

negligible contam<strong>in</strong>ation by cluster members, s<strong>in</strong>ce the bulk <strong>of</strong> the reddest<br />

cluster members are the early-type galaxies def<strong>in</strong>ed by the cluster sequence.<br />

However, for galaxies with colors bluer than the cluster sequence, cluster<br />

members will be present along with background galaxies s<strong>in</strong>ce the cluster<br />

population extends to bluer colors <strong>of</strong> the later-type members, overlapp<strong>in</strong>g <strong>in</strong><br />

color with the blue background. The effect <strong>of</strong> the cluster members is simply<br />

to reduce the strength <strong>of</strong> the weak lens<strong>in</strong>g signal when averaged over a<br />

statistical sample, <strong>in</strong> proportion to the fraction <strong>of</strong> cluster members whose<br />

orientations are r<strong>and</strong>omly distributed, therefore dilut<strong>in</strong>g the lens<strong>in</strong>g signal<br />

relative to the reference background level derived from the red background<br />

population.<br />

We can turn this dilution effect to our advantage <strong>and</strong> use it to derive<br />

properties <strong>of</strong> the cluster population, <strong>in</strong> particular the radial light pr<strong>of</strong>ile, for<br />

comparison with the dark matter pr<strong>of</strong>ile. Deriv<strong>in</strong>g a light pr<strong>of</strong>ile this way<br />

has advantages over the usual approach to def<strong>in</strong><strong>in</strong>g cluster membership. The<br />

<strong>in</strong>herent fluctuations <strong>in</strong> the number counts <strong>of</strong> the background population are<br />

a significant source <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> the usual approach <strong>of</strong> subtract<strong>in</strong>g the<br />

far-field level when def<strong>in</strong><strong>in</strong>g the cluster population (e.g., Paolillo et al. 2001;<br />

Andreon et al. 2005; Pracy et al. 2005). This uncerta<strong>in</strong>ty is <strong>of</strong>ten cited as<br />

a potential explanation for the substantial variation reported between lum<strong>in</strong>osity<br />

functions derived for different clusters, particularly <strong>in</strong> the outskirts<br />

<strong>of</strong> clusters, where not only is the density <strong>of</strong> galaxies lower, but their colors<br />

are bluer, thus harder to dist<strong>in</strong>guish from the background us<strong>in</strong>g photometry<br />

alone.<br />

30


2.2 Subaru imag<strong>in</strong>g reduction <strong>and</strong> sample selection<br />

In § 2.2 we describe the observations <strong>and</strong> photometry <strong>of</strong> the Subaru images<br />

<strong>of</strong> A1689. In § 2.3 we describe the distortion analysis applied to the Subaru<br />

data. The distortion analysis <strong>of</strong> ACS images <strong>of</strong> A1689 is described <strong>in</strong> § 2.4.<br />

In § 2.5 we describe the photometric redshift analysis <strong>of</strong> the Subaru <strong>and</strong> ACS<br />

images with reference to the Capak et al. (2004) sample <strong>of</strong> deep multi-color<br />

Subaru images. Our weak lens<strong>in</strong>g dilution analysis <strong>of</strong> the Subaru images<br />

is described <strong>in</strong> § 2.6. In § 2.7 we go on to derive the cluster lum<strong>in</strong>osity<br />

pr<strong>of</strong>ile <strong>and</strong> color, <strong>and</strong> <strong>in</strong> § 2.8 the cluster lum<strong>in</strong>osity function is deduced at<br />

several radial positions. In § 2.9 we determ<strong>in</strong>e the M/L pr<strong>of</strong>ile, <strong>and</strong> <strong>in</strong> § 2.10<br />

we do a consistency check for the mass derived <strong>in</strong> this paper with previous<br />

estimations. Our conclusions are summarized <strong>in</strong> § 2.11.<br />

The concordance ΛCDM cosmology is adopted (Ω M = 0.3, Ω Λ = 0.7 but<br />

h is left <strong>in</strong> units <strong>of</strong> H 0 /100 km s −1 Mpc −1 , for easier comparison with earlier<br />

work).<br />

2.2 Subaru imag<strong>in</strong>g reduction <strong>and</strong> sample selection<br />

We have retrieved Suprime-Cam imag<strong>in</strong>g <strong>of</strong> A1689 <strong>in</strong> V (1920s) <strong>and</strong> SDSS i ′<br />

(2640s) from the Subaru archive, SMOKA. 1 Reduction s<strong>of</strong>tware developed by<br />

Yagi et al. (2002) is used for flat-field<strong>in</strong>g, <strong>in</strong>strumental distortion correction,<br />

differential refraction, PSF match<strong>in</strong>g, sky subtraction, <strong>and</strong> stack<strong>in</strong>g. The<br />

result<strong>in</strong>g FWHM is 0 ′′ .82 <strong>in</strong> V <strong>and</strong> 0 ′′ .88 <strong>in</strong> i ′ with 0 ′′ .202 pix −1 , cover<strong>in</strong>g a<br />

field <strong>of</strong> 30 ′ × 25 ′ .<br />

Photometry is based on a comb<strong>in</strong>ed V + i ′ image us<strong>in</strong>g the program SExtractor<br />

(Bert<strong>in</strong> & Arnouts 1996). The limit<strong>in</strong>g magnitudes are V = 26.5 <strong>and</strong><br />

i ′ = 25.9 for a 3σ detection with<strong>in</strong> a 2 ′′ aperture. We def<strong>in</strong>e three galaxy<br />

samples accord<strong>in</strong>g to color <strong>and</strong> magnitude – “red”, “green”, <strong>and</strong> “blue”<br />

(see table 2.1 for summary), <strong>and</strong> for all our samples we def<strong>in</strong>e a limit<strong>in</strong>g<br />

magnitude <strong>of</strong> i ′ < 26.5, to avoid <strong>in</strong>completeness, as shown <strong>in</strong> Figure 2.1.<br />

1 http://smoka.nao.ac.jp.<br />

31


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

Figure 2.1 – Color vs. magnitude diagram for A1689 cluster galaxies. The E/S0 sequence<br />

is apparent at (V − i ′ ) ∼ 0.8 where there is an overdensity <strong>of</strong> bright galaxies. The red<br />

po<strong>in</strong>ts represent the background sample <strong>of</strong> galaxies redder than the E/S0 sequence. The<br />

blue po<strong>in</strong>ts represent a background sample <strong>of</strong> the bluest objects <strong>in</strong> the field. The green<br />

po<strong>in</strong>ts cover a range <strong>of</strong> color chosen to <strong>in</strong>clude the cluster sequence <strong>and</strong> bluer cluster<br />

members, but <strong>in</strong> addition background galaxies are also present whose colors fall <strong>in</strong> this<br />

range.<br />

The red galaxy sample consists <strong>of</strong> galaxies 0.2 mag redder than the E/S0<br />

sequence <strong>of</strong> the cluster, which is accurately def<strong>in</strong>ed by the l<strong>in</strong>ear relation<br />

(V − i ′ ) E/S0 = −0.03525i ′ + 1.505, <strong>and</strong> up to 2.5 mag redder than this l<strong>in</strong>e<br />

to <strong>in</strong>clude the majority <strong>of</strong> the background red population. Very red dropout<br />

galaxies may be detected beyond this po<strong>in</strong>t. Indeed, one spectroscopically<br />

confirmed example at z = 4.82 has been detected beh<strong>in</strong>d this cluster (Frye<br />

et al. 2002), <strong>and</strong> such cases are excluded by this upper limit, so that we do<br />

not need to make an uncerta<strong>in</strong> correction for the level <strong>of</strong> their weak lens<strong>in</strong>g<br />

signal which will be significantly larger than for the bulk <strong>of</strong> the background<br />

red galaxy population. As we will show <strong>in</strong> § 2.5, most <strong>of</strong> these red background<br />

galaxies are at a much lower mean redshift <strong>of</strong> 〈z〉 ∼ 0.85. The red<br />

32


2.2 Subaru imag<strong>in</strong>g reduction <strong>and</strong> sample selection<br />

Table 2.1 – Sample Selection<br />

Sample mag limit color limit N n [h 2 Mpc −2 ] < z > < D ><br />

red 18 < i ′ < 26.5 0.2


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

bluer colors.<br />

The green galaxy sample is simply selected to lie between the red <strong>and</strong><br />

blue samples def<strong>in</strong>ed above, (V − i ′ +0.1<br />

) E/S0 (Fig. 2.1), with generous limits<br />

−0.3<br />

set to <strong>in</strong>clude the vast majority <strong>of</strong> cluster galaxies, s<strong>in</strong>ce - as we have established<br />

- both the red <strong>and</strong> blue samples are negligibly contam<strong>in</strong>ated by cluster<br />

members, <strong>and</strong> hence the vast majority <strong>of</strong> cluster members must lie with<strong>in</strong><br />

this <strong>in</strong>termediate range <strong>of</strong> color. A narrow gap on each side <strong>of</strong> these samples<br />

is left out <strong>of</strong> our analysis to ensure that the def<strong>in</strong>ition <strong>of</strong> the background does<br />

not encroach on the cluster population. Note that unlike the green sample<br />

conta<strong>in</strong><strong>in</strong>g the cluster population, the background populations do not need to<br />

be complete <strong>in</strong> any sense but should simply be well def<strong>in</strong>ed <strong>and</strong> conta<strong>in</strong> only<br />

background. Increas<strong>in</strong>g the green sample to cover these narrow gaps does not<br />

lead to any particularly significant change <strong>in</strong> our conclusions, but only <strong>in</strong>creases<br />

somewhat the level <strong>of</strong> noise by <strong>in</strong>clud<strong>in</strong>g relatively more background<br />

galaxies. With<strong>in</strong> the green sample there are <strong>of</strong> course background galaxies,<br />

<strong>and</strong> the purpose <strong>of</strong> this paper is to make use <strong>of</strong> the relative proportion <strong>of</strong><br />

these cluster <strong>and</strong> background populations via weak lens<strong>in</strong>g to establish the<br />

properties <strong>of</strong> the cluster galaxy population, by us<strong>in</strong>g the the dilution <strong>of</strong> the<br />

weak lens<strong>in</strong>g signal <strong>of</strong> the background galaxies due to the cluster members.<br />

2.3 Distortion analysis <strong>of</strong> subaru images<br />

We use the IMCAT package developed by N. Kaiser 2 to perform object detection,<br />

photometry <strong>and</strong> shape measurements, follow<strong>in</strong>g the formalism outl<strong>in</strong>ed<br />

<strong>in</strong> (Kaiser, Squires, & Broadhurst 1995, hereafter KSB). We have modified<br />

the method somewhat follow<strong>in</strong>g the procedures described <strong>in</strong> Erben et al.<br />

(2001, see Section 5).<br />

To obta<strong>in</strong> an estimate <strong>of</strong> the reduced shear, g α = γ α /(1 − κ), we measure<br />

the image ellipticity e α from the weighted quadrupole moments <strong>of</strong> the surface<br />

brightness <strong>of</strong> <strong>in</strong>dividual galaxies. Firstly the PSF anisotropy needs to be<br />

2 http://www.ifa.hawaii/kaiser/IMCAT<br />

34


2.3 Distortion analysis <strong>of</strong> subaru images<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6<br />

color−(red sequence)<br />

Figure 2.2 – To establish the boundaries <strong>of</strong> the color distribution free <strong>of</strong> cluster members<br />

we calculate the mean tangential distortion averaged over the full radial extent <strong>of</strong> the<br />

cluster, done separately for the blue <strong>and</strong> red samples. On the right the red curve shows<br />

that g T drops rapidly when the bluer limit <strong>of</strong> the entire red sample is decreased below<br />

a color while lies +0.2 mag redward <strong>of</strong> the cluster sequence. This sharp decl<strong>in</strong>e marks<br />

the po<strong>in</strong>t at which the red sample encroaches on the E/S0 sequence <strong>of</strong> the cluster. On<br />

the blue side the red limit <strong>of</strong> the blue sample is chosen to lie −0.45 mag blueward <strong>of</strong> the<br />

cluster sequence, mark<strong>in</strong>g the po<strong>in</strong>t at which significant contam<strong>in</strong>ation by the cluster acts<br />

to dilute the weak lens<strong>in</strong>g signal from later-type bluer cluster members.<br />

corrected us<strong>in</strong>g the star images as references:<br />

e ′ α = e α − P αβ<br />

smq ∗ β (2.1)<br />

where P sm is the smear polarizability tensor be<strong>in</strong>g close to diagonal, <strong>and</strong><br />

qα ∗ = (P ∗sm ) −1<br />

αβ eβ ∗ is the stellar anisotropy kernel. We select bright, unsaturated<br />

foreground stars identified <strong>in</strong> a branch <strong>of</strong> the half-light radius (r h ) vs.<br />

magnitude (i ′ ) diagram (20 < i ′ < 22.5, 〈r h 〉 median<br />

= 2.38 pixels) to calculate<br />

q ∗ α. In order to obta<strong>in</strong> a smooth map <strong>of</strong> q ∗ α which is used <strong>in</strong> equation (2.1),<br />

we divided the 9K × 7.4K image <strong>in</strong>to 5 × 4 chunks each with 1.8K × 1.85K<br />

pixels, <strong>and</strong> then fitted the q ∗ <strong>in</strong> each chunk <strong>in</strong>dependently with second-order<br />

bi-polynomials, q α ∗ ( ⃗ θ), <strong>in</strong> conjunction with iterative σ-clipp<strong>in</strong>g rejection on<br />

each component <strong>of</strong> the residual e ∗ α − P αβ<br />

∗smq ∗ β (⃗ θ). The f<strong>in</strong>al stellar sample consists<br />

<strong>of</strong> 540 stars, or the mean surface number density <strong>of</strong> n ∗ = 0.72 arcm<strong>in</strong> −2 .<br />

From the rest <strong>of</strong> the object catalog, we select objects with 2.4 r h 15<br />

pixels as an i ′ -selected weak lens<strong>in</strong>g galaxy sample, which conta<strong>in</strong>s 61, 115<br />

35


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

galaxies or ¯n g ≃ 81 arcm<strong>in</strong> −2 . It is worth not<strong>in</strong>g that the mean stellar ellipticity<br />

before correction is (ē 1 ∗ , ē 2 ∗ ) ≃ (−0.013, −0.018) over the data field,<br />

while the residual e ∗ α after correction is reduced to ē ∗res<br />

1 = (0.47±1.32)×10 −4 ,<br />

ē ∗res<br />

2 = (0.54 ± 0.94) × 10 −4 . The mean <strong>of</strong>fset from the null expectation is<br />

|ē ∗res | = (0.71 ± 1.12) × 10 −4 . On the other h<strong>and</strong>, the rms value <strong>of</strong> stellar<br />

ellipticities, σ e∗ ≡ 〈|e ∗ | 2 〉, is reduced from 2.64% to 0.38% when apply<strong>in</strong>g the<br />

anisotropic PSF correction.<br />

Second, we need to correct the isotropic smear<strong>in</strong>g effect on image ellipticities<br />

caused by see<strong>in</strong>g <strong>and</strong> the w<strong>in</strong>dow function used for the shape measurements.<br />

The pre-see<strong>in</strong>g reduced shear g α can be estimated from<br />

g α = (P −1<br />

g ) αβ e ′ β (2.2)<br />

with the pre-see<strong>in</strong>g shear polarizability tensor P g αβ<br />

. We follow the procedure<br />

described <strong>in</strong> Erben et al. (2001) to measure P g (see also § 3.4 <strong>of</strong> Hetterscheidt<br />

et al. 2007). We adopt the scalar correction scheme, namely,<br />

P g αβ = 1 2 tr[P g ]δ αβ ≡ P g s δ αβ (2.3)<br />

(Hudson et al. 1998; Hoekstra et al. 1998; Erben et al. 2001; Hamana et al.<br />

2003) The P s g measured for <strong>in</strong>dividual objects are still noisy especially for<br />

small <strong>and</strong> fa<strong>in</strong>t objects. We thus adopt a smooth<strong>in</strong>g scheme <strong>in</strong> object parameter<br />

space proposed by Van Waerbeke et al. (2000, see also Erben et al.<br />

2001; Hamana et al. 2003). We first identify thirty neighbors for each object<br />

<strong>in</strong> r g -i ′ parameter space. We then calculate over the local ensemble the median<br />

value 〈P s g〉 <strong>of</strong> P s g <strong>and</strong> the variance σ 2 g <strong>of</strong> g = g 1 +ig 2 us<strong>in</strong>g equation (2.2).<br />

The dispersion σ g is used as an rms error <strong>of</strong> the shear estimate for <strong>in</strong>dividual<br />

galaxies. The mean variance ¯σ 2 g over the sample is obta<strong>in</strong>ed as ≃ 0.171, or<br />

√¯σ<br />

2<br />

g ≈ 0.41.<br />

In the previous study by Broadhurst et al. (2005b), those objects that<br />

yield a negative value <strong>of</strong> the raw Pg<br />

s estimate were removed from the f<strong>in</strong>al<br />

galaxy catalog to avoid noisy shear estimates. On the other h<strong>and</strong>, <strong>in</strong> the<br />

present study, we use all <strong>of</strong> the galaxies <strong>in</strong> our weak lens<strong>in</strong>g sample <strong>in</strong>clud<strong>in</strong>g<br />

36


2.3 Distortion analysis <strong>of</strong> subaru images<br />

galaxies with Pg s < 0. After smooth<strong>in</strong>g s <strong>in</strong> the object parameter space,<br />

all <strong>of</strong> the objects yield positive values <strong>of</strong> 〈 Pg〉 s , with the m<strong>in</strong>imum <strong>of</strong> ≈ 0.04.<br />

The median value <strong>of</strong> 〈 Pg〉 s over the weak lens<strong>in</strong>g galaxy sample, <strong>in</strong>clud<strong>in</strong>g<br />

galaxies with Pg s < 0, is calculated as ≈ 0.32. For a reference, the subsample<br />

<strong>of</strong> galaxies with Pg s > 0 gives the median average <strong>of</strong> ≈ 0.33, mostly<br />

weighted by galaxies with r g = 2 − 2.5 pixels. F<strong>in</strong>ally, we use the follow<strong>in</strong>g<br />

estimator for the reduced shear:<br />

g α = e ′ α/ 〈 P s g〉<br />

. (2.4)<br />

The quadratic shape distortion <strong>of</strong> an object is described by the complex<br />

reduced-shear, g = g 1 + ig 2 . The tangential component g T is used to obta<strong>in</strong><br />

the azimuthally averaged distortion due to lens<strong>in</strong>g, <strong>and</strong> computed from the<br />

distortion coefficients g 1 , g 2 :<br />

g T = −(g 1 cos 2θ + g 2 s<strong>in</strong> 2θ), (2.5)<br />

where θ is the position angle <strong>of</strong> an object with respect to the cluster center,<br />

<strong>and</strong> the uncerta<strong>in</strong>ty <strong>in</strong> the g T measurement is σ ≡ σ g / √ 2 <strong>in</strong> terms <strong>of</strong> the<br />

rms error σ g for the complex shear measurement. The cluster center is well<br />

determ<strong>in</strong>ed from symmetry <strong>of</strong> the strong lens<strong>in</strong>g pattern (Broadhurst et al.<br />

2005a). The estimation <strong>of</strong> g T only has significance when evaluated statistically<br />

over large number <strong>of</strong> galaxies, s<strong>in</strong>ce galaxies themselves are not round<br />

objects but have a wide spread <strong>in</strong> <strong>in</strong>tr<strong>in</strong>sic shapes <strong>and</strong> orientations. In radial<br />

b<strong>in</strong>s we calculate the weighted average <strong>of</strong> the g T s <strong>and</strong> the weighted error:<br />

〈g T (r n )〉 =<br />

∑<br />

gT /σ 2<br />

∑ 1/σ<br />

2<br />

(2.6)<br />

σ T (r n ) =<br />

(∑ ) −1/2<br />

1/σ<br />

2 . (2.7)<br />

It has been shown that such weights depend on the size <strong>of</strong> the objects<br />

but mostly on their magnitudes (see e.g. Hoekstra et al. (2006)). Therefore,<br />

as apparent magnitude <strong>in</strong>creases with redshift the redshift distribution <strong>of</strong><br />

sources will be modified to some extent by this weight<strong>in</strong>g scheme. We have<br />

37


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

0.5<br />

0.5<br />

0.2<br />

0.2<br />

Distortion g +<br />

0.1<br />

Distortion g +<br />

0.1<br />

0.02<br />

0.02<br />

0.01<br />

0.01<br />

2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.3 – Tangential shear pr<strong>of</strong>iles,<br />

g T (r) <strong>of</strong> the red <strong>and</strong> blue background populations.<br />

The tangential distortion pr<strong>of</strong>ile<br />

<strong>of</strong> both decl<strong>in</strong>e smoothly from the center,<br />

rema<strong>in</strong><strong>in</strong>g positive to the limit <strong>of</strong> the data.<br />

The red galaxies are fitted well with a simple<br />

power-law, d log g T /d log r = −1.17 ±<br />

0.1. The blue sample is more noisy but<br />

also well represented by the same relation,<br />

only <strong>of</strong>fset <strong>in</strong> amplitude by 23 ± 17% <strong>and</strong><br />

is related to the greater depth <strong>of</strong> the blue<br />

population relative to the red, § 2.5<br />

Figure 2.4 – Tangential shear vs. radius.<br />

The green po<strong>in</strong>ts represent the <strong>in</strong>termediate<br />

color sample, conta<strong>in</strong><strong>in</strong>g both cluster<br />

<strong>and</strong> background galaxies. The black po<strong>in</strong>ts<br />

show the level <strong>of</strong> tangential distortion <strong>of</strong><br />

the comb<strong>in</strong>ed red+blue sample <strong>of</strong> the background.<br />

The green po<strong>in</strong>ts fall close to<br />

the background level def<strong>in</strong>ed at large radii,<br />

<strong>in</strong>dicat<strong>in</strong>g the green sample is dom<strong>in</strong>ated<br />

by background galaxies, <strong>and</strong> falls short towards<br />

the cluster center where cluster members<br />

<strong>in</strong>creas<strong>in</strong>gly dilute the lens<strong>in</strong>g signal.<br />

<strong>in</strong>vestigated this us<strong>in</strong>g the catalog <strong>of</strong> Capak et al. (2004) as here photometric<br />

redshifts are estimated (see § 2.5 for a fuller description <strong>of</strong> the photometric<br />

properties <strong>of</strong> this sample). First, we generated from the Capak catalog<br />

blue/red background galaxy samples with the same color-magnitude criteria<br />

as the present study. We then derived an i’-magnitude vs. photo-z relation<br />

for each galaxy sub-sample. We subdivided the data <strong>in</strong>to magnitude (i’) b<strong>in</strong>s<br />

<strong>and</strong> derived a magnitude (i’) vs. photo-z relation us<strong>in</strong>g median averag<strong>in</strong>g.<br />

We then assume this magnitude-redshift relation holds <strong>in</strong> our A1689 data<br />

<strong>and</strong> obta<strong>in</strong> for each galaxy <strong>in</strong> A1689 an estimate <strong>of</strong> redshift via the magnitude<br />

– photo-z relation. It is then straightforward to have an effective redshift<br />

distribution tak<strong>in</strong>g <strong>in</strong>to account weak lens<strong>in</strong>g statistical weights, w. We can<br />

see a qualitative feature that although low-z background galaxies are more<br />

strongly weighted than higher-z ones, the effect on our observed redshift distribution<br />

is negligible because our redshift selection w<strong>in</strong>dow does not sample<br />

38


2.3 Distortion analysis <strong>of</strong> subaru images<br />

these larger angle, lower redshift objects, but rather the more distant fa<strong>in</strong>t<br />

population whose small angular sizes are heavily <strong>in</strong>fluenced by the see<strong>in</strong>g.<br />

In Figure 2.3 we compare the radial pr<strong>of</strong>ile <strong>of</strong> g T <strong>of</strong> the red <strong>and</strong> blue<br />

samples def<strong>in</strong>ed above. These have a very similar form imply<strong>in</strong>g that the<br />

blue sample, like the red sample, is dom<strong>in</strong>ated by background galaxies with<br />

negligible dilution by cluster members even at small radius where the cluster<br />

overdensity is large. Very <strong>in</strong>terest<strong>in</strong>gly a clear <strong>of</strong>fset is visible between these<br />

pr<strong>of</strong>iles over the full range <strong>of</strong> radius, with the amplitude <strong>of</strong> the blue sample<br />

ly<strong>in</strong>g systematically above that <strong>of</strong> the red sample, as shown <strong>in</strong> Figure 2.3.<br />

This is readily expla<strong>in</strong>ed as a depth related effect, as we show below <strong>in</strong> § 2.5<br />

where we evaluate the redshift <strong>distributions</strong> <strong>of</strong> these two populations. We<br />

f<strong>in</strong>d the blue sample to be deeper than the red, <strong>and</strong> s<strong>in</strong>ce lens<strong>in</strong>g scales with<br />

depth, so should the lens<strong>in</strong>g pr<strong>of</strong>iles be <strong>of</strong>fset from each other by the same<br />

scale.<br />

The tangential distortion <strong>of</strong> the green population behaves quite differently<br />

(Fig. 2.4) fall<strong>in</strong>g well below the background level near the cluster center.<br />

The green sample has a maximum signal at <strong>in</strong>termediate radius, 3 ′ − 5 ′ ,<br />

<strong>and</strong> then decl<strong>in</strong>es quickly <strong>in</strong>side this radius as the unlensed cluster galaxies<br />

dom<strong>in</strong>ate over the background <strong>in</strong> the center. Notice that the green sample<br />

does not fall to zero at the outskirts but rises up to almost meet the level<br />

<strong>of</strong> the background sample, <strong>in</strong>dicat<strong>in</strong>g that the majority <strong>of</strong> the green sample<br />

at large radius comprises background rather than cluster members. We go<br />

on to use the ratio <strong>of</strong> the distortion <strong>of</strong> the green sample compared with the<br />

background level to determ<strong>in</strong>e the proportion <strong>of</strong> cluster members <strong>in</strong> § 2.6,<br />

but to do so we first evaluate the expected depths <strong>of</strong> our samples <strong>in</strong> § 2.5,<br />

<strong>in</strong> order to make a precise comparison <strong>of</strong> the lens<strong>in</strong>g signals between them,<br />

s<strong>in</strong>ce the lens<strong>in</strong>g signal scales geometrically with <strong>in</strong>creas<strong>in</strong>g source distance<br />

<strong>and</strong> must be accounted for <strong>in</strong> any comparisons.<br />

The results <strong>of</strong> this paper depend on the ratio <strong>of</strong> the background distortion<br />

to the cluster contam<strong>in</strong>ated distortion, (g (B)<br />

T<br />

/g(G) T<br />

), so that the 5-10% level<br />

calibration correction factors estimated from simulations done by the STEP<br />

project (Heymans et al. 2006) for the various weak distortion methods are<br />

39


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

not <strong>of</strong> major concern for the bulk <strong>of</strong> our work.<br />

2.4 Distortion analysis <strong>of</strong> ACS/HST images<br />

In the center <strong>of</strong> the cluster <strong>in</strong>side a radius <strong>of</strong> approximately 1 ′ the Subaru<br />

data become limited <strong>in</strong> depth by the extended bright halos <strong>of</strong> the many lum<strong>in</strong>ous<br />

central galaxies. This region is far better resolved <strong>and</strong> more deeply<br />

imaged with HST/ACS <strong>in</strong> 20 orbits <strong>of</strong> imag<strong>in</strong>g shared between the g ′ r ′ i ′ z ′<br />

passb<strong>and</strong>s. Many multiple images are known here, def<strong>in</strong><strong>in</strong>g accurately the<br />

shape <strong>of</strong> both the tangential <strong>and</strong> radial critical curves (Broadhurst et al.<br />

2005a). Here we analyze the statistical distortion <strong>of</strong> the shapes <strong>of</strong> the many<br />

galaxies recorded <strong>in</strong> these images, to extend our analysis <strong>of</strong> the properties<br />

<strong>of</strong> the cluster galaxies <strong>in</strong>to the center, allow<strong>in</strong>g an accurately def<strong>in</strong>ed central<br />

cluster lum<strong>in</strong>osity function to fa<strong>in</strong>t lum<strong>in</strong>osities. In addition, it will be <strong>in</strong>terest<strong>in</strong>g<br />

to see how consistent the distortion pr<strong>of</strong>ile derived here <strong>in</strong>dependently<br />

matches the mass pr<strong>of</strong>ile obta<strong>in</strong>ed previously from the strongly lensed multiple<br />

images. We stick to very similar def<strong>in</strong>itions <strong>of</strong> the three-color selected<br />

population as with Subaru, but extend their depths by an additional 1.5 magnitudes<br />

(see Figure 2.5), s<strong>in</strong>ce the ACS data are so much deeper. The ACS<br />

images are limited to m=28.5 (5σ) <strong>in</strong> each <strong>of</strong> the passb<strong>and</strong>s. The reduction<br />

<strong>of</strong> the ACS image <strong>and</strong> the photometry for the fa<strong>in</strong>t sources is described <strong>in</strong><br />

detail <strong>in</strong> Broadhurst et al. (2005a), <strong>in</strong>clud<strong>in</strong>g the subtraction <strong>of</strong> the bright<br />

central galaxies <strong>in</strong> the cluster which is essential for obta<strong>in</strong><strong>in</strong>g accurate photometry<br />

<strong>and</strong> shape measurements <strong>of</strong> central lens<strong>in</strong>g images <strong>in</strong>clud<strong>in</strong>g radial<br />

arcs <strong>and</strong> demagnified central images. For the distortion analysis we prefer<br />

the im2shape method developed by Bridle et al. (2002) for deal<strong>in</strong>g <strong>in</strong> particular<br />

with relatively elongated images produced by lens<strong>in</strong>g <strong>in</strong> the strongly<br />

lensed region. This is an improvement over the st<strong>and</strong>ard KSB method which<br />

we used <strong>in</strong> the weak lens<strong>in</strong>g regime appropriate for everyth<strong>in</strong>g except the<br />

central region r < 2 ′ , <strong>and</strong> used for the Subaru analysis described above.<br />

Us<strong>in</strong>g this method, galaxies are fit to a sum <strong>of</strong> two sheared Gaussians<br />

convolved with a PSF. Each Gaussian has two free parameters, amplitude<br />

40


2.4 Distortion analysis <strong>of</strong> ACS/HST images<br />

3.5<br />

3<br />

2.5<br />

2<br />

g’−i’<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

16 18 20 22 24 26 28<br />

i’ AB<br />

Figure 2.5 – Color vs. magnitude diagram for the central region covered by ACS photometry<br />

with magnitudes transformed to AB system to match the V,I photometry from<br />

Subaru. Notice the prom<strong>in</strong>ent E/S0 sequence <strong>and</strong> the greater depth <strong>of</strong> these data compared<br />

with Subaru shown <strong>in</strong> Figure 1. A one-to-one comparison <strong>of</strong> magnitudes for objects<br />

<strong>in</strong> both datasets is shown <strong>in</strong> Figure 2.15.<br />

<strong>and</strong> width. The centroid <strong>and</strong> the shear are also allowed to vary, but these<br />

are restricted to be the same for both Gaussians. Meanwhile, the PSF for<br />

each galaxy is determ<strong>in</strong>ed based on models described <strong>in</strong> Jee et al. (2005).<br />

These PSF models for ACS’s Wide Field Camera (WFC) were derived from<br />

observations <strong>of</strong> the globular cluster 47 Tuc (PROP 9656, P.I. De Marchi).<br />

As the distortion measurements are performed <strong>in</strong> the detection image, each<br />

galaxy is assigned an ”average” PSF based on the different filters <strong>and</strong> chip<br />

positions <strong>in</strong> which it was observed.<br />

We plot the result<strong>in</strong>g values <strong>of</strong> g T (r) (Fig. 2.6) for the blue, green <strong>and</strong><br />

red galaxies def<strong>in</strong>ed <strong>in</strong> the same color ranges as the Subaru data, but to<br />

fa<strong>in</strong>ter magnitudes. A very well def<strong>in</strong>ed saw-tooth pattern is visible, show<strong>in</strong>g<br />

that images are maximally radially aligned at about 17 ′′ <strong>and</strong> then maximally<br />

tangentially aligned at about 47 ′′ . This is a very clear signature <strong>of</strong> strong<br />

41


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

lens<strong>in</strong>g, where the maximum corresponds to the location <strong>of</strong> the tangential<br />

critical curve (E<strong>in</strong>ste<strong>in</strong> radius), <strong>and</strong> the m<strong>in</strong>imum to the radial critical curve,<br />

where images are maximally stretched <strong>in</strong> the radial direction generat<strong>in</strong>g a<br />

r<strong>in</strong>g <strong>of</strong> long images po<strong>in</strong>t<strong>in</strong>g to the center <strong>of</strong> mass, as found <strong>in</strong> Broadhurst<br />

et al. (2005a). The location <strong>of</strong> these critical radii agrees very well with those<br />

derived from the model to the strong lens<strong>in</strong>g data for this cluster, fitted by<br />

Broadhurst et al. (2005a).<br />

Another clearly def<strong>in</strong>ed radius can also be identified from the po<strong>in</strong>t where<br />

the images distortion goes through zero, g T = 0, at a radius <strong>in</strong> between these<br />

two critical radii at about r ≃ 27 ′′ . It is important to note that <strong>in</strong> this region,<br />

between the two critical curves, the parity is p = −1 (odd parity), <strong>and</strong> here<br />

g = 1 e ∗ =<br />

e<br />

|e| 2 (2.8)<br />

(see Kaiser 1995). Here, <strong>in</strong>stead <strong>of</strong> measur<strong>in</strong>g g we are measur<strong>in</strong>g −1 < e < 1.<br />

(This is different than <strong>in</strong> the weak lens<strong>in</strong>g region, outside the tangential<br />

critical curve, where p = +1 <strong>and</strong> g = e, <strong>and</strong> therefore no dist<strong>in</strong>ction needed<br />

to be made). S<strong>in</strong>ce<br />

e = 1 ∝ 1 − κ, (2.9)<br />

g∗ zero distortion corresponds to κ = 1 curve, which lies <strong>in</strong> between the tangential<br />

<strong>and</strong> critical curves. Note, for several reasons we cannot expect that the<br />

data will reach the theoretically extreme value <strong>of</strong> g T = 1 at the tangential<br />

critical radius, mean<strong>in</strong>g that the images are <strong>in</strong>f<strong>in</strong>itely stretched tangentially,<br />

<strong>and</strong> also g T = −1 at the radial critical radius where they are stretched <strong>in</strong>f<strong>in</strong>itely<br />

<strong>in</strong> the radial direction. By def<strong>in</strong>ition, weak lens<strong>in</strong>g measurements will<br />

underestimate the strong distortions near critical curves. In addition, convolution<br />

by the redshift distribution <strong>of</strong> the background sources will smooth<br />

these features out. Nonetheless, we can def<strong>in</strong>e their locations <strong>in</strong> radius rather<br />

precisely <strong>and</strong> these positions must be reproduced <strong>in</strong> any satisfactory model,<br />

at r ≃ 17 ′′ <strong>and</strong> r ∼ 48 ′′ . In addition the radius at which g T = 0 is also well<br />

def<strong>in</strong>ed at about r ≃ 28 ′′ <strong>and</strong> corresponds to a surface density where κ = 1,<br />

supply<strong>in</strong>g another important constra<strong>in</strong>t on model mass pr<strong>of</strong>iles.<br />

42


2.4 Distortion analysis <strong>of</strong> ACS/HST images<br />

0.8<br />

0.6<br />

0.4<br />

Distortion g +<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

0.1 0.4 0.9 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.6 – Distortion pr<strong>of</strong>ile for the central r < 2 ′ area covered by ACS (filled circles)<br />

together with the weaker distortions measured by Subaru at larger radius (open symbols).<br />

The black po<strong>in</strong>ts represent the comb<strong>in</strong>ed blue <strong>and</strong> red sample <strong>of</strong> background galaxies, <strong>and</strong><br />

the green po<strong>in</strong>ts <strong>in</strong>clude the cluster members. A remarkable saw-tooth pattern is visible<br />

for the background galaxy distortions <strong>in</strong> the strong lens<strong>in</strong>g region where the tangential <strong>and</strong><br />

radial critical radii are clearly visible correspond<strong>in</strong>g to a maximum <strong>and</strong> a m<strong>in</strong>imum <strong>in</strong> the<br />

value <strong>of</strong> g T , respectively. In between the distortion passes through zero, where the degree<br />

<strong>of</strong> tangential <strong>and</strong> radial distortion is equal, leav<strong>in</strong>g images unchanged <strong>in</strong> shape at a radius<br />

where κ = 1. The distortion <strong>of</strong> the green sample is consistent with zero <strong>in</strong> the <strong>in</strong>ner region<br />

where the cluster members dom<strong>in</strong>ate the sample but at larger radius the green <strong>and</strong> black<br />

po<strong>in</strong>ts merge for r > 3 ′ , <strong>in</strong>dicat<strong>in</strong>g that there the green sample comprises predom<strong>in</strong>ately<br />

background galaxies.<br />

Outside the tangential critical curve we f<strong>in</strong>d that the tangential shear<br />

<strong>of</strong> the background sample (black circles <strong>in</strong> Fig. 2.6) drops to g T,B ∼ 0.2 at<br />

r = 2 ′ , <strong>in</strong> good agreement with the Subaru analysis at this radius, giv<strong>in</strong>g<br />

us confidence <strong>in</strong> the consistency <strong>of</strong> our work. For the color range def<strong>in</strong>ed<br />

above, which <strong>in</strong>cludes the cluster sequence <strong>and</strong> all the bluer members <strong>of</strong> the<br />

cluster galaxy population, g T,G ∼ 0 over the full range <strong>of</strong> radius <strong>of</strong> the ACS<br />

data (green circles <strong>in</strong> Fig. 2.6), <strong>in</strong>dicat<strong>in</strong>g - as expected - that the galaxy<br />

population <strong>in</strong> the this color range is dom<strong>in</strong>ated by cluster members with<br />

negligible background contam<strong>in</strong>ation.<br />

43


2.5 Photometric redshifts<br />

Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

We need to estimate the respective depths <strong>of</strong> our color-magnitude selected<br />

samples when estimat<strong>in</strong>g the cluster mass pr<strong>of</strong>ile, because the lens<strong>in</strong>g signal<br />

<strong>in</strong>creases with source distance, <strong>and</strong> therefore must differ between the samples.<br />

The effect <strong>of</strong> this difference <strong>in</strong> distance on the weak lens<strong>in</strong>g signal is simply<br />

l<strong>in</strong>ear as we can see from the relation between the dimensionless surface mass<br />

density,<br />

where<br />

<strong>and</strong> the tangential distortion:<br />

κ(r) = Σ(r)/Σ crit , (2.10)<br />

Σ crit =<br />

c2<br />

4πGd l<br />

D s<br />

D ds<br />

(2.11)<br />

〈g T (r)〉 = (¯κ(r) − κ(r))/(1 − κ(r)) (2.12)<br />

so that <strong>in</strong> the weak limit where κ is small,<br />

〈g T (r)〉 ∝ D ds<br />

D s<br />

(¯Σ(r) − Σ(r)) (2.13)<br />

<strong>and</strong> hence for an <strong>in</strong>dividual cluster, with a fixed redshift <strong>and</strong> a given mass<br />

pr<strong>of</strong>ile, the observed level <strong>of</strong> the weak distortion simply scales with the lens<strong>in</strong>g<br />

distance ratio. Further details are presented <strong>in</strong> the appendix. The mean ratio<br />

<strong>of</strong> D ds /D s , which is weighted by the redshift distribution <strong>of</strong> the background<br />

population correspond<strong>in</strong>g to our magnitude <strong>and</strong> color cuts, is calculated us<strong>in</strong>g<br />

the expression<br />

〈D〉 ≡ 〈 D ds<br />

D s<br />

〉 =<br />

∫ D ds<br />

D s<br />

(z)N(z)dz<br />

∫<br />

N(z)dz<br />

. (2.14)<br />

S<strong>in</strong>ce we cannot derive complete samples <strong>of</strong> reliable photometric redshifts<br />

from our limited 2-color V, i ′ images <strong>of</strong> A1689, we <strong>in</strong>stead make use <strong>of</strong> other<br />

deep field photometry cover<strong>in</strong>g a wider range <strong>of</strong> passb<strong>and</strong>s, sufficient for photometric<br />

redshift estimation <strong>of</strong> the fa<strong>in</strong>t field redshift distribution appropriate<br />

for samples with the same color <strong>and</strong> magnitude limits as our red, green <strong>and</strong><br />

44


2.5 Photometric redshifts<br />

Figure 2.7 – Color–magnitude diagram for Capak galaxy catalog for the same passb<strong>and</strong>s<br />

as the photometry <strong>of</strong> A1689 shown <strong>in</strong> Fig 2.1. This photometry is <strong>of</strong> a field region <strong>and</strong><br />

serves as our reference for evaluat<strong>in</strong>g the expected depth <strong>of</strong> the background samples def<strong>in</strong>ed<br />

<strong>in</strong> § 2.2.<br />

blue populations.<br />

The photometry <strong>of</strong> Capak et al. (2004) is very well suited for our purposes,<br />

consist<strong>in</strong>g <strong>of</strong> relatively deep multi-color photometry over a wide field taken<br />

with Subaru, produc<strong>in</strong>g reliable photometric redshifts for the majority <strong>of</strong><br />

field galaxies to fa<strong>in</strong>t limit<strong>in</strong>g magnitudes. The Capak et al. (2004) galaxy<br />

catalog conta<strong>in</strong>s almost 50,000 galaxies over 0.2 sq. deg. with UBV RIz ′<br />

photometry. We have estimated photometric redshifts for this catalog us<strong>in</strong>g<br />

the Bayesian based method <strong>of</strong> Benítez (2000), with a prior based on the<br />

redshift <strong>and</strong> spectral type <strong>distributions</strong> <strong>of</strong> the HDF-N, with a spectral library<br />

conta<strong>in</strong><strong>in</strong>g the templates <strong>of</strong> Benítez et al. (2004) with an additional two blue<br />

starburst galaxies as described <strong>in</strong> Coe et al. (2006). A full redshift probability<br />

45


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

0.85<br />

0.8<br />

0.75<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

0.696<br />

0.694<br />

0.692<br />

0.69<br />

0.78<br />

0.77<br />

<br />

0.76<br />

0.75<br />

1.95<br />

1.9<br />

1.85<br />

24.5 25 25.5 26 26.5 27<br />

Limit<strong>in</strong>g magnitude<br />

0.849<br />

0.846<br />

0.843<br />

0.84<br />

24.5 25 25.5 26 26.5 27<br />

Limit<strong>in</strong>g magnitude<br />

Figure 2.8 – Mean redshift as a function <strong>of</strong><br />

the apparent i’-magnitude limit <strong>of</strong> the red,<br />

green & blue backgrounds, calculated us<strong>in</strong>g<br />

the photometric redshifts <strong>of</strong> the Capak<br />

et al. (2004) sample. The average redshift<br />

differs significantly between the three samples,<br />

be<strong>in</strong>g lowest for the red background<br />

〈z〉 ∼ 0.85 <strong>and</strong> highest for the blue 〈z〉 ∼ 2.<br />

Figure 2.9 – Similar to the previous figure,<br />

but here the weighted mean lens<strong>in</strong>g depth<br />

D ds /D s is calculated as a function <strong>of</strong> the<br />

apparent i’-magnitude limit. The expected<br />

depth <strong>of</strong> the samples differs significantly between<br />

the samples <strong>and</strong> <strong>in</strong> general the distance<br />

ratio grows only slowly with <strong>in</strong>creas<strong>in</strong>g<br />

apparent magnitude for each sample.<br />

distribution is produced for each galaxy <strong>of</strong> the form:<br />

p(z|C) ∝ ∑ T<br />

p(z, T |m 0 )p(C|z, T ), (2.15)<br />

where p(C|z, T ) is the redshift likelihood obta<strong>in</strong>ed by compar<strong>in</strong>g the observed<br />

colors C with the redshifted library <strong>of</strong> templates T . The factor p(z, T |m 0 ) is<br />

a prior which represents the redshift/spectral mix distribution as a function<br />

<strong>of</strong> the observed I−b<strong>and</strong> magnitude. We use a prior which describes the redshift/spectral<br />

type mix <strong>in</strong> the HDF-N, which has been shown to significantly<br />

reduce the number <strong>of</strong> “catastrophic” errors (∆z > 1) <strong>in</strong> the photometric<br />

redshift catalog (see Benítez et al. 2004, <strong>and</strong> references there<strong>in</strong>). For each<br />

galaxy we look at its redshift probability distribution p(z) <strong>and</strong> identify up<br />

to 3 redshift local maxima. Each <strong>of</strong> these maxima corresponds to a redshift<br />

z i , spectral type t i , <strong>and</strong> a discretized probability p i (z i , t i ) ≤ 1. Us<strong>in</strong>g<br />

this <strong>in</strong>formation we generate a mock observation <strong>of</strong> all the z i , t i comb<strong>in</strong>ations<br />

<strong>in</strong> the Subaru filters, <strong>and</strong> then build a redshift histogram by select<strong>in</strong>g<br />

galaxies us<strong>in</strong>g the same color cuts <strong>and</strong> add<strong>in</strong>g up their probabilities <strong>in</strong> each<br />

redshift b<strong>in</strong>. The color-magnitude diagram for the Capak catalog galaxies is<br />

46


2.5 Photometric redshifts<br />

shown <strong>in</strong> Figure 2.7, where the equivalent color-magnitude selected samples<br />

are displayed. The result<strong>in</strong>g mean redshift <strong>of</strong> the background galaxies <strong>in</strong><br />

each <strong>of</strong> our three color-selected samples is calculated as a function <strong>of</strong> limit<strong>in</strong>g<br />

magnitude <strong>of</strong> the sample (Fig. 2.8), by us<strong>in</strong>g the redshift distribution<br />

from the Capak catalog. The redshift distribution is also used to evaluate<br />

the weighted mean depths 〈D〉 (shown <strong>in</strong> Fig. 2.9 as a function <strong>of</strong> sample<br />

limit<strong>in</strong>g magnitude), for compar<strong>in</strong>g the weak lens<strong>in</strong>g amplitudes between the<br />

green <strong>and</strong> the red+blue samples. This is done by divid<strong>in</strong>g up each sample<br />

<strong>in</strong>to 81 <strong>in</strong>dependent b<strong>in</strong>s <strong>of</strong> 2 ′ , calculat<strong>in</strong>g the weighted mean redshift <strong>and</strong><br />

depth <strong>in</strong> each, <strong>and</strong> tak<strong>in</strong>g the mean value <strong>and</strong> variance over the b<strong>in</strong>s. The<br />

mean redshift <strong>of</strong> the red sample is only 〈z red 〉 ∼ 0.871 ± 0.045, whereas the<br />

blue sample is calculated to have, 〈z blue 〉 ∼ 2.012 ± 0.124. The green sample<br />

lies <strong>in</strong> between with, 〈z green 〉 ∼ 1.429 ± 0.093. The weighted relative depths<br />

<strong>of</strong> these samples us<strong>in</strong>g equation (2.14), for samples selected to our magnitude<br />

limit <strong>of</strong> i < 26.5, are 〈D red 〉 = 0.693 ± 0.012, 〈D green 〉 = 0.728 ± 0.012,<br />

<strong>and</strong> 〈D blue 〉 = 0.830 ± 0.011, <strong>and</strong> the correspond<strong>in</strong>g redshifts z D equivalent<br />

to these mean depths are, z D,red = 0.68, z D,green = 0.79, z D,blue = 1.53, respectively.<br />

Hence the ratio <strong>of</strong> the mean depth <strong>of</strong> the blue sample to the red<br />

sample is 〈D blue 〉/〈D red 〉 = 1.20, account<strong>in</strong>g well for the observed <strong>of</strong>fset seen<br />

<strong>in</strong> Figure 2.3.<br />

We also make use <strong>of</strong> the Capak “green” sample to <strong>in</strong>vestigate the level <strong>of</strong><br />

“cosmic variance” <strong>in</strong> D ds /D s , <strong>and</strong> although there is variation <strong>in</strong> the redshift<br />

distribution the variance <strong>of</strong> the mean redshift is remarkably tight, <strong>and</strong> as<br />

quoted above we f<strong>in</strong>d a very small variance associated with the mean lens<strong>in</strong>g<br />

depth, σ(〈D ds /D s 〉) = 0.015. This stability is also a feature noticed <strong>in</strong> pencil<br />

beam redshift surveys <strong>in</strong> general, that the mean depth is stable to spikes <strong>in</strong><br />

the redshift distribution, e.g., Broadhurst et al. (1988).<br />

The form <strong>of</strong> the distance ratio D can be expressed <strong>in</strong> terms <strong>of</strong> the redshifts<br />

<strong>of</strong> the source <strong>and</strong> lens for a given set <strong>of</strong> cosmological parameters. In the ma<strong>in</strong><br />

case <strong>of</strong> <strong>in</strong>terest, that <strong>of</strong> a flat model with a nonzero cosmological constant,<br />

47


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

the relation is given by<br />

D ds<br />

= 1 − ζ(z l)<br />

(2.16)<br />

D s ζ(z s )<br />

∫ x<br />

dz<br />

ζ(x) =<br />

. (2.17)<br />

[Ω Λ + Ω M (1 + z) 3 ]<br />

1/2<br />

0<br />

General expressions for the dependence <strong>of</strong> this distance ratio on arbitrary<br />

comb<strong>in</strong>ations <strong>of</strong> Ω M <strong>and</strong> Ω Λ are lengthy <strong>and</strong> can be found <strong>in</strong> Fukugita et al.<br />

(1990). For a low redshift cluster like A1689 (z=0.183), the form <strong>of</strong> this<br />

function is rather flat for sources at z > 1, see Broadhurst et al. (2005a).<br />

Therefore the ma<strong>in</strong> uncerta<strong>in</strong>ty <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the cosmological parameters<br />

from a comparison <strong>of</strong> g T between samples <strong>of</strong> different redshifts, is small compared<br />

with cluster<strong>in</strong>g noise along a given l<strong>in</strong>e <strong>of</strong> sight beh<strong>in</strong>d the cluster,<br />

as exam<strong>in</strong>ed <strong>in</strong> detail by (Broadhurst et al. 2005a).<br />

Thus, we do not seriously<br />

exam<strong>in</strong>e this effect here but rather simply adopt the recent (three<br />

year) WMAP cosmological parameters (Spergel et al. 2007) when mak<strong>in</strong>g<br />

the above depth correction. With sufficient number <strong>of</strong> clusters <strong>and</strong> similar or<br />

better photometric redshift <strong>in</strong>formation (from multiple filter observations)<br />

one can hope to exam<strong>in</strong>e the trend <strong>of</strong> redshift vs. lens<strong>in</strong>g distance <strong>in</strong> the<br />

future.<br />

Note that lens<strong>in</strong>g magnification, µ, will modify g T slightly by <strong>in</strong>creas<strong>in</strong>g<br />

the depth to a fixed magnitude. But the magnification is small, µ < 0. m 2<br />

over most <strong>of</strong> the cluster, r > 3 ′ . In any case, the dependence <strong>of</strong> the mean<br />

redshift on depth is a slow function <strong>of</strong> redshift, so that it is safe for our ma<strong>in</strong><br />

purposes to ignore the effect <strong>of</strong> magnification on the depth <strong>of</strong> our samples.<br />

Furthermore, s<strong>in</strong>ce we are only <strong>in</strong>terested <strong>in</strong> the proportion <strong>of</strong> the cluster<br />

relative to the background for our purposes, we are not affected by the modification<br />

<strong>of</strong> the background number counts caused by lens<strong>in</strong>g, which has been<br />

shown to significantly deplete the surface density <strong>of</strong> background red galaxies<br />

<strong>in</strong> A1689, <strong>and</strong> found to be consistent with the predicted level <strong>of</strong> magnification<br />

based on the distortion measurements (Broadhurst et al. 2005b).<br />

48


2.6 Weak lens<strong>in</strong>g dilution<br />

0.06<br />

0.04<br />

0.02<br />

Distortion g +<br />

0<br />

−0.02<br />

−0.04<br />

−0.06<br />

2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.10 – Tangential distortion <strong>of</strong> the bright cluster sequence (i ′ < 21.5) galaxies<br />

plotted aga<strong>in</strong>st radius from the cluster center. By choos<strong>in</strong>g the bright part <strong>of</strong> the sequence<br />

we m<strong>in</strong>imize the background contam<strong>in</strong>ation, <strong>and</strong> can therefore check that the tangential<br />

distortion <strong>of</strong> the cluster members is negligible, which <strong>in</strong>deed is very clear from this figure.<br />

2.6 Weak lens<strong>in</strong>g dilution<br />

We can now estimate the number density <strong>of</strong> cluster galaxies by tak<strong>in</strong>g the<br />

ratio <strong>of</strong> the weak lens<strong>in</strong>g signal between the green sample <strong>and</strong> the background<br />

sample, with the background <strong>in</strong>clud<strong>in</strong>g both red <strong>and</strong> blue galaxies selected<br />

from the Subaru catalog as expla<strong>in</strong>ed <strong>in</strong> § 2.2, <strong>and</strong> account<strong>in</strong>g for differences<br />

<strong>in</strong> the relative depths <strong>of</strong> these samples, as expla<strong>in</strong>ed <strong>in</strong> § 2.5.<br />

Cluster members are unlensed <strong>and</strong> hence assumed to have r<strong>and</strong>om orientations,<br />

so they are expected to contribute no net tangential lens<strong>in</strong>g signal.<br />

This assumption can be exam<strong>in</strong>ed for the brighter (i ′ < 21.5) cluster sequence<br />

galaxies whose tight sequence protrudes beyond the fa<strong>in</strong>t field background<br />

(Fig. 2.1) with negligible background contam<strong>in</strong>ation, so that we are secure<br />

<strong>in</strong> select<strong>in</strong>g this subset to test the assumption that the cluster galaxies are<br />

r<strong>and</strong>omly oriented. Indeed, the net tangential signal <strong>of</strong> this population is<br />

consistent with zero (Fig. 2.10), g (G)<br />

T<br />

= 0.0043 ± 0.0091. For a given radial<br />

b<strong>in</strong> (r n ) conta<strong>in</strong><strong>in</strong>g objects <strong>in</strong> the green sample, whose width <strong>in</strong> color has<br />

been chosen to encompass the full range <strong>of</strong> cluster galaxies (§ 2.2), the mean<br />

value <strong>of</strong> g (G)<br />

T<br />

(eq. 2.6) is an average over background <strong>and</strong> cluster members.<br />

Thus, its mean value 〈g (G) 〉 will be lower than the true background level de-<br />

T<br />

49


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

1.4<br />

1.2<br />

1<br />

Fraction 1−g +<br />

(G)/g +<br />

(B)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0.9 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.11 – Fraction <strong>of</strong> cluster membership vs. radius. Cluster membership is proportional<br />

to the dilution <strong>of</strong> the distortion signal <strong>of</strong> the green sample, relative to the expected<br />

distortion <strong>of</strong> the background galaxies set by the red <strong>and</strong> blue samples. As expected, close<br />

to the cluster center the fraction <strong>of</strong> cluster members <strong>in</strong> the green sample becomes maximal,<br />

whereas at larger radius r > 3 ′ , the fraction <strong>of</strong> cluster members is small, <strong>in</strong>dicat<strong>in</strong>g that<br />

most <strong>of</strong> the green sample comprises background galaxies.<br />

noted by 〈g (B) 〉 (Fig. 2.4) <strong>in</strong> proportion to the fraction <strong>of</strong> unlensed galaxies<br />

T<br />

<strong>in</strong> the b<strong>in</strong> that lie <strong>in</strong> the cluster (rather than <strong>in</strong> the background), s<strong>in</strong>ce the<br />

cluster members on average will add no net tangential signal. Therefore,<br />

f cl (r n ) ≡<br />

N cl<br />

= 1 − 〈g T (r n ) (G) 〉<br />

N Green 〈g T (r n ) (B) 〉<br />

〈D (B) 〉<br />

〈D (G) 〉<br />

(2.18)<br />

is the cluster membership fraction <strong>of</strong> the green sample (see full derivation <strong>in</strong><br />

the appendix).<br />

Thus, we can use this effect to quantify statistically the number <strong>of</strong> cluster<br />

galaxies by compar<strong>in</strong>g g (G)<br />

T<br />

with the true background level derived from the<br />

pure background red <strong>and</strong> blue samples g (B) , at a fixed radius. This is shown<br />

T<br />

<strong>in</strong> Figure 2.11, where we have also taken <strong>in</strong>to account the effect <strong>of</strong> the relative<br />

depths <strong>of</strong> the differ<strong>in</strong>g samples. We f<strong>in</strong>d that the fraction <strong>of</strong> cluster members<br />

drops smoothly from ∼ 100% with<strong>in</strong> r < 2 ′ to only ∼ 20% at the limit <strong>of</strong> the<br />

data, r ∼ 15 ′ .<br />

50


2.7 Cluster light <strong>and</strong> color pr<strong>of</strong>iles<br />

2.7 Cluster light <strong>and</strong> color pr<strong>of</strong>iles<br />

To determ<strong>in</strong>e the lum<strong>in</strong>osity pr<strong>of</strong>ile <strong>of</strong> the cluster galaxies, we need to go<br />

further, because <strong>in</strong> general the brightness distribution <strong>of</strong> the cluster members<br />

is different than that <strong>of</strong> the background galaxies; specifically, it is skewed<br />

to brighter magnitudes, certa<strong>in</strong>ly for the bulk <strong>of</strong> the cluster sequence. To<br />

account generally for any difference <strong>in</strong> the brightness <strong>distributions</strong> we can<br />

subtract a “g T -weighted” lum<strong>in</strong>osity contribution <strong>of</strong> each galaxy, which when<br />

averaged over the distribution will have zero contribution from the unlensed<br />

cluster members. We first calculate the “g-weighted” correction <strong>in</strong> arbitrary<br />

flux units. We estimate the total flux <strong>of</strong> the cluster <strong>in</strong> the n th radial b<strong>in</strong>,<br />

F cl (r n ) = ∑ i<br />

F (G)<br />

i − 〈D(B) 〉/〈D (G) 〉<br />

〈g T (r n ) (B) 〉<br />

∑<br />

i<br />

F (G)<br />

i<br />

· g (G)<br />

T,i<br />

(2.19)<br />

where the sum is over all galaxies <strong>in</strong> the radial b<strong>in</strong>.<br />

The flux is then translated back to apparent magnitude, <strong>and</strong> from that<br />

the lum<strong>in</strong>osity is derived. First we calculate the absolute magnitude,<br />

M i ′ = i ′ − 5 log d L − K(z) + 5, (2.20)<br />

where the K-correction is evaluated for each radial b<strong>in</strong> accord<strong>in</strong>g to its V −i ′<br />

color, which - after the correction is made for each <strong>of</strong> the b<strong>and</strong>s - is now the<br />

cluster color. The lum<strong>in</strong>osity is then<br />

L i ′ = 10 0.4(M i ′ ⊙ −M i ′) L i ′ ⊙, (2.21)<br />

where M i ′ ⊙ = 4.54 is the absolute i ′ magnitude <strong>of</strong> the Sun (AB system).<br />

The result yields the lum<strong>in</strong>osity pr<strong>of</strong>ile <strong>of</strong> the cluster as shown <strong>in</strong> Figure<br />

2.12 (red squares). Here we can see that the cluster lum<strong>in</strong>osity pr<strong>of</strong>ile<br />

is well approximated by a simple power-law with a projected slope <strong>of</strong><br />

d log(L i ′)/d log(r) ∼ −1.12 ± 0.06, to the limit <strong>of</strong> the data. We also show <strong>in</strong><br />

Figure 2.13 the unweighted lum<strong>in</strong>osity pr<strong>of</strong>ile with no correction for the field,<br />

demonstrat<strong>in</strong>g that the g-weighted correction is negligible at small radius as<br />

51


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

expected, s<strong>in</strong>ce the cluster dom<strong>in</strong>ates numerically over the background, but<br />

becomes <strong>in</strong>creas<strong>in</strong>gly more important at larger radius where the background<br />

dom<strong>in</strong>ates. Note that we derive a more accurate <strong>in</strong>ner lum<strong>in</strong>osity pr<strong>of</strong>ile us<strong>in</strong>g<br />

the ACS photometry for the central region (Fig. 2.12, red circles), <strong>and</strong><br />

here there is only a negligible correction for the background due to the high<br />

central density <strong>of</strong> galaxies <strong>in</strong> this cluster.<br />

In a careful study <strong>of</strong> clusters <strong>and</strong> groups identified <strong>in</strong> the SDSS survey,<br />

Hansen et al. (2005) f<strong>in</strong>d a similar slope for the most massive clusters, <strong>in</strong><br />

terms <strong>of</strong> the composite surface density pr<strong>of</strong>ile <strong>of</strong> d log(n)/d log(r) ≃ −1.05 ±<br />

0.04, over the radius range r < 2 Mpc, with slightly shallower slopes occurr<strong>in</strong>g<br />

<strong>in</strong> the less overdense clusters <strong>and</strong> groups. This may be compared directly<br />

with our slope derived above, assum<strong>in</strong>g a constant M ∗ /L, for the ratio <strong>of</strong><br />

galaxy mass to galaxy lum<strong>in</strong>osity. More directly we derive a density pr<strong>of</strong>ile<br />

us<strong>in</strong>g the f cl n (G) which also gives a slope <strong>of</strong> ≃ −0.9 ± 0.09.<br />

In the same manner, we construct a “g-weighted” color pr<strong>of</strong>ile <strong>of</strong> the<br />

cluster, V − i ′ , which we have corrected as described above. We obta<strong>in</strong> a<br />

color pr<strong>of</strong>ile that shows a weak tendency towards bluer colors with <strong>in</strong>creas<strong>in</strong>g<br />

radius, as expected, <strong>in</strong>dicat<strong>in</strong>g a tendency towards later-type galaxies at<br />

large radius (Fig. 2.14). Also shown is the unweighted color pr<strong>of</strong>ile (green<br />

po<strong>in</strong>ts), which aga<strong>in</strong> is steeper due to the uncorrected field component which<br />

dom<strong>in</strong>ates numerically over the cluster at larger radius <strong>and</strong> is generally bluer<br />

<strong>in</strong> color than the cluster. This change <strong>in</strong> color with radius corresponds to<br />

a significant radial gradient <strong>in</strong> spectral type, from predom<strong>in</strong>antly early-type<br />

with (V −i ′ ) AB ≃ 0.84, to mid sequence type, Sb, with (V −i ′ ) AB ≃ 0.73, <strong>and</strong><br />

<strong>in</strong>dicates that for this cluster very blue starburst <strong>and</strong> Scd galaxies are not the<br />

dom<strong>in</strong>ant population at the limit<strong>in</strong>g radius <strong>of</strong> our sample (r ∼ 2 h −1 Mpc),<br />

where otherwise the color would tend to (V − i ′ ) AB ≃ 0.5, us<strong>in</strong>g st<strong>and</strong>ard<br />

template sets (Benítez et al. 2004). We go on to make use <strong>of</strong> this color-radius<br />

relation <strong>in</strong> § 2.9, when exam<strong>in</strong><strong>in</strong>g the radial pr<strong>of</strong>ile <strong>of</strong> the ratio <strong>of</strong> total cluster<br />

mass to the stellar mass <strong>in</strong> galaxies. We do this by correct<strong>in</strong>g the lum<strong>in</strong>osity<br />

pr<strong>of</strong>ile for the tendency towards more lum<strong>in</strong>ous early-type stars that are<br />

responsible for the bluer galaxy colors at large radius <strong>and</strong> which otherwise<br />

bias the <strong>in</strong>terpretation <strong>of</strong> the M/L ratio, as described below.<br />

52


2.8 Cluster lum<strong>in</strong>osity functions<br />

10 15 θ [arcm<strong>in</strong>]<br />

Lum<strong>in</strong>osity density [L iο<br />

h 2 Mpc −2 ]<br />

10 14<br />

10 13<br />

10 12<br />

Lum<strong>in</strong>osity density [L i’ο<br />

h 2 Mpc −2 ]<br />

10 11<br />

0.1 0.4 0.9 2 5 10 20<br />

10 12 1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.12 – The “g-Weighted” lum<strong>in</strong>osity<br />

density vs. cluster radius. Each<br />

galaxy’s flux F i (green sample) is weighted<br />

by its tangential distortion g T,i with respect<br />

to the background distortion signal<br />

(red po<strong>in</strong>ts). The filled circles represent the<br />

ACS data, <strong>and</strong> the empty squares are for<br />

the Subaru data. The blue po<strong>in</strong>ts are derived<br />

from <strong>in</strong>tegrat<strong>in</strong>g over the lum<strong>in</strong>osity<br />

functions <strong>of</strong> the same radial b<strong>in</strong>s (see § 2.8),<br />

<strong>and</strong> serve as a consistency check, show<strong>in</strong>g<br />

good agreement between these differ<strong>in</strong>g calculations.<br />

The dashed l<strong>in</strong>e is the best fitt<strong>in</strong>g<br />

l<strong>in</strong>ear relation for the blue po<strong>in</strong>ts.<br />

Figure 2.13 – The “g-Weighted” lum<strong>in</strong>osity<br />

density vs. cluster radius (red<br />

squares), compared to the unweighted lum<strong>in</strong>osity<br />

density (green circles), show<strong>in</strong>g<br />

as expected the <strong>in</strong>creas<strong>in</strong>g size <strong>of</strong> the correction<br />

with <strong>in</strong>creas<strong>in</strong>g radius, where the<br />

sample becomes <strong>in</strong>creas<strong>in</strong>gly dom<strong>in</strong>ated by<br />

background galaxies.<br />

2.8 Cluster lum<strong>in</strong>osity functions<br />

The data allow the lum<strong>in</strong>osity function to be usefully constructed <strong>in</strong> several<br />

<strong>in</strong>dependent radial <strong>and</strong> magnitude b<strong>in</strong>s, <strong>and</strong> hence we can exam<strong>in</strong>e the<br />

form <strong>of</strong> the lum<strong>in</strong>osity function <strong>of</strong> cluster members as a function <strong>of</strong> projected<br />

distance from the cluster center. For this we comb<strong>in</strong>e the ACS <strong>and</strong> the Subaru<br />

photometry. The ACS has the advantage <strong>of</strong> extend<strong>in</strong>g two magnitudes<br />

fa<strong>in</strong>ter <strong>in</strong> the i ′ -b<strong>and</strong> than the Subaru photometry for r < 2 ′ . As can be<br />

seen <strong>in</strong> Figure 2.15, the ACS i ′ magnitudes agree with Subaru i ′ magnitudes<br />

for galaxies found <strong>and</strong> matched <strong>in</strong> both catalogs. The background correction<br />

to evaluate f cl , must be made <strong>in</strong> each magnitude b<strong>in</strong> <strong>in</strong>dependently, s<strong>in</strong>ce<br />

the relative proportion <strong>of</strong> background galaxies <strong>in</strong>creases with apparent magnitude,<br />

so that the lower lum<strong>in</strong>osity b<strong>in</strong>s <strong>of</strong> the green lum<strong>in</strong>osity function<br />

53


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

0.86<br />

0.84<br />

0.82<br />

Cluster V−i [mag]<br />

0.8<br />

0.78<br />

0.76<br />

0.74<br />

0.72<br />

0.7<br />

0.68<br />

0.66<br />

0.9 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 2.14 – Galaxy color pr<strong>of</strong>ile after weight<strong>in</strong>g the color <strong>of</strong> each object by its <strong>in</strong>dividual<br />

distortion, g i , account<strong>in</strong>g for any difference between the color distribution <strong>of</strong> the cluster<br />

<strong>and</strong> background populations compris<strong>in</strong>g the green galaxy population. The color <strong>of</strong> the<br />

cluster members becomes slowly bluer with <strong>in</strong>creas<strong>in</strong>g radius mov<strong>in</strong>g from E/S0 colors <strong>in</strong><br />

the center to mid-type galaxy colors at the limit <strong>of</strong> the data, r ∼ 2 h −1 Mpc. The green<br />

po<strong>in</strong>ts represent the uncorrected V − i ′ pr<strong>of</strong>ile <strong>of</strong> the green sample.<br />

are expected to conta<strong>in</strong> a greater fraction <strong>of</strong> background galaxies <strong>and</strong> hence<br />

should have a relatively higher value <strong>of</strong> g (G)<br />

T<br />

. This trend is apparent <strong>in</strong> Figure<br />

2.16 (left panels), where we plot the recovered mean tangential distortion<br />

(here the average is over a magnitude b<strong>in</strong>) for each <strong>of</strong> the four radial b<strong>in</strong>s,<br />

as a function <strong>of</strong> absolute magnitude. A clear trend is found at all radii towards<br />

higher levels <strong>of</strong> g T at fa<strong>in</strong>ter lum<strong>in</strong>osities. Note that the mean level<br />

<strong>of</strong> the background distortion (black solid l<strong>in</strong>e) drops with <strong>in</strong>creas<strong>in</strong>g radius<br />

so that the proportion g (G)<br />

T<br />

(M)/g(B) T<br />

is generally an <strong>in</strong>creas<strong>in</strong>g function <strong>of</strong><br />

radius <strong>and</strong> a decreas<strong>in</strong>g function <strong>of</strong> lum<strong>in</strong>osity. To correct for this we simply<br />

apply equation (2.18) to each magnitude b<strong>in</strong>:<br />

Φ cl (M k ) = Φ(M k ) · [1 − 〈g (G)<br />

T<br />

(M k)〉/〈g (B)<br />

T<br />

(r)〉] (2.22)<br />

(Note that the background signal is averaged over the whole range <strong>of</strong> magnitudes<br />

at that radius.)<br />

We then construct the lum<strong>in</strong>osity function for four <strong>in</strong>dependent radial<br />

b<strong>in</strong>s, as shown <strong>in</strong> Figure 2.16 (middle panel) <strong>and</strong> fit a Schechter (1976) function<br />

to each (dashed l<strong>in</strong>es). It can be seen that there is no obvious tendency<br />

54


2.8 Cluster lum<strong>in</strong>osity functions<br />

28<br />

d(i’ ACS<br />

)/d(i’ Subaru<br />

)=1.0039±0.0002<br />

26<br />

24<br />

i’ acs<br />

22<br />

20<br />

18<br />

16<br />

16 18 20 22 24 26 28<br />

i’ subaru<br />

Figure 2.15 – Comparison between ACS <strong>and</strong> Subaru photometry for objects <strong>in</strong> common<br />

<strong>in</strong> the central region covered by both datasets, r < 2 ′ . There is very good agreement<br />

between magnitudes <strong>of</strong> the two datasets which have <strong>in</strong>dependent zero-po<strong>in</strong>ts <strong>and</strong> <strong>of</strong> course<br />

<strong>in</strong>dependent photometry.<br />

for the shape <strong>of</strong> the lum<strong>in</strong>osity function to change with radius. The fa<strong>in</strong>t-end<br />

slope <strong>of</strong> a Schechter function fit is α = −1.05 ± 0.07 <strong>in</strong> the i ′ -b<strong>and</strong>. This<br />

constancy with radius has been argued with somewhat less significance <strong>in</strong><br />

other well studied massive clusters (e.g., Pracy et al. 2005), based on similar<br />

deep 2-color imag<strong>in</strong>g, where the limit<strong>in</strong>g radius is more restricted. We also<br />

construct a composite lum<strong>in</strong>osity function for the whole cluster (Fig. 2.17),<br />

for r < 10 ′ , which shows clearly the effect <strong>of</strong> our “g-weighted” background<br />

correction, without which the fa<strong>in</strong>t-end slope would be considerably steeper,<br />

α ∼ 1.4.<br />

Our approach is <strong>of</strong> course essentially free <strong>of</strong> uncerta<strong>in</strong>ties <strong>in</strong> the subtraction<br />

<strong>of</strong> background galaxies by its nature. While qualitative similarity<br />

between the results <strong>of</strong> the various studies is clear, agreement <strong>in</strong> detail is not<br />

necessarily expected, given the likely dispersion <strong>in</strong> the strength <strong>of</strong> this effect<br />

between clusters. Also, the question <strong>of</strong> background contam<strong>in</strong>ation is always<br />

an issue <strong>in</strong> the st<strong>and</strong>ard approach due to the <strong>in</strong>herent fluctuations <strong>in</strong> the surface<br />

density <strong>of</strong> background galaxies, <strong>and</strong> the need to establish the background<br />

counts at a sufficiently large radius from the cluster to avoid self-subtraction<br />

<strong>of</strong> the cluster at the boundaries <strong>of</strong> the data, a subject explored <strong>in</strong> depth, e.g.<br />

Adami et al. (2000); Paolillo et al. (2001); Andreon et al. (2005); Hansen<br />

55


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

et al. (2005); Popesso et al. (2005).<br />

We also <strong>in</strong>tegrate our lum<strong>in</strong>osity functions as a consistency check <strong>of</strong> the<br />

lum<strong>in</strong>osity density pr<strong>of</strong>iles derived earlier. This is done by calculat<strong>in</strong>g Φ cl (M)<br />

<strong>in</strong> the same radial b<strong>in</strong>s as our lum<strong>in</strong>osity pr<strong>of</strong>ile above, <strong>and</strong> summ<strong>in</strong>g over<br />

the magnitude b<strong>in</strong>s:<br />

L cl (r n ) = ∑ k<br />

Φ cl (M k ) · ∆M k · 10 0.4(M i ′ ⊙ −M k)<br />

(2.23)<br />

The results shown above <strong>in</strong> Figure 2.12 (blue po<strong>in</strong>ts) agree very well with<br />

those <strong>of</strong> L cl described <strong>in</strong> the previous section.<br />

Note that <strong>in</strong> construct<strong>in</strong>g these lum<strong>in</strong>osity density pr<strong>of</strong>iles we have implicitly<br />

assumed that the lum<strong>in</strong>osity function is <strong>in</strong>tegrated over fully. Fortunately<br />

our data is complete to a sufficient depth (i ′ < 26.5) so that the contribution<br />

<strong>of</strong> the <strong>in</strong>tegrated lum<strong>in</strong>osity density from undetected objects is very small, as<br />

evaluated when we exam<strong>in</strong>e the lum<strong>in</strong>osity functions. The difference between<br />

<strong>in</strong>tegrat<strong>in</strong>g up to a limit<strong>in</strong>g magnitude <strong>of</strong> M i ′ < −14 <strong>and</strong> extrapolat<strong>in</strong>g up<br />

to M i ′ < −10 is only about 0.1%.<br />

The lack <strong>of</strong> any obvious upturn <strong>in</strong> the cluster lum<strong>in</strong>osity function to very<br />

fa<strong>in</strong>t lum<strong>in</strong>osities, M i ′ < −12, <strong>in</strong> the cluster core, is <strong>in</strong> agreement with several<br />

other studies based on deep photometry <strong>of</strong> large cluster samples, e.g., the<br />

composite cluster lum<strong>in</strong>osity function derived by Gaidos (1997); Garilli et al.<br />

(1999); Paolillo et al. (2001); Hansen et al. (2005); Pracy et al. (2005), where<br />

wide field imag<strong>in</strong>g is employed for several Abell clusters <strong>and</strong> overdensities<br />

identified <strong>in</strong> the SDSS survey, <strong>and</strong> where careful attention can be paid to the<br />

background counts <strong>and</strong> their uncerta<strong>in</strong>ty. The study <strong>of</strong> Pracy et al. (2005)<br />

is the most similar to our own, conta<strong>in</strong><strong>in</strong>g three rich <strong>and</strong> fairly distant Abell<br />

clusters, <strong>and</strong> here the LF’s show no obvious upturn to M < −13 with a<br />

generally flat Schechter function slope <strong>in</strong> the range -1.1 to -1.25.<br />

For the well studied Coma cluster, a steeper slope has been claimed,<br />

α ≃ −1.4, by Bernste<strong>in</strong> et al. (1995), though subsequent fa<strong>in</strong>t spectroscopy<br />

by Adami et al. (2000), has revealed the presence <strong>of</strong> a background cluster at<br />

z ≃ 0.5, which when corrected for leads to a flat fa<strong>in</strong>t-end slope. In contrast<br />

56


2.8 Cluster lum<strong>in</strong>osity functions<br />

an upturn is claimed for a composite sample <strong>of</strong> 25 SDSS selected clusters by<br />

Popesso et al. (2005), though an <strong>in</strong>dividual exam<strong>in</strong>ation shows considerable<br />

variation, with only a m<strong>in</strong>ority <strong>of</strong> ∼ 6 display<strong>in</strong>g a dist<strong>in</strong>ct upturn which<br />

varies <strong>in</strong> amplitude, so that one may wonder about the role <strong>of</strong> anomalous<br />

background count fluctuations <strong>in</strong> these cases.<br />

57


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

g +<br />

−1<br />

0’−1’, ACS<br />

0.2<br />

−1.05<br />

1’−2’, ACS<br />

0.1<br />

2’−4’, Subaru<br />

−1.1 α<br />

0<br />

10 3 4’−8’, Subaru −1.15<br />

α=−1.046 M *<br />

=−21.46<br />

−1<br />

0.3<br />

−1.05<br />

g +<br />

0.2<br />

0.1<br />

−1.1 α<br />

0<br />

10 2<br />

−1.15<br />

α=−1.059 M *<br />

=−20.77<br />

−1<br />

0.08<br />

g + 0.04<br />

−1.05<br />

−1.1 α<br />

−1.15<br />

0<br />

10 1<br />

α=−1.094 M *<br />

=−21.21<br />

0.06<br />

−1<br />

0.04<br />

−1.05<br />

g +<br />

−1.1<br />

0.02<br />

α<br />

−1.15<br />

0<br />

10 0<br />

α=−1.108 M *<br />

=−21.41<br />

−24 −22 −20 −18 −16 −14 −12 −24 −22 −20 −18 −16 −14 −12 −23 −22 −21 −20<br />

M i’<br />

M i’<br />

M *i’<br />

Φ(M) [h 2 Mpc −2 mag −1 ]<br />

Figure 2.16 – Center: Lum<strong>in</strong>osity functions are shown for four <strong>in</strong>dependent radial b<strong>in</strong>s,<br />

<strong>in</strong>dicat<strong>in</strong>g little trend with radius. The left-h<strong>and</strong> panel is the degree <strong>of</strong> tangential distortion<br />

g T as a function <strong>of</strong> magnitude used <strong>in</strong> the derivation <strong>of</strong> the correspond<strong>in</strong>g lum<strong>in</strong>osity<br />

function. Notice that <strong>in</strong> general g T <strong>in</strong>creases with decreas<strong>in</strong>g lum<strong>in</strong>osity because the level<br />

<strong>of</strong> background <strong>in</strong>creases at fa<strong>in</strong>ter magnitudes. The right-h<strong>and</strong> panel shows the 1σ, 2σ, <strong>and</strong><br />

3σ contours for the Schechter function parameters M ∗ <strong>and</strong> α, for each <strong>of</strong> the correspond<strong>in</strong>g<br />

lum<strong>in</strong>osity functions.<br />

10 3 uncorrected<br />

corrected<br />

−10 0.151<br />

10 2<br />

−10 0.152<br />

Φ(M) [h 2 Mpc −2 mag −1 ]<br />

10 1<br />

10 0<br />

10 −1<br />

uncorrected, α=−1.421<br />

M i’<br />

−10 0.153<br />

−1<br />

−1.02<br />

−1.04<br />

α<br />

−1.06<br />

−1.08<br />

10 −2<br />

−24 −22 −20 −18 −16 −14<br />

M i’<br />

corrected, α=−1.048<br />

−24 −22<br />

M i’*<br />

−20 −1.1<br />

Figure 2.17 – Composite lum<strong>in</strong>osity function <strong>of</strong> the cluster (black squares), for r < 10 ′ ,<br />

with the fit to a Schechter function displayed <strong>in</strong> the lower right panel. The green circles<br />

show the lum<strong>in</strong>osity distribution without the correction made for the background dilution.<br />

At bright magnitudes, there is little difference between the uncorrected <strong>and</strong> the corrected<br />

po<strong>in</strong>ts, however, at the fa<strong>in</strong>t end the uncorrected distribution rises, which if uncorrected<br />

would overestimate the fa<strong>in</strong>t end slope α ∼ 1.4 (top right panel), show<strong>in</strong>g clearly the<br />

magnitude <strong>of</strong> the background correction, which when accounted for by our method results<br />

a flat fa<strong>in</strong>t end slope, α ∼ 1.


2.9 M/L pr<strong>of</strong>iles<br />

1400<br />

180<br />

180<br />

1200<br />

160<br />

160<br />

M/L i<br />

[ hM o<br />

/L iο<br />

]<br />

1000<br />

800<br />

600<br />

400<br />

M(


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

Note that the peak value is rather large, equivalent to M/L B ∼ 400h(M/L) ⊙<br />

<strong>in</strong> the restframe B-b<strong>and</strong> <strong>of</strong>ten used as a reference, but the mass <strong>of</strong> A1689<br />

is at the extreme end <strong>of</strong> the cluster population, M ∼ 2 × 10 15 hM ⊙ (Broadhurst<br />

et al. 2005b), <strong>and</strong> given the general tendency <strong>of</strong> M/L to <strong>in</strong>crease with<br />

<strong>in</strong>creas<strong>in</strong>g mass, from galaxies through groups to clusters, we may not be<br />

surprised to f<strong>in</strong>d the peak to somewhat exceed the typical range for clusters,<br />

150 − 300hM/L B ⊙<br />

(Carlberg et al. 2001). The general pr<strong>of</strong>ile <strong>of</strong> M/L is<br />

similar <strong>in</strong> form to that derived for CL 0152-1357 by Jee et al. (2005) based<br />

on a careful weak lens<strong>in</strong>g analysis <strong>of</strong> recent deep ACS images.<br />

We have also constructed a pr<strong>of</strong>ile <strong>of</strong> the total mass to stellar mass M/M ∗<br />

ratio (red curves <strong>in</strong> Fig. 2.18 <strong>and</strong> Fig.2.19). This is arguably a more physically<br />

useful <strong>in</strong>dicator <strong>of</strong> the relationship between dark <strong>and</strong> lum<strong>in</strong>ous matter<br />

compared to the ratio <strong>of</strong> M/L, because the starlight can be strongly <strong>in</strong>fluenced<br />

by the presence <strong>of</strong> relatively small numbers <strong>of</strong> lum<strong>in</strong>ous hot stars. To<br />

calculate M/M ∗ we make use <strong>of</strong> the color pr<strong>of</strong>ile derived <strong>in</strong> § 2.7, <strong>and</strong> an empirical<br />

relationship between color <strong>and</strong> the ratio M ∗ /L for stellar populations<br />

established for local galaxies <strong>in</strong> the the SDSS survey by Bell et al. (2003). The<br />

slope <strong>of</strong> the projected stellar mass pr<strong>of</strong>ile, d log(M ∗ )/d log(r) = −1.15 ± 0.13,<br />

derived this way is slightly steeper than the lum<strong>in</strong>osity pr<strong>of</strong>ile, as expected.<br />

The observed relation we derive this way is somewhat flatter than for M/L<br />

<strong>and</strong> the mean contribution by mass for stars is about 1.25% for this cluster<br />

<strong>and</strong> similar to a mean value <strong>of</strong> ∼ 2% derived from a carefully selected sample<br />

<strong>of</strong> local clusters by Biviano & Salucci (2006).<br />

2.10 Cluster mass pr<strong>of</strong>ile<br />

We use the comb<strong>in</strong>ed distortion <strong>in</strong>formation obta<strong>in</strong>ed from the ACS <strong>and</strong> Subaru<br />

imag<strong>in</strong>g, as described above (Fig. 2.6) <strong>and</strong> compare with models for the<br />

mass distribution. We have improved on our earlier distortion measurements<br />

made with Subaru, with the addition <strong>of</strong> the background blue galaxy population<br />

def<strong>in</strong>ed here, so that the significance <strong>of</strong> the distortion measurements<br />

is somewhat greater than our earlier work which was based only on the red<br />

60


2.10 Cluster mass pr<strong>of</strong>ile<br />

sample (Broadhurst et al. 2005b). In addition, we have extended the distortion<br />

measurements to the central region us<strong>in</strong>g the HST /ACS <strong>in</strong>formation, as<br />

described <strong>in</strong> § 2.4, where we have clearly identified a maximum <strong>and</strong> a m<strong>in</strong>imum<br />

value <strong>of</strong> g T , which accurately correspond to the tangential <strong>and</strong> radial<br />

critical curves (Fig. 2.20), <strong>in</strong>dependently derived from the the many giant<br />

tangential <strong>and</strong> radial arcs observed for this cluster (see Broadhurst et al.<br />

2005a).<br />

Here we test the universal parameterization <strong>of</strong> CDM-based mass pr<strong>of</strong>iles<br />

advocated by Navarro et al. (1997). This model pr<strong>of</strong>ile is weighted over the<br />

differ<strong>in</strong>g results from sets <strong>of</strong> halos identified <strong>in</strong> N-body simulations. A cluster<br />

pr<strong>of</strong>ile is summed over all the mass conta<strong>in</strong>ed with<strong>in</strong> the ma<strong>in</strong> halo, <strong>in</strong>clud<strong>in</strong>g<br />

the galactic halos. Hence, we compare the <strong>in</strong>tegrated mass pr<strong>of</strong>ile we deduced<br />

directly with the NFW predictions without hav<strong>in</strong>g to <strong>in</strong>vent a prescription<br />

to remove the cluster galaxies.<br />

NFW have shown that massive CDM hales are predicted to be less concentrated<br />

with <strong>in</strong>creas<strong>in</strong>g halo mass, a trend identified with collapse redshift,<br />

which is generally higher for smaller halos follow<strong>in</strong>g from the steep evolution<br />

<strong>of</strong> the cosmological density <strong>of</strong> matter. The most massive bound structures<br />

form later <strong>in</strong> hierarchical models <strong>and</strong> therefore clusters are anticipated to<br />

have a relatively low concentration, quantified by the ratio C vir = r virial /r s .<br />

In the context <strong>of</strong> this model, the predicted form <strong>of</strong> CDM dom<strong>in</strong>ated are predicted<br />

to follow a density pr<strong>of</strong>ile lack<strong>in</strong>g a core, but with a much shallower<br />

central pr<strong>of</strong>ile (r ≤ 100 h −1 kpc) than a purely isothermal body.<br />

The fit to an NFW pr<strong>of</strong>ile is made keep<strong>in</strong>g r s , <strong>and</strong> ρ s , the characteristic<br />

radius <strong>and</strong> the correspond<strong>in</strong>g density, as free parameters.<br />

These can be<br />

adjusted to normalize the model to the observed maximum <strong>in</strong> the distortion<br />

pr<strong>of</strong>ile at the tangential critical radius <strong>of</strong> ≃ 45 ′′ . The comb<strong>in</strong>ation <strong>of</strong> these<br />

parameters then fixes the degree <strong>of</strong> concentration, <strong>and</strong> the correspond<strong>in</strong>g<br />

lens<strong>in</strong>g distortion pr<strong>of</strong>ile can then be calculated.<br />

Integrat<strong>in</strong>g the mass along a column, z, where r 2 = (ξ r r s ) 2 +z 2 gives:<br />

∫ ξ ∫ ∞<br />

M(ξ) = ρ s rs(ξ)<br />

3 d 2 1 dz<br />

ξ<br />

. (2.24)<br />

o −∞ (r/r s )(1 + r/r s ) 2 r s<br />

61


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

Us<strong>in</strong>g this mass, a bend-angle <strong>of</strong> α = 4GM(


2.10 Cluster mass pr<strong>of</strong>ile<br />

tangential critical radius <strong>of</strong> 47 ′′ to match the mean critical radius derived<br />

from the data (Broadhurst et al. 2005a).<br />

To normalize the models we choose to reproduce the observed E<strong>in</strong>ste<strong>in</strong><br />

radius <strong>of</strong> 47 ′′ <strong>and</strong> compare the predicted location <strong>of</strong> the radial critical curve<br />

<strong>and</strong> the κ = 1 curve. Figure 2.20 shows that both these radii decrease slowly<br />

as the concentration parameter is <strong>in</strong>creased. We have marked the observed<br />

values <strong>of</strong> these radii as determ<strong>in</strong>ed by two <strong>in</strong>dependent observational means.<br />

We can use the statistical distortion measurements as described <strong>in</strong> § 2.4,<br />

<strong>and</strong> the same values derived from the multiple image analysis presented <strong>in</strong><br />

Broadhurst et al. (2005a). These differ<strong>in</strong>g estimates are closely consistent<br />

with each other, <strong>and</strong> by comparison with the model curves bracket <strong>in</strong>termediate<br />

values <strong>of</strong> concentration <strong>in</strong> the range 5 < C vir < 15 (Fig. 2.20), a range<br />

consistent with the results from a detailed fit to the <strong>in</strong>ner pr<strong>of</strong>ile measured<br />

<strong>in</strong> Broadhurst et al. (2005a). This is found to be very similar to the <strong>in</strong>dependently<br />

derived central pr<strong>of</strong>ile <strong>of</strong> A1689 from Diego et al. (2005); Zekser<br />

et al. (2006); Halkola et al. (2006)<br />

Outside the tangential critical radius, for r > 1.5, the distortion measurements<br />

are small enough not to suffer from any significant underestimation<br />

due to the f<strong>in</strong>ite source sizes <strong>and</strong> we may compare the observed distortion<br />

pr<strong>of</strong>ile, g T (r), out to the limit <strong>of</strong> our data, r < 15 ′′ . We f<strong>in</strong>d this distortion<br />

pr<strong>of</strong>ile is reasonably well fitted by an NFW pr<strong>of</strong>ile particularly at large radius,<br />

4.0 ′′ < r < 15 ′′ , but with a relatively large concentration, C vir = 27.2 +3.5<br />

−5.7, as<br />

shown <strong>in</strong> Figure 2.21. Note that we have used here a l<strong>in</strong>ear radial b<strong>in</strong>n<strong>in</strong>g<br />

when measur<strong>in</strong>g the concentration parameter <strong>and</strong> therefore the result here<br />

is more weighted by large radius signal than for the analysis <strong>of</strong> Broadhurst<br />

et al. (2005b) where we used logarithmic b<strong>in</strong>n<strong>in</strong>g, yield<strong>in</strong>g a smaller value<br />

<strong>of</strong> C vir . This difference <strong>in</strong> the derived value <strong>of</strong> C vir is not because <strong>of</strong> any<br />

revision <strong>in</strong> our estimates <strong>of</strong> the distortion, <strong>in</strong> fact both analyses yield very<br />

consistent distortion pr<strong>of</strong>iles at large radius, but rather that the form <strong>of</strong> the<br />

NFW pr<strong>of</strong>ile is not consistent with our data over the full radial range - the<br />

best fitt<strong>in</strong>g NFW model is either too shallow at large radius or too steep at<br />

small radius depend<strong>in</strong>g where one prefers to fit the data.<br />

63


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

We also plot lower concentration pr<strong>of</strong>iles, <strong>in</strong>clud<strong>in</strong>g C vir = 14, which was<br />

found previously by Broadhurst et al. (2005a), to fit best the overall lens<strong>in</strong>g<br />

derived mass pr<strong>of</strong>ile from comb<strong>in</strong><strong>in</strong>g the mass pr<strong>of</strong>ile derived from the<br />

multiply lensed images <strong>in</strong> the central region, r < 2 ′ , with the mass distribution<br />

derived from weak lens<strong>in</strong>g distortion <strong>and</strong> magnification measurements<br />

from the red background galaxy sample. This model fit, as po<strong>in</strong>ted out by<br />

Broadhurst et al. (2005b), is not as pronounced as the observed surface mass<br />

pr<strong>of</strong>ile, be<strong>in</strong>g too shallow at larger radius <strong>and</strong> too steep at small radius (see<br />

figures 1&3 <strong>of</strong> Broadhurst et al. 2005b). Here we see more clearly that this<br />

fit with C vir = 14 <strong>in</strong>creas<strong>in</strong>gly overpredicts the observed distortion pr<strong>of</strong>ile<br />

with radius. We also plot C vir = 8.2 which best fits the central strongly<br />

lensed region (Broadhurst et al. 2005a) r < 2 ′ , derived from 106 multiply<br />

lensed images. Aga<strong>in</strong> this fit overpredicts the g T pr<strong>of</strong>ile <strong>in</strong> the weak lens<strong>in</strong>g<br />

regime, as po<strong>in</strong>ted out <strong>in</strong> Broadhurst et al. (2005b). We clearly exclude<br />

the low concentration pr<strong>of</strong>ile generally predicted by CDM based models <strong>of</strong><br />

structure formation. A value <strong>of</strong> C vir ∼ 5 is generally anticipated for massive<br />

clusters, although the scatter <strong>in</strong> concentration at a given mass is considerable<br />

(e.g., Bullock et al. 2001). Figure 2.21 shows clearly how this pr<strong>of</strong>ile is much<br />

too shallow to generate the relatively steeply decl<strong>in</strong><strong>in</strong>g observed distortion<br />

pr<strong>of</strong>ile. The triaxiality <strong>of</strong> realistic halos means that projection effects will<br />

bias somewhat the derived distortion pr<strong>of</strong>ile, as exam<strong>in</strong>ed carefully by Oguri<br />

et al. (2005) <strong>and</strong> Hennawi et al. (2005), show<strong>in</strong>g that the level <strong>of</strong> such bias<br />

effect is expected to enhance the derived concentration by approximately<br />

∼ 20% on average. Whilst A1689 is clearly an anomalous cluster <strong>in</strong> terms<br />

<strong>of</strong> the size <strong>of</strong> the E<strong>in</strong>ste<strong>in</strong> radius, the cluster is very round <strong>in</strong> terms <strong>of</strong> the<br />

projected X-ray emission, with only m<strong>in</strong>imal substructure observed <strong>in</strong> the<br />

optical near the center. Hence we are left with a clearly unresolved problem,<br />

that the observed concentration would seem to far exceed any reasonable<br />

estimate. Other <strong>in</strong>dependent work on the comb<strong>in</strong>ed pr<strong>of</strong>ile from strong <strong>and</strong><br />

weak lens<strong>in</strong>g measurements for the clusters Cl0024+17 (Kneib et al. 2003)<br />

<strong>and</strong> MS2137-23 (Gavazzi et al. 2003) also po<strong>in</strong>t to surpris<strong>in</strong>gly high concentrations,<br />

<strong>and</strong> it is therefore important to extend this type <strong>of</strong> detailed work<br />

to other clusters to test the generality <strong>of</strong> the pr<strong>of</strong>ile derived here.<br />

64


2.11 Discussion <strong>and</strong> conclusions<br />

For reference we also plot the distortion pr<strong>of</strong>ile for a s<strong>in</strong>gular isothermal<br />

body <strong>in</strong> Figure 2.21, which is simply expressed as<br />

g T =<br />

1<br />

2 θ<br />

θ E<br />

− 1 , (2.26)<br />

<strong>and</strong> normalized to the observed E<strong>in</strong>ste<strong>in</strong> radius, θ E = 47 ′′ . This model also<br />

overpredicts the data at large radius, <strong>in</strong>dicat<strong>in</strong>g the outer mass pr<strong>of</strong>ile is<br />

steeper than 1/θ <strong>in</strong> projection.<br />

2.11 Discussion <strong>and</strong> conclusions<br />

We have explored a new approach to deriv<strong>in</strong>g the lum<strong>in</strong>ous properties <strong>of</strong><br />

cluster galaxies by utiliz<strong>in</strong>g lens<strong>in</strong>g distortion measurements, based on the<br />

dilution <strong>of</strong> the lens<strong>in</strong>g distortion signal by unlensed cluster members which<br />

we assume are r<strong>and</strong>omly oriented. We have tested this assumption for a<br />

restricted sample <strong>of</strong> bright cluster galaxies which project beyond the fa<strong>in</strong>t<br />

galaxy background population so the level <strong>of</strong> background contam<strong>in</strong>ation is<br />

negligible, confirm<strong>in</strong>g that the cluster galaxies are r<strong>and</strong>omly oriented with a<br />

negligible net tangential distortion for the purposes <strong>of</strong> our work.<br />

This dilution approach is applied to A1689 to derive the radial light pr<strong>of</strong>ile<br />

<strong>of</strong> the cluster, a color pr<strong>of</strong>ile <strong>and</strong> radial lum<strong>in</strong>osity functions. The light<br />

pr<strong>of</strong>ile is found to be smoothly decl<strong>in</strong><strong>in</strong>g <strong>and</strong> fitted with a power-law slope<br />

d log(L)/d log(r) = −1.12 ± 0.06. We also see a mild color gradient correspond<strong>in</strong>g<br />

to a change <strong>in</strong> the cluster population from early- to mid-type<br />

galaxies <strong>in</strong> mov<strong>in</strong>g from the center out to the limit <strong>of</strong> our data at 2 h −1 Mpc.<br />

Unlike the light pr<strong>of</strong>ile the gradient <strong>of</strong> mass pr<strong>of</strong>ile is cont<strong>in</strong>uously steepen<strong>in</strong>g,<br />

such that the ratio <strong>of</strong> M/L peaks at <strong>in</strong>termediate radius. We f<strong>in</strong>d that<br />

the cluster lum<strong>in</strong>osity function has a flat fa<strong>in</strong>t-end slope <strong>of</strong> α = −1.05±0.07,<br />

nearly <strong>in</strong>dependent <strong>of</strong> radius <strong>and</strong> with no fa<strong>in</strong>t upturn to M i ′ < −12.<br />

A major advantage <strong>of</strong> our approach is that we do not need to def<strong>in</strong>e farfield<br />

counts for subtract<strong>in</strong>g a background, as <strong>in</strong> the usual method where there<br />

is a limitation imposed by the cluster<strong>in</strong>g <strong>of</strong> the background population that<br />

65


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

limits the radius to which a reliable subtraction <strong>of</strong> the background can be<br />

made.<br />

We have also established that the bluest galaxies <strong>in</strong> the field <strong>of</strong> A1689<br />

lie predom<strong>in</strong>antly <strong>in</strong> the background, as their radial distortion pr<strong>of</strong>ile follows<br />

closely the red galaxies, but with an <strong>of</strong>fset <strong>in</strong>dicat<strong>in</strong>g the blue population lies<br />

at a greater mean distance than the red background galaxies, <strong>and</strong> consistent<br />

with the estimated mean redshifts <strong>of</strong> these two populations. With a larger<br />

sample <strong>of</strong> clusters, this purely geometric effect can potentially be put to use to<br />

provide a simple model-<strong>in</strong>dependent measure <strong>of</strong> the cosmological curvature.<br />

The mass pr<strong>of</strong>ile <strong>of</strong> A1689 was reexam<strong>in</strong>ed us<strong>in</strong>g our comb<strong>in</strong>ed background<br />

sample <strong>of</strong> red <strong>and</strong> blue galaxies. The distortion pr<strong>of</strong>ile derived from<br />

this sample is consistent with our earlier work, but somewhat more statistically<br />

significant, so we have exam<strong>in</strong>ed the mass pr<strong>of</strong>ile more carefully out<br />

to a larger radius. We have found that the distortion pr<strong>of</strong>ile is steeper than<br />

predicted for CDM halos appropriate for cluster sized masses C vir ∼ 5. This<br />

discrepancy is particularly clear at large radius r > 2 ′ , where an acceptable<br />

fit is found to an NFW pr<strong>of</strong>ile but with a concentration C vir = 27 +3.5<br />

−5.7. This<br />

f<strong>in</strong>d<strong>in</strong>g is consistent with our earlier work which showed that although an<br />

overall best fit pr<strong>of</strong>ile <strong>of</strong> C vir ≃ 14 to the jo<strong>in</strong>t strong <strong>and</strong> weak lens<strong>in</strong>g based<br />

data presented <strong>in</strong> Broadhurst et al. (2005b), the curvature <strong>of</strong> the data is<br />

more pronounced than an NFW pr<strong>of</strong>ile be<strong>in</strong>g shallower <strong>in</strong> the <strong>in</strong>ner region<br />

<strong>and</strong> steeper at larger radius, so that the derived value <strong>of</strong> the concentration<br />

<strong>in</strong>creases with radius depend<strong>in</strong>g on the radial limits be<strong>in</strong>g exam<strong>in</strong>ed.<br />

This result is surpris<strong>in</strong>g <strong>and</strong> may require a significant departure from the<br />

st<strong>and</strong>ard CDM model, either <strong>in</strong> terms <strong>of</strong> the mass content, or the epoch at<br />

which the bulk <strong>of</strong> the cluster was assembled. For example, one possibility to<br />

achieve earlier formation <strong>of</strong> clusters is to allow deviation from Gaussianity<br />

<strong>of</strong> the primordial density fluctuation field, as has been considered recently<br />

by, e.g., Sadeh et al. (2006).<br />

A1689 is amongst the most massive known<br />

clusters, <strong>and</strong> projection effects may play a role <strong>in</strong> boost<strong>in</strong>g somewhat the<br />

lens<strong>in</strong>g signal along the l<strong>in</strong>e <strong>of</strong> sight. We therefore aim to test the generality<br />

<strong>of</strong> this result with a careful study <strong>of</strong> a statistical sample <strong>of</strong> clusters.<br />

66


2.A Cluster galaxy fraction from the lens<strong>in</strong>g dilution effect<br />

Upcom<strong>in</strong>g spatially resolved SZ measurements will add a significant new<br />

ability to determ<strong>in</strong>e cluster mass pr<strong>of</strong>iles over a large range <strong>of</strong> radius, <strong>and</strong> allow<br />

for improved consistency checks between the various <strong>in</strong>dependent means<br />

<strong>of</strong> estimat<strong>in</strong>g masses. The comb<strong>in</strong>ation <strong>of</strong> X-ray, lens<strong>in</strong>g <strong>and</strong> SZ measurements<br />

will soon lead to far greater accuracy <strong>in</strong> underst<strong>and</strong><strong>in</strong>g the nature <strong>of</strong><br />

cluster mass pr<strong>of</strong>iles.<br />

We plan an improvement to the weak lens<strong>in</strong>g work with deeper multi-color<br />

imag<strong>in</strong>g from Subaru for measur<strong>in</strong>g reliable photometric redshifts for a sizable<br />

fraction <strong>of</strong> the background population. This added dimension <strong>of</strong> depth will<br />

enhance the weak lens<strong>in</strong>g signal <strong>and</strong> reduce the systematic problems <strong>of</strong> cluster<br />

<strong>and</strong> foreground contam<strong>in</strong>ation <strong>of</strong> the lens<strong>in</strong>g signal. We also aim to extend<br />

this work to well studied clusters at lower redshift with archived Subaru<br />

imag<strong>in</strong>g <strong>and</strong> detailed X-ray <strong>and</strong> upcom<strong>in</strong>g SZ observations as <strong>in</strong> pr<strong>in</strong>ciple, the<br />

lens<strong>in</strong>g signal should be equally strong for lower redshift clusters, given the<br />

maximal ratio <strong>of</strong> lens to source distances, D ds /D s ≃ 1, for fa<strong>in</strong>t background<br />

sources.<br />

Appendix<br />

2.A Cluster galaxy fraction from the lens<strong>in</strong>g<br />

dilution effect<br />

Let us derive eq. (2.18). For simplicity, here we assume the weak lens<strong>in</strong>g limit<br />

so that the reduced shear is approximated by the gravitational shear, g ≈ γ.<br />

It is useful to factorize the lens<strong>in</strong>g signal with the geometry-dependent factor<br />

such that (Seitz & Schneider 1997):<br />

g T (r) = w(z)g T,∞ (r) (2.27)<br />

where g T,∞ (r) denotes the tangential shear calculated for hypothetical sources<br />

at an <strong>in</strong>f<strong>in</strong>ite redshift, <strong>and</strong> w(z) is the lens<strong>in</strong>g strength <strong>of</strong> a source at z<br />

67


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

relative to a source at z → ∞, w(z) = D(z)/D(z → ∞); D(z) ≡ D ds /D s<br />

as <strong>in</strong>troduced <strong>in</strong> §5. The relative lens<strong>in</strong>g strength vanishes for cluster <strong>and</strong><br />

foreground galaxies, that is, w(z) = 0 for z ≤ z l .<br />

As the tangential shear is obta<strong>in</strong>ed by averag<strong>in</strong>g over an annular region,<br />

it can be formally written <strong>in</strong> the follow<strong>in</strong>g form:<br />

〈g T (r)〉 = g T,∞ (r)<br />

∫<br />

d 2 x dz dn/dz w(z)<br />

∫<br />

d2 x dz dn/dz<br />

(2.28)<br />

= g T,∞ (r)<br />

∫ ∞<br />

z l<br />

dz dN/dz w(z)<br />

N tot<br />

= g T,∞ (r) N bg<br />

N tot<br />

〈w〉 z>zl<br />

where dn/dz is the surface number density distribution <strong>of</strong> galaxies per<br />

unit redshift <strong>in</strong>terval per steradian, dN/dz = ∫ d 2 x dn/dz is the mean redshift<br />

distribution <strong>of</strong> galaxies <strong>in</strong> the annulus, N tot = ∫ ∞<br />

dz dN/dz is the total<br />

0<br />

number <strong>of</strong> galaxies <strong>in</strong> the annulus, N bg = ∫ ∞<br />

z l<br />

dz dN/dz is the number <strong>of</strong> background<br />

galaxies <strong>in</strong> the annulus, 〈w〉 z>zl = ∫ ∞<br />

z l<br />

dz dN/dz w(z)/ ∫ ∞<br />

z l<br />

dz dN/dz is<br />

the mean lens<strong>in</strong>g strength without <strong>in</strong>clud<strong>in</strong>g the dilution effect; here we have<br />

assumed that the lens<strong>in</strong>g properties are constant over the annulus where we<br />

take the ensemble averag<strong>in</strong>g. Note that the factor N bg /N tot accounts for the<br />

dilution effect on the lens<strong>in</strong>g signal strength due to contam<strong>in</strong>ation by foreground<br />

<strong>and</strong> cluster-member galaxies. In general, there is a contribution from<br />

foreground galaxies to the total number <strong>of</strong> galaxies N tot . However, for the<br />

case <strong>of</strong> A1689 at a low redshift <strong>of</strong> z l = 0.183, this contribution is negligible.<br />

That is, N tot ≈ N cl + N bg with N cl be<strong>in</strong>g the number <strong>of</strong> cluster galaxies <strong>in</strong><br />

the annulus. For a background galaxy sample, N tot = N bg .<br />

S<strong>in</strong>ce we are to compare galaxy samples with different redshift <strong>distributions</strong>,<br />

we need to account for different values <strong>of</strong> the mean lens<strong>in</strong>g strength,<br />

〈w〉 z>zl . As expla<strong>in</strong>ed above, our green sample (denoted with G) comprises<br />

both cluster <strong>and</strong> background galaxies. Hence, accord<strong>in</strong>g to eq. (2.28), the<br />

68


2.B Non-l<strong>in</strong>ear effect <strong>in</strong> the reduced shear estimate<br />

expectation value for the mean tangential shear estimate is<br />

〈g (G)<br />

T<br />

(r)〉 = g T,∞(r)<br />

N (G)<br />

bg<br />

N cl + N (G)<br />

bg<br />

〈w (G) 〉 z>zl . (2.29)<br />

As for our background sample (denoted with B), <strong>in</strong>clud<strong>in</strong>g the red <strong>and</strong> blue<br />

samples, this is<br />

〈g (B)<br />

T (r)〉 = g T,∞(r)〈w (B) 〉 z>zl . (2.30)<br />

By tak<strong>in</strong>g the ratio <strong>of</strong> the two tangential shear estimates, we obta<strong>in</strong> the<br />

follow<strong>in</strong>g expression:<br />

〈g (G)<br />

T<br />

(r)〉/〈g(B)<br />

T (r)〉 = N (G)<br />

bg<br />

N cl + N (G)<br />

bg<br />

〈w (G) 〉 z>zl<br />

〈w (B) 〉 z>zl<br />

. (2.31)<br />

Alternatively, we have the expression for the cluster galaxy fraction as<br />

f cl (r) ≡<br />

N cl<br />

N cl + N (G)<br />

bg<br />

= 1 − 〈g(G) T<br />

(r)〉<br />

〈g (B)<br />

T<br />

〈w (B) 〉 z>zl<br />

(r)〉 = 1 − 〈g(G) T<br />

(r)〉 〈D (B) 〉 z>zl<br />

〈w (G) 〉 z>zl 〈g (B) (r)〉 .<br />

〈D (G) 〉 z>zl<br />

T<br />

(2.32)<br />

This is the desired formula for the cluster galaxy fraction from the weak<br />

lens<strong>in</strong>g dilution effect. In order to take <strong>in</strong>to account different populations <strong>of</strong><br />

background galaxies <strong>in</strong> the two samples, one needs to estimate the correction<br />

factor, 〈D (B) 〉 z>zl /〈D (G) 〉 z>zl .<br />

2.B Non-l<strong>in</strong>ear effect <strong>in</strong> the reduced shear estimate<br />

In Appendix A, we assume that the observable reduced shear is l<strong>in</strong>early proportional<br />

to the lens<strong>in</strong>g strength factor, w(z). However, the reduced sear, def<strong>in</strong>ed<br />

as g = γ/(1−κ), is non-l<strong>in</strong>ear <strong>in</strong> κ, so that the averag<strong>in</strong>g operator with<br />

respect to the redshift generally acts non-l<strong>in</strong>early on the redshift-dependent<br />

components <strong>in</strong> g.<br />

69


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

To see this effect, we exp<strong>and</strong> the reduced shear with respect to the convergence<br />

κ as<br />

g = γ(1 − κ) −1 = wγ ∞ (1 − wκ ∞ ) −1 = wγ ∞<br />

∞<br />

∑<br />

k=0<br />

(wκ ∞ ) k (2.33)<br />

where κ ∞ <strong>and</strong> γ ∞ are the lens<strong>in</strong>g convergence <strong>and</strong> the gravitational shear, respectively,<br />

calculated for a hypothetical source at an <strong>in</strong>f<strong>in</strong>ite redshift. Hence,<br />

the reduced shear averaged over the source redshift distribution is expressed<br />

as<br />

〈g〉 = γ ∞<br />

∞<br />

∑<br />

k=0<br />

〈w k+1 〉κ k ∞. (2.34)<br />

In the weak lens<strong>in</strong>g limit where κ ∞ , |γ| ∞ ≪ 1, then 〈g〉 ≈ 〈w〉γ ∞ . Thus,<br />

the mean reduced shear is simply proportional to the mean lens<strong>in</strong>g strength,<br />

〈w〉. The next higher-order approximation for eq. (2.34) is given by<br />

〈g〉 ≈ γ ∞<br />

(<br />

〈w〉 + 〈w 2 〉κ ∞<br />

)<br />

≈<br />

〈w〉γ ∞<br />

1 − κ ∞ 〈w 2 〉/〈w〉 . (2.35)<br />

Seitz & Schneider (1997) found that eq. (2.35) yields an excellent approximation<br />

<strong>in</strong> the mildly non-l<strong>in</strong>ear regime <strong>of</strong> κ ∞ 0.6. Def<strong>in</strong><strong>in</strong>g f w ≡ 〈w 2 〉/〈w〉 2 ,<br />

we have the follow<strong>in</strong>g expression for the mean reduced shear valid <strong>in</strong> the<br />

mildly non-l<strong>in</strong>ear regime:<br />

〈g〉 ≈<br />

〈γ〉<br />

1 − f w 〈κ〉<br />

(2.36)<br />

with 〈κ〉 = 〈w〉κ ∞ <strong>and</strong> 〈γ〉 = 〈w〉γ ∞ (Seitz & Schneider 1997). For lens<strong>in</strong>g<br />

clusters located at low redshifts <strong>of</strong> z l 0.2, 〈w 2 〉 ≃ 〈w〉 2 or f w ≈ 1, so that<br />

〈g〉 ≈ 〈γ〉/(1 − 〈κ〉).<br />

The ratio <strong>of</strong> tangential shear estimates us<strong>in</strong>g two different populations B<br />

<strong>and</strong> G <strong>of</strong> background galaxies, <strong>in</strong> the mildly non-l<strong>in</strong>ear regime, is given as<br />

〈g (G)<br />

T 〉<br />

〈g (B)<br />

T 〉 ≈ 〈w(G) 〉<br />

〈w (B) 〉<br />

≈ 〈w(G) 〉<br />

〈w (B) 〉<br />

1 − f w<br />

(B) 〈w (B) 〉κ ∞<br />

1 − f (G)<br />

(2.37)<br />

w 〈w (G) 〉κ ∞<br />

{ (<br />

1 − f<br />

(B)<br />

w 〈w (B) 〉 − f w (G) 〈w (G) 〉 ) κ ∞ + O(〈κ〉 2 ) } .<br />

70


2.B Non-l<strong>in</strong>ear effect <strong>in</strong> the reduced shear estimate<br />

(<br />

The lowest-order correction term is proportional to<br />

f (B)<br />

w<br />

)<br />

〈w (B) 〉 − f w (G) 〈w (G) 〉 κ ∞ ,<br />

which is much smaller than unity for the galaxy samples <strong>of</strong> our concern <strong>in</strong> the<br />

mildly non-l<strong>in</strong>ear regime. In conclusion, it is therefore a fair approximation<br />

to use eq. (2.18) for measur<strong>in</strong>g the cluster galaxy fraction via the dilution<br />

effect.<br />

71


Weak Lens<strong>in</strong>g Dilution <strong>in</strong> A1689<br />

30<br />

28<br />

Radial critical curve<br />

κ=1 curve<br />

26<br />

24<br />

θ [arcsec]<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

0 5 10 15 20 25 30<br />

C Vir<br />

Figure 2.20 – The curves shows how the radius <strong>of</strong> the radial critical curve, shown <strong>in</strong><br />

blue, varies with the concentration parameter <strong>of</strong> an NFW pr<strong>of</strong>ile, where the model is normalized<br />

to generate the observed E<strong>in</strong>ste<strong>in</strong> radius <strong>of</strong> 47 ′′ for all values <strong>of</strong> the concentration<br />

parameter, C vir . The radial critical curve shr<strong>in</strong>ks as the mass pr<strong>of</strong>ile becomes steeper.<br />

This is also the case for the radius at which the distortion g T = 0, correspond<strong>in</strong>g to the<br />

radius where the surface density <strong>of</strong> matter is equal to the critical surface density (κ = 1),<br />

here the degree <strong>of</strong> tangential <strong>and</strong> radial distortion is always equal, <strong>in</strong>dependent <strong>of</strong> the<br />

form <strong>of</strong> the mass pr<strong>of</strong>ile. We have marked the observed values <strong>of</strong> the radial critical curves<br />

<strong>and</strong> the radius where the distortion is seen to be zero as measured <strong>in</strong>dependently <strong>in</strong> two<br />

ways us<strong>in</strong>g the statistical distortion measurements (dotted l<strong>in</strong>es) as described <strong>in</strong> § 2.4, <strong>and</strong><br />

the same values derived from the multiple image analysis presented <strong>in</strong> Broadhurst et al.<br />

(2005a) (dashed l<strong>in</strong>es). These differ<strong>in</strong>g measurements are consistent with each other <strong>and</strong><br />

by comparison with the model curves bracket <strong>in</strong>termediate values <strong>of</strong> concentration <strong>in</strong> the<br />

range 5 < C vir < 15 for the <strong>in</strong>ner strongly lensed region.


2.B Non-l<strong>in</strong>ear effect <strong>in</strong> the reduced shear estimate<br />

10 0 θ [arcm<strong>in</strong>]<br />

c vir<br />

=27<br />

c vir<br />

=14<br />

c vir<br />

=8<br />

c vir<br />

=5<br />

Distortion g +<br />

10 −1<br />

10 −2<br />

0 2 4 6 8 10 12 14 16<br />

Figure 2.21 – NFW models are compared with the measured values <strong>of</strong> g T for the red+blue<br />

background sample described <strong>in</strong> § 2.2. The models are normalized to match the observed<br />

E<strong>in</strong>ste<strong>in</strong> radius <strong>of</strong> 47 ′′ . A relatively high concentration is preferred with the best fit<br />

correspond<strong>in</strong>g to C vir = 27 −5.7 +3.5 (black curve), for the bulk <strong>of</strong> data, r > 1.5′ , exclud<strong>in</strong>g the<br />

strong region where the measured distortions required a significant correction for the f<strong>in</strong>ite<br />

source sizes. The anticipated low concentration <strong>of</strong> C ∼ 5 (p<strong>in</strong>k curve) is obviously excluded<br />

by the data. For reference we also overplot the purely isothermal pr<strong>of</strong>ile normalized to the<br />

observed E<strong>in</strong>ste<strong>in</strong> radius (red dotted curve). It also overpredicts the data.


Chapter 3<br />

Detailed Cluster <strong>Mass</strong> <strong>and</strong><br />

<strong>Light</strong> Pr<strong>of</strong>iles <strong>of</strong> A1703, A370<br />

& RXJ1347-11 from Deep<br />

Subaru Imag<strong>in</strong>g<br />

A version <strong>of</strong> this chapter has been published as Medez<strong>in</strong>ski, E., Broadhurst,<br />

T., Umetsu, K., Oguri, M., Rephaeli, Y., & Benítez, N. 2010, MNRAS, 405,<br />

257.<br />

3.1 Introduction<br />

Galaxy <strong>Clusters</strong> are the largest virialised objects whose properties reflect the<br />

<strong>in</strong>itial spectrum <strong>of</strong> density perturbations <strong>and</strong> the evolutionary history <strong>of</strong> dark<br />

matter (DM) <strong>and</strong> baryons. Wide rang<strong>in</strong>g observations provide a wealth <strong>of</strong><br />

<strong>in</strong>formation for exam<strong>in</strong><strong>in</strong>g the relation between dark <strong>and</strong> visible matter <strong>and</strong><br />

their radial pr<strong>of</strong>iles. Unlike galaxies, where substantial cool<strong>in</strong>g is predicted to<br />

have concentrated baryons <strong>in</strong> the centers <strong>of</strong> DM halos, clusters are observed<br />

to cool relatively <strong>in</strong>efficiently via thermal emission so that the gas rema<strong>in</strong>s<br />

close to the virial temperature, mak<strong>in</strong>g cluster mass pr<strong>of</strong>iles easy to <strong>in</strong>terpret,<br />

75


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

as corrections for gas cool<strong>in</strong>g are not significant (Blumenthal et al. 1986;<br />

Broadhurst & Barkana 2008).<br />

Lens<strong>in</strong>g work is now able to achieve measurements <strong>of</strong> projected cluster<br />

mass pr<strong>of</strong>iles with unprecedented detail, sufficient to usefully address the dist<strong>in</strong>ctive<br />

prediction <strong>of</strong> a relatively shallow mass pr<strong>of</strong>iles for CDM dom<strong>in</strong>ated<br />

halos (Navarro, Frenk, & White 1997, hereafter NFW; Duffy et al. 2008).<br />

Comb<strong>in</strong>ed weak <strong>and</strong> strong lens<strong>in</strong>g measurements have shown that the cont<strong>in</strong>uously<br />

steepen<strong>in</strong>g form <strong>of</strong> the NFW pr<strong>of</strong>ile is a reasonable description for<br />

the mass pr<strong>of</strong>iles <strong>of</strong> three careful, <strong>in</strong>dependent studies (Kneib et al. 2003;<br />

Gavazzi 2005; Broadhurst et al. 2005b), although with surpris<strong>in</strong>gly high values<br />

derived for the pr<strong>of</strong>ile concentration parameter <strong>in</strong> each case (Broadhurst<br />

et al. 2005b). More recently, the concordance ΛCDM cosmology has been<br />

exam<strong>in</strong>ed critically with a somewhat larger sample <strong>of</strong> clusters, <strong>in</strong>dicat<strong>in</strong>g<br />

that the concentrations derived are significantly higher than predicted over<br />

a wide range <strong>of</strong> cluster mass, after account<strong>in</strong>g for statistical corrections for<br />

lens<strong>in</strong>g-<strong>in</strong>duced biases. This is seen both <strong>in</strong> terms <strong>of</strong> the size <strong>of</strong> the E<strong>in</strong>ste<strong>in</strong><br />

radius (Broadhurst & Barkana 2008; Oguri & Bl<strong>and</strong>ford 2009; Zitr<strong>in</strong><br />

et al. 2009b) <strong>and</strong> the weak lens<strong>in</strong>g (WL) mass pr<strong>of</strong>iles <strong>of</strong> several well known<br />

clusters (Broadhurst et al. 2008; Sadeh & Rephaeli 2008; Lapi & Cavaliere<br />

2009).<br />

Current detailed cluster mass <strong>and</strong> light pr<strong>of</strong>iles can now be used to exam<strong>in</strong>e<br />

the ratio <strong>of</strong> M/L all the way out to the virial radius. Comparisons <strong>of</strong><br />

the general DM distribution with the galaxy distribution are potentially <strong>of</strong><br />

great <strong>in</strong>terest as the distribution <strong>of</strong> galaxies is thought to be <strong>in</strong>fluenced by<br />

significant tidal forces which may substantially modify massive galaxy halos<br />

reduc<strong>in</strong>g their masses (Ghigna et al. 1998, 2000; Colín et al. 1999; Spr<strong>in</strong>gel<br />

et al. 2001; De Lucia et al. 2004; Gao et al. 2004; Nagai & Kravtsov 2005;<br />

Limous<strong>in</strong> et al. 2009). <strong>Mass</strong> loss calculated over Hubble time <strong>in</strong> ΛCDM predict<br />

losses <strong>of</strong> ∼ 30% for orbits extend<strong>in</strong>g to the virial radius, with typically<br />

a loss <strong>of</strong> ∼ 70% near cluster centers, so that the ratio <strong>of</strong> <strong>in</strong>tegrated galaxy<br />

mass to the general DM distribution falls steadily towards the cluster center<br />

(Nagai & Kravtsov 2005).<br />

76


3.1 Introduction<br />

Stars are not expected to be stripped significantly <strong>in</strong> these simulations<br />

because <strong>of</strong> their location deep <strong>in</strong> the central potential <strong>of</strong> a galaxy. Hence,<br />

for clusters the galaxy light should simply trace mass, assum<strong>in</strong>g both are<br />

collisionless, so that a fairly constant M/L is expected (Gao et al. 2004;<br />

Nagai & Kravtsov 2005). The presence <strong>of</strong> high-mass galaxies <strong>in</strong> the <strong>in</strong>ner<br />

core, result<strong>in</strong>g from both higher merger rates <strong>and</strong> the effect <strong>of</strong> dynamical<br />

friction, expla<strong>in</strong>s the reduced value <strong>of</strong> the <strong>in</strong>tegrated M/L ratio with<strong>in</strong> a<br />

radius <strong>of</strong> ≤ 200 h −1 kpc for the highest mass clusters (Nagai & Kravtsov<br />

2005; El-Zant et al. 2001).<br />

Reliable M/L pr<strong>of</strong>iles <strong>of</strong> galaxy clusters have begun to emerge recently<br />

based on dynamical (R<strong>in</strong>es et al. 2000, 2004) <strong>and</strong> lens<strong>in</strong>g based methods<br />

(Medez<strong>in</strong>ski et al. 2007). For the local cluster A576, a careful dynamicallybased<br />

M/L pr<strong>of</strong>ile has been obta<strong>in</strong>ed with caustic work by (R<strong>in</strong>es et al.<br />

2000), who note a puzzl<strong>in</strong>g decl<strong>in</strong><strong>in</strong>g behavior, with a peak around M/L ∼<br />

600M/L R at r ∼ 100 h −1 kpc, decl<strong>in</strong><strong>in</strong>g to a limit<strong>in</strong>g 100M/L B , at r ∼<br />

1 h −1 Mpc <strong>and</strong> beyond. Other dynamical estimates from stack<strong>in</strong>g together<br />

samples <strong>of</strong> clusters also show this overall behavior, where the M/L ratio<br />

may peak around 10% <strong>of</strong> the virial radius (Katgert et al. 2004) <strong>and</strong> decl<strong>in</strong>es<br />

thereafter (R<strong>in</strong>es et al. 2000, 2004).<br />

Our earlier lens<strong>in</strong>g based determ<strong>in</strong>ation <strong>of</strong> the M/L pr<strong>of</strong>ile <strong>of</strong> A1689<br />

(Medez<strong>in</strong>ski et al. 2007) shows behavior similar to the above dynamical work,<br />

with a peak <strong>of</strong> M/L B ∼ 400(M/L) ⊙ at r ∼ 100 h −1 kpc, <strong>and</strong> a steady decl<strong>in</strong>e<br />

to ∼ 100M/L B at the virial radius, r ∼ 2 h −1 Mpc (Medez<strong>in</strong>ski et al.<br />

2007). In the case <strong>of</strong> A576 (R<strong>in</strong>es et al. 2000) <strong>and</strong> <strong>in</strong> our own work on A1689<br />

(Medez<strong>in</strong>ski et al. 2007), careful corrections are made for the trend <strong>of</strong> M/L <strong>of</strong><br />

the stellar population with cluster radius, us<strong>in</strong>g the measured colors <strong>of</strong> cluster<br />

member galaxies which favor predom<strong>in</strong>ately redder, earlier-type galaxies <strong>in</strong><br />

the central region. In both these differ<strong>in</strong>g analyses the color trend was found<br />

to be weak <strong>and</strong> not nearly sufficient to account for the measured variation<br />

<strong>of</strong> the M/L pr<strong>of</strong>ile, leav<strong>in</strong>g a puzzl<strong>in</strong>g result which is generally at odds with<br />

the known result that M/L is an <strong>in</strong>creas<strong>in</strong>g function <strong>of</strong> scale. Clearly, it is<br />

important to extend the <strong>in</strong>vestigation <strong>of</strong> the M/L pr<strong>of</strong>ile to more clusters<br />

to exam<strong>in</strong>e the generality <strong>of</strong> our earlier work <strong>and</strong> to exam<strong>in</strong>e possible trends<br />

77


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

with other observables <strong>in</strong> a more statistically robust way.<br />

Our previous work demonstrated the importance <strong>of</strong> carefully select<strong>in</strong>g<br />

a background population to avoid contam<strong>in</strong>ation by the lens<strong>in</strong>g cluster. It<br />

is not sufficient to simply exclude a narrow b<strong>and</strong> conta<strong>in</strong><strong>in</strong>g the obvious<br />

E/S0 sequence, follow<strong>in</strong>g common practice, because the lens<strong>in</strong>g signal <strong>of</strong> the<br />

rema<strong>in</strong>der bluer objects is found to fall rapidly towards the cluster center<br />

relative to the background <strong>of</strong> red lensed galaxies <strong>in</strong>dicat<strong>in</strong>g that unlensed<br />

cluster members are present blueward <strong>of</strong> the sequence dilut<strong>in</strong>g the true lens<strong>in</strong>g<br />

signal (Broadhurst et al. 2005b). Due to this effect, many WL studies<br />

have underestimated the masses <strong>and</strong> concentrations <strong>of</strong> cluster mass pr<strong>of</strong>iles<br />

(Lu et al. 2009), a po<strong>in</strong>t now widely acknowledged (Limous<strong>in</strong> et al. 2007;<br />

Oguri et al. 2009; Okabe et al. 2009). This effect resolved the long st<strong>and</strong><strong>in</strong>g<br />

discrepancy between the strong <strong>and</strong> WL effects, with the WL signal<br />

underpredict<strong>in</strong>g the observed E<strong>in</strong>ste<strong>in</strong> radius by a factor <strong>of</strong> ∼ 2.5 (Clowe<br />

& Schneider 2001; Bardeau et al. 2005), based only on a m<strong>in</strong>imal rejection<br />

<strong>of</strong> obvious cluster members us<strong>in</strong>g one or two-b<strong>and</strong> photometry. Red background<br />

galaxies beh<strong>in</strong>d clusters have s<strong>in</strong>ce been explored carefully with deep<br />

wide-field spectroscopy by R<strong>in</strong>es & Geller (2008), who emphasize that the red<br />

population <strong>in</strong> their cluster data comprises exclusively background objects.<br />

This lens<strong>in</strong>g “dilution” effect may be turned to our advantage as a means<br />

<strong>of</strong> correct<strong>in</strong>g the cluster population for background contam<strong>in</strong>ation, extend<strong>in</strong>g<br />

the work <strong>of</strong> Medez<strong>in</strong>ski et al. (2007). Here we analyze very high quality Subaru<br />

images <strong>of</strong> A1703, A370, & RXJ1347-11 for which we have accurate WL<br />

measurements. For these clusters, a wider range <strong>of</strong> colors is available than<br />

for A1689, which we make full use here to improve the separation <strong>of</strong> cluster<br />

members from foreground <strong>and</strong> background populations us<strong>in</strong>g the color-color<br />

(CC) diagram <strong>and</strong> application <strong>of</strong> our dilution method. Us<strong>in</strong>g the dilution<br />

method has the advantage that it does not require the actual subtraction<br />

<strong>of</strong> background galaxies which <strong>in</strong>troduces the <strong>in</strong>herent uncerta<strong>in</strong>ty caused by<br />

the cluster<strong>in</strong>g <strong>of</strong> the background signal <strong>and</strong> the attendant requirement for<br />

the accurate photometry <strong>of</strong> control fields.<br />

In § 3.2 we present the cluster observations, the data reduction, <strong>and</strong> <strong>in</strong><br />

78


3.2 Subaru data reduction<br />

§ 3.3 we expla<strong>in</strong> how we select cluster galaxies, background samples, <strong>and</strong><br />

foreground samples. In § 3.4 we exam<strong>in</strong>e evolutionary tracks to re<strong>in</strong>force the<br />

sample selection criteria, <strong>and</strong> compare with blank-field surveys to determ<strong>in</strong>e<br />

redshift <strong>distributions</strong> <strong>in</strong> § 3.5. In § 3.6 we describe the WL analysis, <strong>and</strong><br />

<strong>in</strong> § 3.7 we describe how the WL measurements are used to determ<strong>in</strong>e the<br />

cluster fraction us<strong>in</strong>g our WL dilution method. In § 3.8 we derive the light<br />

pr<strong>of</strong>ile <strong>of</strong> each cluster, <strong>and</strong> compare with the mass pr<strong>of</strong>ile to obta<strong>in</strong> the M/L<br />

pr<strong>of</strong>ile <strong>in</strong> § 3.9. In § 3.10 we <strong>in</strong>vestigate the shape <strong>and</strong> variation <strong>of</strong> the cluster<br />

lum<strong>in</strong>osity functions (LF) <strong>and</strong> its radial dependence. F<strong>in</strong>ally, we summarize<br />

our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> § 3.11.<br />

The ΛCDM cosmological model is adopted, with Ω M = 0.3, <strong>and</strong> Ω Λ = 0.7,<br />

but with h left <strong>in</strong> units <strong>of</strong> H 0 /100 km s −1 Mpc −1 , for easier comparison with<br />

earlier work.<br />

3.2 Subaru data reduction<br />

We analyze deep images <strong>of</strong> three <strong>in</strong>termediate-redshift clusters, A1703 (z =<br />

0.258), A370 (z = 0.375) <strong>and</strong> RXJ1347-11 (z = 0.451), observed with the<br />

wide-field camera Suprime-Cam (Miyazaki et al. 2002) <strong>in</strong> several optical<br />

b<strong>and</strong>s, at the prime focus <strong>of</strong> the 8.3m Subaru telescope. The cluster A1703<br />

was observed on 2007 June 15 <strong>and</strong> the WL signal analyzed by Broadhurst<br />

et al. (2008) <strong>and</strong> Oguri et al. (2009). The observations <strong>of</strong> the other two clusters<br />

are available <strong>in</strong> the Subaru archive, SMOKA 1 . Subaru reduction s<strong>of</strong>tware<br />

(SDFRED; Yagi et al. 2002; Ouchi et al. 2004) is used for flat-field<strong>in</strong>g, <strong>in</strong>strumental<br />

distortion correction, differential refraction, sky subtraction, <strong>and</strong><br />

stack<strong>in</strong>g. Photometric catalogs are created us<strong>in</strong>g SExtractor (Bert<strong>in</strong> &<br />

Arnouts 1996) <strong>in</strong> dual-image mode, for which we use our deepest b<strong>and</strong> as<br />

the detection image. S<strong>in</strong>ce our work relies heavily on the colors <strong>of</strong> galaxies,<br />

we prefer us<strong>in</strong>g isophotal magnitudes. Astrometric correction is done with<br />

the scamp tool (Bert<strong>in</strong> 2006) us<strong>in</strong>g reference objects <strong>in</strong> the NOMAD catalog<br />

1 http://smoka.nao.ac.jp.<br />

79


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

Table 3.1 – The Cluster Sample: Redshift <strong>and</strong> Filter Information<br />

Cluster z r vir<br />

1<br />

Filters Total exposure m lim 2 See<strong>in</strong>g Detection<br />

(h −1 Mpc) time (sec) (AB mag) (arcsec) B<strong>and</strong><br />

A1689 0.183 1.9 V J 1920 26.5 0.82 i ′<br />

i ′ 2640 25.9 0.88<br />

A1703 0.258 1.7 g ′ 1200 27.4 0.89 r ′<br />

r ′ 2100 26.9 0.78<br />

i ′ 1200 26.1 0.8<br />

A370 0.375 2.1 B J 7200 27.4 0.72 R C<br />

R C 8340 26.9 0.6<br />

z ′ 14221 26.1 0.7<br />

RXJ1347-11 0.451 1.6 V J 1800 26.5 0.7 R C<br />

R C 2880 26.7 0.76<br />

z ′ 4860 25.5 0.6<br />

1 based on Broadhurst et al. (2008)<br />

2 limit<strong>in</strong>g magnitude for a 3σ detection with<strong>in</strong> a 2 ′′ aperture<br />

(Zacharias et al. 2004) <strong>and</strong> the SDSS DR6 (Adelman-McCarthy et al. 2008)<br />

where available. The clusters observation details are listed <strong>in</strong> Table 3.1.<br />

Photometric zeropo<strong>in</strong>ts were calculated from associated st<strong>and</strong>ard star<br />

observations <strong>and</strong> also from <strong>in</strong>dependent well calibrated photometry, where<br />

available. In the case <strong>of</strong> A1703 <strong>and</strong> A370, no st<strong>and</strong>ard star observations were<br />

available, so zeropo<strong>in</strong>ts were derived <strong>in</strong>dependently <strong>in</strong> similar passb<strong>and</strong>s by<br />

compar<strong>in</strong>g to magnitudes <strong>of</strong> stars observed <strong>in</strong> SDSS fields (Oguri et al. 2009).<br />

Conversions from SDSS g, r b<strong>and</strong>s to Subaru B, R C b<strong>and</strong>s were done us<strong>in</strong>g<br />

the relations given <strong>in</strong> Lupton (2005) for the SDSS. For RXJ1347-11, st<strong>and</strong>ard<br />

stars observed dur<strong>in</strong>g the observation nights were used to derive photometric<br />

zeropo<strong>in</strong>ts <strong>in</strong> the B, R C <strong>and</strong> z ′ b<strong>and</strong>s. For the z’-b<strong>and</strong> only three St<strong>and</strong>ard<br />

stars were unsaturated <strong>in</strong> the Subaru image. To better constra<strong>in</strong> the z’-b<strong>and</strong>,<br />

<strong>and</strong> as a consistency check for the B J & R C -b<strong>and</strong>s, unsaturated stars were<br />

compared with the HST /ACS images <strong>of</strong> RXJ1347-11 <strong>in</strong> the F 475W, F 814W<br />

& F 850LP filters, f<strong>in</strong>d<strong>in</strong>g good consistency to with<strong>in</strong> ±0.05 mag.<br />

80


3.3 Sample selection from the color-color diagram<br />

3.3 Sample selection from the color-color diagram<br />

For each cluster we use Subaru observations <strong>in</strong> three broad-b<strong>and</strong>s, which differ<br />

<strong>in</strong> their choice <strong>of</strong> passb<strong>and</strong>s between the clusters, though all observations<br />

are deep <strong>and</strong> taken <strong>in</strong> conditions <strong>of</strong> good see<strong>in</strong>g, represent<strong>in</strong>g some <strong>of</strong> the<br />

highest quality imag<strong>in</strong>g <strong>of</strong> any target by Subaru <strong>in</strong> terms <strong>of</strong> depth, resolution,<br />

<strong>and</strong> color coverage. Us<strong>in</strong>g three b<strong>and</strong>s <strong>in</strong> terms <strong>of</strong> two-color space for<br />

object selection will help separate different populations <strong>and</strong> improve subsequent<br />

WL <strong>and</strong> light measurements <strong>of</strong> the cluster, as we now demonstrate.<br />

3.3.1 Cluster Members<br />

For all three clusters we construct a CC diagram <strong>and</strong> first identify <strong>in</strong> this<br />

space where the cluster lies. We do this by calculat<strong>in</strong>g the mean distance <strong>of</strong> all<br />

objects from the cluster center <strong>in</strong> a given CC cell, as shown <strong>in</strong> Fig. 3.1. This<br />

turns out to be a very clear way <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g the cluster as the mean radius is<br />

markedly lower <strong>in</strong> a well def<strong>in</strong>ed region <strong>of</strong> CC space for each cluster (region <strong>of</strong><br />

bluer (darker) colors, the approximate boundary <strong>of</strong> which is marked <strong>in</strong> black).<br />

This small region clearly corresponds to an overdensity <strong>of</strong> galaxies <strong>in</strong> CC<br />

space compris<strong>in</strong>g the red sequence <strong>of</strong> each cluster <strong>and</strong> a blue trail <strong>of</strong> later type<br />

cluster members (Fig. 3.2, dashed white curve). Of course, some background<br />

galaxies must also be expected <strong>in</strong> this region <strong>of</strong> CC space, <strong>and</strong> the proportion<br />

<strong>of</strong> these will be established <strong>in</strong> § 3.7 by look<strong>in</strong>g at their WL signal – which<br />

should be consistent with zero <strong>in</strong> the case <strong>of</strong> no background contam<strong>in</strong>ation.<br />

In general, a positive signal will be expected at some level, <strong>in</strong> proportion<br />

to the fraction <strong>of</strong> lensed background galaxies occupy<strong>in</strong>g that same region <strong>of</strong><br />

CC space as the cluster. Indeed, it is clear that the level <strong>of</strong> the tangential<br />

distortion seen <strong>in</strong> Fig. 3.6 is consistent with zero almost to the outskirts<br />

<strong>of</strong> each cluster radial span, <strong>and</strong> only rises to meet the background level at<br />

large radius where the proportion <strong>of</strong> cluster members is small compared with<br />

the background counts. In Fig. 3.1 (black curve), <strong>in</strong> Fig. 3.2 (dashed white<br />

81


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

curve) <strong>and</strong> <strong>in</strong> Fig. 3.3 (left panels, green po<strong>in</strong>ts) we mark the boundaries<br />

<strong>of</strong> this region, selected relative to the red sequence <strong>in</strong> this CC space, <strong>and</strong><br />

conservatively to safely encompass the region occupied by the cluster.<br />

The above sample, which <strong>in</strong>cludes all cluster member galaxies, we term<br />

the “green” sample, as dist<strong>in</strong>ct from the well separated populations <strong>of</strong> red <strong>and</strong><br />

bluer galaxies discussed below (Fig. 3.3, left panels). In def<strong>in</strong><strong>in</strong>g this green<br />

sample we apply a magnitude limit <strong>of</strong> m ≃ 26.5 <strong>in</strong> the reddest b<strong>and</strong> available<br />

for each cluster (i ′ -b<strong>and</strong> for A1703 <strong>and</strong> z ′ -b<strong>and</strong> for A370 <strong>and</strong> RXJ1347-11),<br />

to which the data are complete for all three clusters. Beyond this limit <strong>in</strong>completeness<br />

creeps <strong>in</strong>to the bluer b<strong>and</strong>s, complicat<strong>in</strong>g color measurements,<br />

<strong>in</strong> particular <strong>of</strong> red galaxies. We also set a bright magnitude limit, accord<strong>in</strong>g<br />

to the magnitude <strong>of</strong> the brightest cluster member <strong>in</strong> the same equivalent<br />

b<strong>and</strong>.<br />

3.3.2 Red Background <strong>Galaxies</strong><br />

The mean radius used above is useful for locat<strong>in</strong>g the cluster <strong>in</strong> CC space<br />

but does not help <strong>in</strong> the def<strong>in</strong>ition <strong>of</strong> background or foreground galaxy populations,<br />

which are <strong>of</strong> course relatively uniform over the field <strong>of</strong> view, apart<br />

from the relatively small magnification bias which tends to deplete the number<br />

<strong>of</strong> red background galaxies towards the center <strong>of</strong> mass, as described <strong>in</strong><br />

Broadhurst et al. (2008) <strong>and</strong> is visible here <strong>in</strong> Fig. 3.3 (central panels, black<br />

squares) as a decrease <strong>in</strong> number counts towards the center.<br />

To def<strong>in</strong>e the foreground <strong>and</strong> background populations we look <strong>in</strong>stead<br />

at the comb<strong>in</strong>ation <strong>of</strong> the WL signal <strong>and</strong> the distribution <strong>of</strong> galaxies <strong>in</strong> the<br />

CC plane. For each cluster, we see a dense cloud <strong>of</strong> red objects (Fig. 3.2,<br />

lower right overdensity). This is particularly obvious for A370 where we have<br />

the widest wavelength coverage, B J , R C & z ′ . The cloud is relatively red <strong>in</strong><br />

R C − z ′ but blue <strong>in</strong> B J − R C , so very well separated from the cluster member<br />

region def<strong>in</strong>ed above. This red cloud is known from wide-field survey work<br />

(Capak et al. 2007) <strong>and</strong> established to comprise early- to mid-type galaxies<br />

spann<strong>in</strong>g a broad redshift range, 0.5 < z < 2, as discussed below (§ 3.5).<br />

82


3.3 Sample selection from the color-color diagram<br />

2<br />

A1703<br />

10<br />

2<br />

A1703<br />

x 10 −6<br />

7<br />

1.8<br />

1.6<br />

1.4<br />

9<br />

8<br />

1.8<br />

1.6<br />

1.4<br />

6<br />

5<br />

g − r<br />

1.2<br />

1<br />

0.8<br />

7<br />

Radius<br />

g − r<br />

1.2<br />

1<br />

0.8<br />

4<br />

3<br />

Number/pix 2<br />

0.6<br />

6<br />

0.6<br />

2<br />

0.4<br />

5<br />

0.4<br />

1<br />

0.2<br />

0.2<br />

−0.4 −0.2 0 0.2 0.4 0.6 0.8<br />

r − i<br />

−0.4 −0.2 0 0.2 0.4 0.6 0.8<br />

r − i<br />

0<br />

A370<br />

13<br />

A370<br />

x 10 −6<br />

7<br />

2<br />

12<br />

2<br />

6<br />

11<br />

5<br />

B − R<br />

1.5<br />

1<br />

10<br />

9<br />

Radius<br />

B − R<br />

1.5<br />

1<br />

4<br />

3<br />

Number/pix 2<br />

8<br />

2<br />

0.5<br />

7<br />

0.5<br />

6<br />

1<br />

0<br />

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2<br />

R − Z<br />

0<br />

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2<br />

R − Z<br />

0<br />

1.4<br />

RXJ1347−11<br />

13<br />

1.4<br />

RXJ1347−11<br />

x 10 −6<br />

7<br />

1.2<br />

12<br />

1.2<br />

6<br />

1<br />

11<br />

1<br />

5<br />

V − R<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

9<br />

8<br />

Radius<br />

V − R<br />

0.8<br />

0.6<br />

0.4<br />

4<br />

3<br />

Number/pix 2<br />

0.2<br />

7<br />

0.2<br />

2<br />

0<br />

6<br />

0<br />

1<br />

−0.2<br />

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

R − Z<br />

5<br />

−0.2<br />

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

R − Z<br />

0<br />

Figure 3.1 – Averaged radius from cluster<br />

center displayed <strong>in</strong> CC space for A1703,<br />

A370 & RXJ1347-11 (Top to bottom). The<br />

bluer (darker) colors imply average lower<br />

radius, hence correspond to the location <strong>of</strong><br />

the cluster <strong>in</strong> CC space. The black box<br />

marks the boundaries <strong>of</strong> the green sample<br />

we select, which conservatively <strong>in</strong>cludes all<br />

cluster members.<br />

Figure 3.2 – Number density <strong>in</strong> CC space<br />

for A1703, A370 & RXJ1347-11 (Top to<br />

bottom). The four dist<strong>in</strong>ct density peaks<br />

(seen especially <strong>in</strong> the A370 plot) are shown<br />

to be different galaxy populations - the reddest<br />

peak <strong>in</strong> the upper right corner <strong>of</strong> the<br />

plots (dashed white l<strong>in</strong>e) depicts the overdensity<br />

<strong>of</strong> cluster galaxies, whose colors are<br />

ly<strong>in</strong>g on the red sequence; the middle peak<br />

with colors bluer than the cluster shows the<br />

overdensity <strong>of</strong> foreground galaxies; the two<br />

peaks <strong>in</strong> the bottom part (bluest <strong>in</strong> B − R)<br />

can be demonstrated to comprise <strong>of</strong> blue<br />

<strong>and</strong> red (left <strong>and</strong> right, respectively) background<br />

galaxies.


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

For this red sample we def<strong>in</strong>e a conservative diagonal boundary relative to<br />

the red sequence as for the green sample (see Fig. 3.3, left panels, red po<strong>in</strong>ts),<br />

to safely avoid contam<strong>in</strong>ation by cluster members <strong>and</strong> also foreground galaxies<br />

as discussed below (see § 3.3.3). We can check if there is any significant<br />

contam<strong>in</strong>ation <strong>of</strong> this red sample by unlensed galaxies by measur<strong>in</strong>g the WL<br />

amplitude <strong>of</strong> these red galaxies as a function <strong>of</strong> distance from this boundary.<br />

As shown <strong>in</strong> Fig. 3.6 (red triangles), no evidence <strong>of</strong> dilution <strong>of</strong> the lens<strong>in</strong>g<br />

signal is visible. We also def<strong>in</strong>e a blue color limit to separate this red population<br />

from what appears to be a dist<strong>in</strong>ct density maximum <strong>of</strong> very blue<br />

objects – the so called “blue cloud” (see Fig. 3.2, <strong>in</strong> the extreme blue corner<br />

<strong>of</strong> CC space (see below § 3.3.3). We further limit the red sample to m < 26<br />

AB mag <strong>in</strong> the reddest b<strong>and</strong> for each cluster to avoid <strong>in</strong>completeness <strong>and</strong><br />

so that we can rely on good detections <strong>in</strong> all b<strong>and</strong>s when def<strong>in</strong><strong>in</strong>g our color<br />

samples.<br />

The boundaries <strong>of</strong> the red sample as def<strong>in</strong>ed above are marked on Fig. 3.3<br />

(red po<strong>in</strong>ts), <strong>and</strong> can be seen to lie well away from the “green” cluster sample<br />

previously def<strong>in</strong>ed (green po<strong>in</strong>ts). For this red sample a clearly ris<strong>in</strong>g WL<br />

signal is seen all the way to the smallest radius accessible (r 1 ′ ) for each<br />

cluster (Fig. 3.6, red triangles), with no sign <strong>of</strong> a central turnover which<br />

would <strong>in</strong>dicate the presence <strong>of</strong> unlensed cluster members, as discussed fully<br />

<strong>in</strong> § 3.6.<br />

3.3.3 Blue Background <strong>and</strong> Foreground <strong>Galaxies</strong><br />

Above we have been able to def<strong>in</strong>e the region <strong>of</strong> CC space occupied by cluster<br />

members by virtue <strong>of</strong> their clustered distribution. We have also def<strong>in</strong>ed with<br />

confidence a sample <strong>of</strong> red background galaxies ly<strong>in</strong>g well separated from<br />

cluster members <strong>and</strong> for which there is a clear WL signal. For bluer galaxies<br />

the situation is more complex as these may comprise blue cluster members,<br />

foreground objects <strong>and</strong> background blue galaxies. This is <strong>of</strong> particular concern<br />

where only one color is available, <strong>and</strong> which we have shown <strong>in</strong> our earlier<br />

work can lead to a dilution <strong>of</strong> the WL signal <strong>of</strong> blue selected objects relative<br />

84


3.3 Sample selection from the color-color diagram<br />

to the red background galaxies by unlensed foreground galaxies <strong>and</strong> cluster<br />

members (Broadhurst et al. 2005b; Medez<strong>in</strong>ski et al. 2007).<br />

We can see <strong>in</strong> the CC plane <strong>of</strong> each cluster that there are two regions<br />

ly<strong>in</strong>g blueward <strong>of</strong> the cluster with<strong>in</strong> which most blue objects lie. For A370,<br />

where we have the deepest dataset, these density peaks are located around<br />

R C − z ′ ∼ 0 <strong>and</strong> B J − R C ∼ 0.8, 1.5. The redder <strong>of</strong> these two blue peaks lies<br />

<strong>in</strong> the center <strong>of</strong> the CC plane, relatively close to the blue-end <strong>of</strong> the cluster<br />

sequence (see Fig. 3.3, left panels, magenta po<strong>in</strong>ts). The spatial distribution<br />

<strong>of</strong> objects <strong>in</strong> this CC region shows no significant cluster<strong>in</strong>g about the cluster<br />

center (see Fig. 3.3, middle panels, magenta circles). In addition, the WL<br />

signal <strong>of</strong> these objects (see Fig. 3.3, right panels, magenta circles) shows<br />

very little signal, <strong>in</strong>dicat<strong>in</strong>g this is a predom<strong>in</strong>ately unlensed population,<br />

<strong>and</strong> together with the lack <strong>of</strong> cluster<strong>in</strong>g means this blue peak is dom<strong>in</strong>ated<br />

by galaxies ly<strong>in</strong>g <strong>in</strong> the foreground <strong>of</strong> the cluster. The lens<strong>in</strong>g signal here<br />

is not strictly zero but marg<strong>in</strong>ally positive, imply<strong>in</strong>g a relatively low level<br />

<strong>of</strong> 10 − 20% lensed background galaxies. This region <strong>of</strong> CC space is clearly<br />

<strong>of</strong> no use for our purposes as it does not conta<strong>in</strong> cluster members <strong>and</strong> is<br />

mostly unlensed. It is convenient, however, that the foreground unlensed<br />

population is so well def<strong>in</strong>ed <strong>in</strong> CC space as a clear overdensity <strong>and</strong> therefore<br />

can be readily excluded from our analysis. The redshift distribution <strong>of</strong> this<br />

population us<strong>in</strong>g deep field surveys (discussed <strong>in</strong> § 3.5) supports our f<strong>in</strong>d<strong>in</strong>g<br />

that the bulk <strong>of</strong> this population lies at low redshift.<br />

The bluer <strong>of</strong> the two peaks, <strong>in</strong> the extreme blue corner <strong>of</strong> CC space seen<br />

<strong>in</strong> Fig. 3.2 (lower left peak) is also unclustered on the sky, <strong>in</strong>dicat<strong>in</strong>g no<br />

significant cluster members lie <strong>in</strong> this region (Fig. 3.3, middle panels, black<br />

squares). This blue overdensity is the well known “blue cloud” identified <strong>in</strong><br />

deep field images. For each cluster, a clear WL signal is found for objects<br />

ly<strong>in</strong>g <strong>in</strong> this blue cloud (Fig. 3.6, blue circles), ris<strong>in</strong>g toward the center <strong>of</strong><br />

each cluster with a radial trend very similar to that <strong>of</strong> the red population<br />

((Fig. 3.6, red triangles), <strong>in</strong>dicat<strong>in</strong>g m<strong>in</strong>imal foreground or cluster dilution <strong>of</strong><br />

the WL signal. Objects ly<strong>in</strong>g <strong>in</strong> this region are expected to fall <strong>in</strong> the redshift<br />

range 1 < z < 2.5 (discussed below <strong>in</strong> § 3.5). Hence, we can safely conclude<br />

that these objects lie <strong>in</strong> the background with negligible cluster or foreground<br />

85


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

contam<strong>in</strong>ation, which would otherwise drag down the central WL signal. The<br />

boundaries we have chosen for this blue sample <strong>and</strong> plotted <strong>in</strong> Fig. 3.3 (left<br />

panels, blue po<strong>in</strong>ts), are extended to <strong>in</strong>clude objects ly<strong>in</strong>g outside the ma<strong>in</strong><br />

blue cloud but well away from the foreground <strong>and</strong> cluster populations def<strong>in</strong>ed<br />

above, <strong>in</strong> order to maximize the size <strong>of</strong> the blue sample but steer<strong>in</strong>g well clear<br />

<strong>of</strong> contam<strong>in</strong>ation by unlensed low redshift objects. We further limit the blue<br />

sample magnitude <strong>in</strong> the range 22 < m AB < 26 to avoid contam<strong>in</strong>ation by<br />

very bright foreground galaxies, <strong>and</strong> to avoid <strong>in</strong>completeness at the fa<strong>in</strong>t end.<br />

3.4 Evolutionary color tracks<br />

In order to exam<strong>in</strong>e <strong>in</strong> more detail the sample selection technique, we overlay<br />

evolutionary <strong>and</strong> empirical tracks on the CC plane, for different classes<br />

<strong>of</strong> galaxies. We first calculate non-evolv<strong>in</strong>g magnitudes <strong>in</strong> Subaru filters<br />

B J , R C , z ′ as a function <strong>of</strong> redshift us<strong>in</strong>g different galaxy templates constructed<br />

empirically for elliptical, Scd <strong>and</strong> starburst types from the K<strong>in</strong>ney-<br />

Calzetti library (Calzetti et al. 1994; K<strong>in</strong>ney et al. 1996). The result<strong>in</strong>g color<br />

tracks are overplotted <strong>in</strong> Fig. 3.4 (top) on the B J − R C vs. R C − z ′ plane<br />

<strong>of</strong> A370. These templates show how the foreground population <strong>of</strong> galaxies<br />

<strong>in</strong> the center <strong>of</strong> the CC plane quickly jumps above a redshift <strong>of</strong> ∼ 1<br />

to the lower blue density peak. For the E/S0 it appears that even the noevolution<br />

track is a good fit to a distribution <strong>of</strong> red galaxies which fall on<br />

a well-def<strong>in</strong>ed loop visible <strong>in</strong> the CC plane with a maximum red color <strong>of</strong><br />

B J − R C = 2.5, R C − z ′ = 1.5 at a redshift <strong>of</strong> z ∼ 0.8. The rema<strong>in</strong>der <strong>of</strong><br />

the loop is not well constra<strong>in</strong>ed (<strong>and</strong> we therefore leave it out), likely where<br />

evolution kicks <strong>in</strong> mak<strong>in</strong>g the SED <strong>of</strong> early-type objects bluer.<br />

To generate evolv<strong>in</strong>g tracks represent<strong>in</strong>g the evolution <strong>of</strong> galaxy SED’s,<br />

the Galev 2 (Kotulla et al. 2009) code was used to represent galaxy types<br />

with different star-formation histories – a short 3 Gyr starburst (Z ⊙ ), E-<br />

type (exponentially decl<strong>in</strong><strong>in</strong>g SFR with Z ⊙ ), S0 (gas-related SFR with Z ⊙ ),<br />

Sa (gas-related SFR with 2.5Z ⊙ ), Sb (gas-related SFR with 0.4Z ⊙ ) <strong>and</strong> Sd<br />

2 http://www.galev.org/<br />

86


3.4 Evolutionary color tracks<br />

0.25<br />

n [arcm<strong>in</strong> −2 ]<br />

Distortion g +<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

10 1<br />

10 0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

θ [arcm<strong>in</strong>]<br />

(a) A1703<br />

−0.05 0.2<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

g x<br />

0<br />

0.8<br />

0.7<br />

0.6<br />

n [arcm<strong>in</strong> −2 ]<br />

Distortion g +<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 1 θ [arcm<strong>in</strong>]<br />

0<br />

0.2<br />

g x<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

(b) A370<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

0.5<br />

n [arcm<strong>in</strong> −2 ]<br />

Distortion g +<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

10 1<br />

10 0<br />

0 2 4 6 8 10 12 14 16 18<br />

θ [arcm<strong>in</strong>]<br />

(c) RXJ1347<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

−0.1 0.2<br />

g x<br />

0<br />

Figure 3.3 – Sample selection <strong>and</strong> analysis. Left: CC diagrams, for A1703 (a), A370<br />

(b) <strong>and</strong> RXJ1347-11 (c) (top to bottom), display<strong>in</strong>g the green sample, compris<strong>in</strong>g mostly<br />

cluster member galaxies, <strong>and</strong> the red <strong>and</strong> blue samples, compris<strong>in</strong>g <strong>of</strong> background galaxies.<br />

The galaxies that we identify as predom<strong>in</strong>antly foreground lie <strong>in</strong> between the cluster <strong>and</strong><br />

background galaxies are marked <strong>in</strong> magenta. Center: Surface number density <strong>of</strong> galaxies<br />

vs. radius. Background (red+blue galaxies) density (black squares) is fairly constant<br />

with radius, except for a slight decrease <strong>in</strong> the central region (depletion due to lens<strong>in</strong>g<br />

magnification effect). The green sample (green pentagrams) rises steeply toward the center<br />

as expected for cluster members. The magenta sample (magenta diamonds) has a flat<br />

density pr<strong>of</strong>ile, mean<strong>in</strong>g these are not part <strong>of</strong> the cluster. Right: Tangential distortion vs.<br />

radius. The background (black squares) rises cont<strong>in</strong>uously toward the center, represent<strong>in</strong>g<br />

real WL signal. The green sample distortion (green pentagrams) is essentially <strong>in</strong> agreement<br />

with zero, as expected from unlensed cluster galaxies, <strong>and</strong> the magenta sample distortion<br />

(magenta diamonds) is significantly lower than the background WL signal, <strong>in</strong>dicat<strong>in</strong>g<br />

object selected <strong>in</strong> this CC range are mostly unlensed foreground galaxies. However, the<br />

magenta sample also conta<strong>in</strong>s to some extent background galaxies, therefore the WL signal<br />

is slightly higher than zero.


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

(constant SFR with 0.2Z ⊙ ) (Fig. 3.4, bottom). It is evident that at low redshifts<br />

the modeled galaxies co<strong>in</strong>cide with the high central peak we recognized<br />

above with our WL technique to be foreground, <strong>and</strong> as they are redshifted<br />

the colors <strong>of</strong> E/S0 galaxies agree at z ∼ 0.4 with the cluster colors. At higher<br />

redshifts the early types objects become bluer due to the effect <strong>of</strong> evolution,<br />

<strong>and</strong> also the late-type galaxies jump quickly across the valley <strong>and</strong> fall close<br />

to the observed trail <strong>of</strong> red <strong>and</strong> blue background galaxies at 1 < z < 2. At<br />

even higher redshifts (z > 2.5), they fade out from the B J -b<strong>and</strong> <strong>and</strong> become<br />

redder <strong>in</strong> B J − R C , agree<strong>in</strong>g with observed colors <strong>of</strong> dropout galaxies. Account<strong>in</strong>g<br />

for evolution, the tracks follow more carefully the trend around the<br />

lower-left blue corner (B J − R C ∼ 0.1, R C − z ′ ∼ 0), seen clearly from the<br />

galaxy color distribution.<br />

In general, similar behavior is seen for both methods, giv<strong>in</strong>g compell<strong>in</strong>g<br />

evidence that <strong>in</strong> this CC plane the foreground <strong>and</strong> cluster galaxies are rather<br />

well-separated from the higher-redshift background galaxies, <strong>and</strong> support the<br />

picture we presented above for the safe selection <strong>of</strong> background galaxies for a<br />

WL study. The slight differences <strong>in</strong> color (<strong>of</strong>fset seen from the Galev models<br />

to bluer B J − R C colors for example) is <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> may arise from the<br />

<strong>in</strong>clusion <strong>of</strong> evolution, the presence <strong>of</strong> dust or m<strong>in</strong>or model uncerta<strong>in</strong>ties. The<br />

shape <strong>of</strong> the early-type galaxy loop is certa<strong>in</strong>ly worth explor<strong>in</strong>g <strong>in</strong> greater<br />

detail <strong>and</strong> may help to constra<strong>in</strong> the general evolutionary history <strong>of</strong> earlytype<br />

galaxies.<br />

3.5 Depth estimation from SDF/COSMOS<br />

The lens<strong>in</strong>g signal is dependent on the source distance, scal<strong>in</strong>g l<strong>in</strong>early with<br />

D ds /D s , the lens<strong>in</strong>g distance ratio. We thus need to estimate <strong>and</strong> correct<br />

for the respective depths <strong>of</strong> the different samples. To this end we rely on<br />

accurate photometric redshifts derived for two deep, multi-b<strong>and</strong> field surveys,<br />

the Subaru Deep Field (SDF; Kashikawa et al. 2004), <strong>and</strong> COSMOS<br />

(Capak et al. 2007). For the SDF, photometric redshifts are calculated with<br />

BPZ (Benítez 2000), us<strong>in</strong>g a new template library, generated us<strong>in</strong>g a set <strong>of</strong><br />

88


3.5 Depth estimation from SDF/COSMOS<br />

Figure 3.4 – Top: Empirical color tracks overlaid on the galaxy distribution <strong>of</strong> A370 <strong>in</strong><br />

B J − R C vs. R C − z ′ plane, for a range <strong>of</strong> galaxy templates: elliptical, Scd, SB1 <strong>and</strong> SB3<br />

SED’s. Bottom: Synthetic color tracks <strong>in</strong>clud<strong>in</strong>g evolution, calculated with the Galev code<br />

for a s<strong>in</strong>gle 3 Gyr burst, elliptical, S0, Sa, Sb <strong>and</strong> Sd type models.


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

0.35<br />

SDF<br />

0.3<br />

0.25<br />

0.2<br />

P(z)<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

z<br />

0.35<br />

COSMOS<br />

0.3<br />

0.25<br />

0.2<br />

N(z)<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

z<br />

Figure 3.5 – Redshift <strong>distributions</strong> <strong>of</strong> CC-selected samples. Two deep field surveys are<br />

used to estimate mean redshifts <strong>and</strong> depth: SDF (top), <strong>and</strong> COSMOS (bottom). The<br />

green (green th<strong>in</strong> solid l<strong>in</strong>e), red (red thick solid l<strong>in</strong>e), blue (blue thick dashed l<strong>in</strong>e)<br />

<strong>and</strong> foreground (magenta dotted-dashed l<strong>in</strong>e) samples are selected accord<strong>in</strong>g to A370<br />

CC/magnitude limits (see Fig. 3.3).


3.5 Depth estimation from SDF/COSMOS<br />

Table 3.2 – CC-selected Sample Properties<br />

Cluster Sample magnitude limits N ¯n ¯z s < D ds /D s ><br />

arcm<strong>in</strong> −2 COSMOS SDF COSMOS SDF<br />

A1703 green 16.3 < i ′ < 26.5 5678 6.2 0.54 - 0.45 -<br />

red 21 < i ′ < 26 4742 5.2 1.00 - 0.67 -<br />

blue 22 < i ′ < 26 4467 4.9 1.59 - 0.74 -<br />

A370 green 16.5 < z ′ < 26.5 5369 5.3 0.46 0.69 0.25 0.29<br />

red 21 < z ′ < 26 13372 13.7 1.14 1.21 0.57 0.57<br />

blue 22 < z ′ < 26 8481 8.7 1.74 1.65 0.64 0.56<br />

RXJ1347 green 17.5 < z ′ < 26.5 2512 3.5 0.67 0.79 0.28 0.31<br />

red 21 < z ′ < 26 2943 4.1 1.09 1.26 0.49 0.52<br />

blue 22 < z ′ < 26 1691 2.3 1.45 1.67 0.44 0.46<br />

PEGASE templates (Fioc & Rocca-Volmerange 1997) which approximates<br />

the library described <strong>in</strong> Benítez et al. (2004) <strong>and</strong> Coe et al. (2006). This new<br />

library has an accuracy <strong>of</strong> δz/(1+z) = 0.037 with the FIREWORKS catalog<br />

(Wuyts et al. 2009) <strong>and</strong> a low catastrophic error rate. Us<strong>in</strong>g those photo-z,<br />

<strong>and</strong> the spectral classification provided by BPZ, we generate magnitudes <strong>in</strong><br />

the required Subaru filters to match the cluster observations. We select samples<br />

accord<strong>in</strong>g to CC/magnitude limits described above (Fig. 3.3) for A370<br />

<strong>and</strong> RXJ1347-11 (the SDF filters are not matched with the filters used for<br />

A1703). The result<strong>in</strong>g redshift <strong>distributions</strong> <strong>of</strong> the green (th<strong>in</strong> solid l<strong>in</strong>e),<br />

red (thick solid l<strong>in</strong>e), blue (dashed l<strong>in</strong>e) <strong>and</strong> foreground (dash-dotted l<strong>in</strong>e)<br />

samples selected to match A370 samples us<strong>in</strong>g SDF are displayed <strong>in</strong> Fig. 3.5<br />

(top).<br />

For COSMOS, photometric redshifts have been derived by Ilbert et al.<br />

(2009) us<strong>in</strong>g 30 b<strong>and</strong>s <strong>in</strong> the UV to mid-IR. S<strong>in</strong>ce the COSMOS photometry<br />

does not cover the Subaru R C b<strong>and</strong>, we need to estimate R C -b<strong>and</strong> magnitudes<br />

for it. We use the HyperZ (Bolzonella et al. 2000) template fitt<strong>in</strong>g code to<br />

obta<strong>in</strong> the best-fitt<strong>in</strong>g spectral template for each galaxy, from which the R C<br />

magnitude is derived with the transmission curve <strong>of</strong> the Subaru R C -b<strong>and</strong><br />

filter (see Umetsu et al. 2010). We then select samples by apply<strong>in</strong>g the same<br />

CC/magnitude limits as for A1703, A370 <strong>and</strong> RXJ1347-11. The result<strong>in</strong>g<br />

91


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

redshift <strong>distributions</strong> <strong>of</strong> the green (th<strong>in</strong> solid l<strong>in</strong>e), red (thick solid l<strong>in</strong>e), blue<br />

(dashed l<strong>in</strong>e) <strong>and</strong> foreground (dash-dotted l<strong>in</strong>e), samples selected to match<br />

A370 samples us<strong>in</strong>g COSMOS are displayed <strong>in</strong> Fig. 3.5 (bottom). The results<br />

for each sample us<strong>in</strong>g SDF or COSMOS are summarized <strong>in</strong> table 3.2.<br />

Although SDF is deeper, COSMOS redshifts are based on more b<strong>and</strong>s<br />

over a wider spectral range. However, as stated <strong>in</strong> Ilbert et al. (2009), COS-<br />

MOS photo-z’s are reliable only to a magnitude <strong>of</strong> i ′ < 25, which is below<br />

our magnitude cut<strong>of</strong>f for the sample selection. We therefore make sure to<br />

limit our redshift estimation for the green sample to z < 3, to avoid mistakenly<br />

<strong>in</strong>clud<strong>in</strong>g high-z dropouts that lie above the cluster <strong>in</strong> CC due to<br />

slight photometric <strong>of</strong>fsets or unreliable photo-z’s. Note we are only <strong>in</strong>terested<br />

<strong>in</strong> the mean D ds /D s <strong>of</strong> background objects, <strong>and</strong> therefore estimate<br />

the depth <strong>of</strong> background galaxies present <strong>in</strong> the green sample <strong>in</strong> the range<br />

z cluster < z < 3. Overall, the redshift <strong>distributions</strong> <strong>of</strong> both field surveys look<br />

quite similar, <strong>and</strong> there is good agreement between values derived with either<br />

SDF or COSMOS, to ∼ 10% level <strong>in</strong> the depth, which can be due to the<br />

differences mentioned above. These depth values will be used later to correct<br />

the lens<strong>in</strong>g signal (see § 3.7).<br />

Importantly, this redshift analysis <strong>in</strong>dependently supports our assessment<br />

<strong>in</strong> both sections 3.3 & 3.4 that the various regions <strong>of</strong> the CC space correspond<br />

to differ<strong>in</strong>g populations. In particular the foreground population isolated <strong>in</strong><br />

the center <strong>of</strong> the CC diagram (shown <strong>in</strong> Fig. 3.3, magenta po<strong>in</strong>ts, whose<br />

redshift distribution is shown <strong>in</strong> Fig. 3.5, magenta dotted-dashed curve) corresponds<br />

to predom<strong>in</strong>antly low redshift galaxies ¯z ≃ 0.4, most <strong>of</strong> which are <strong>in</strong><br />

the foreground <strong>of</strong> the clusters exam<strong>in</strong>ed here, or at such low redshift beh<strong>in</strong>d<br />

the cluster that the lens<strong>in</strong>g signal is small by virtue <strong>of</strong> the small separation,<br />

D ds , between the lens <strong>and</strong> the source. In contrast, the red <strong>and</strong> blue populations<br />

are much more distant ly<strong>in</strong>g well beh<strong>in</strong>d our clusters, support<strong>in</strong>g<br />

our conclusion that the cont<strong>in</strong>uously ris<strong>in</strong>g WL signal <strong>of</strong> these populations is<br />

not significantly contam<strong>in</strong>ated by cluster members. This also <strong>in</strong>dicates that<br />

the predicted level <strong>of</strong> unlensed foreground galaxies is negligible for the red<br />

sample, as expected, <strong>and</strong> with only a possible ∼ 10% dilution <strong>in</strong> the blue.<br />

92


3.6 Weak lens<strong>in</strong>g analysis<br />

3.6 Weak lens<strong>in</strong>g analysis<br />

We use the IMCAT package developed by N. Kaiser 3 to perform object detection<br />

<strong>and</strong> shape measurements, follow<strong>in</strong>g the formalism outl<strong>in</strong>ed <strong>in</strong> Kaiser,<br />

Squires, & Broadhurst (1995, hereafter KSB). Our analysis pipel<strong>in</strong>e is described<br />

<strong>in</strong> Umetsu et al. (2010). We have tested our shape measurement <strong>and</strong><br />

object selection pipel<strong>in</strong>e us<strong>in</strong>g STEP (Heymans et al. 2006) data <strong>of</strong> mock<br />

ground-based observations (see Umetsu et al. 2010, § 3.2). Full details <strong>of</strong><br />

the methods are presented <strong>in</strong> Umetsu & Broadhurst (2008), Umetsu et al.<br />

(2009) <strong>and</strong> Umetsu et al. (2009). In short, we f<strong>in</strong>d that we can recover the<br />

weak lens<strong>in</strong>g signal with good precision, typically, m ∼ 5% <strong>of</strong> the shear<br />

calibration bias, <strong>and</strong> c ∼ 10 −3 <strong>of</strong> the residual shear <strong>of</strong>fset which is about<br />

one-order <strong>of</strong> magnitude smaller than the weak-lens<strong>in</strong>g signal <strong>in</strong> the cluster<br />

outskirts (|g| ∼ 10 −2 ). We emphasize that this level <strong>of</strong> calibration bias is subdom<strong>in</strong>ant<br />

compared to the statistical uncerta<strong>in</strong>ty (∼ 15%) <strong>in</strong> the mass due<br />

to the <strong>in</strong>tr<strong>in</strong>sic scatter <strong>in</strong> galaxy shapes. Rather, the most critical source <strong>of</strong><br />

systematic uncerta<strong>in</strong>ty <strong>in</strong> cluster weak lens<strong>in</strong>g is dilution <strong>of</strong> the distortion signal<br />

due to the <strong>in</strong>clusion <strong>of</strong> unlensed foreground <strong>and</strong> cluster member galaxies,<br />

which can lead to an underestimation <strong>of</strong> the true signal for R < 400 h −1 kpc<br />

by a factor <strong>of</strong> 2−5, as demonstrated <strong>in</strong> Broadhurst et al. (2005b), Medez<strong>in</strong>ski<br />

et al. (2007) <strong>and</strong> here.<br />

The shape distortion <strong>of</strong> an object is described by the complex reducedshear,<br />

g = g 1 + ig 2 , where the reduced-shear is def<strong>in</strong>ed as:<br />

g α ≡ γ α /(1 − κ). (3.1)<br />

The tangential component <strong>of</strong> the reduced-shear, g T , is used to obta<strong>in</strong> the<br />

azimuthally averaged distortion due to lens<strong>in</strong>g, <strong>and</strong> computed from the distortion<br />

coefficients g 1 , g 2 :<br />

g T = −(g 1 cos 2θ + g 2 s<strong>in</strong> 2θ), (3.2)<br />

3 http://www.ifa.hawaii.edu/ kaiser/imcat<br />

93


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

1.5<br />

0.25<br />

Distortion g +<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05 0.2<br />

Fraction 1−g +<br />

(G)/g +<br />

(B)<br />

1<br />

0.5<br />

0<br />

g x<br />

0<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

−0.5<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

0.8<br />

1.5<br />

0.7<br />

0.6<br />

Distortion g +<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.2<br />

Fraction 1−g +<br />

(G)/g +<br />

(B)<br />

1<br />

0.5<br />

0<br />

g x<br />

0<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

−0.5<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

1.5<br />

0.5<br />

Distortion g +<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1 0.2<br />

Fraction 1−g +<br />

(G)/g +<br />

(B)<br />

1<br />

0.5<br />

0<br />

g x<br />

0<br />

−0.2<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

−0.5<br />

1 2 5 10 20<br />

θ [arcm<strong>in</strong>]<br />

Figure 3.6 – Tangential reduced shear vs.<br />

radius for A1703, A370 <strong>and</strong> RXJ1347-11<br />

(top to bottom). The lower panels show the<br />

45 ◦ -rotated (g X ) component <strong>of</strong> the reduced<br />

shear. The green pentagrams represent the<br />

green sample, conta<strong>in</strong><strong>in</strong>g mostly cluster <strong>and</strong><br />

some background galaxies whose colors are<br />

similar to the cluster. The black squares<br />

show the level <strong>of</strong> tangential distortion <strong>of</strong> the<br />

comb<strong>in</strong>ed red+blue (triangles <strong>and</strong> circles,<br />

respectively) samples <strong>of</strong> the background.<br />

The green pentagrams slightly rise to the<br />

background level at large radii, <strong>in</strong>dicat<strong>in</strong>g<br />

the green sample still conta<strong>in</strong>s some level <strong>of</strong><br />

background galaxies at the outskirts <strong>of</strong> the<br />

cluster, <strong>and</strong> is consistent with zero towards<br />

the cluster center where cluster members<br />

dom<strong>in</strong>ate the green sample <strong>and</strong> dilute the<br />

lens<strong>in</strong>g signal.<br />

Figure 3.7 – Fraction <strong>of</strong> cluster membership<br />

vs. radius for A1703, A370 <strong>and</strong><br />

RXJ1347-11 (top to bottom). Cluster<br />

membership is proportional to the dilution<br />

<strong>of</strong> the distortion signal <strong>of</strong> the green sample,<br />

relative to the expected distortion <strong>of</strong> the<br />

background galaxies set by the comb<strong>in</strong>ed<br />

red <strong>and</strong> blue samples. The fraction departs<br />

from unity only at large radius.


3.6 Weak lens<strong>in</strong>g analysis<br />

where θ is the position angle <strong>of</strong> an object with respect to the cluster center,<br />

<strong>and</strong> the uncerta<strong>in</strong>ty <strong>in</strong> the g T measurement is σ T = σ g / √ 2 ≡ σ <strong>in</strong> terms <strong>of</strong><br />

the RMS error σ g for the complex reduced-shear measurement. To improve<br />

the statistical significance <strong>of</strong> the distortion measurement, we calculate the<br />

weighted average <strong>of</strong> g T <strong>and</strong> its weighted error, as<br />

∑<br />

i<br />

〈g T (θ n )〉 =<br />

u g,i g<br />

∑ +,i<br />

, (3.3)<br />

i u g,i<br />

σ T (θ n ) =<br />

√ ∑<br />

i u2 g,i σ2 i<br />

( ∑ i u g,i) 2 , (3.4)<br />

where the <strong>in</strong>dex i runs over all <strong>of</strong> the objects located with<strong>in</strong> the nth annulus<br />

with a median radius <strong>of</strong> θ n , <strong>and</strong> u g,i is the <strong>in</strong>verse variance weight for ith<br />

object, u g,i = 1/(σg,i 2 + α 2 ), s<strong>of</strong>tened with α. We choose α = 0.4, which<br />

is a typical value <strong>of</strong> the mean RMS ¯σ g over the background sample. The<br />

case with α = 0 corresponds to an <strong>in</strong>verse-variance weight<strong>in</strong>g. On the other<br />

h<strong>and</strong>, the limit α ≫ σ g,i yields a uniform weight<strong>in</strong>g. We have confirmed that<br />

our results are <strong>in</strong>sensitive to the choice <strong>of</strong> α (i.e., <strong>in</strong>verse-variance or uniform<br />

weight<strong>in</strong>g) with the adopted smooth<strong>in</strong>g parameters.<br />

In Fig. 3.6 we plot the radial pr<strong>of</strong>ile <strong>of</strong> g T <strong>of</strong> the green (pentagrams),<br />

red (triangles) <strong>and</strong> blue (circles) samples def<strong>in</strong>ed above. The black squares<br />

represent the red+blue comb<strong>in</strong>ed sample, show<strong>in</strong>g the best estimate <strong>of</strong> the<br />

lens<strong>in</strong>g signal. The red <strong>and</strong> blue samples pr<strong>of</strong>iles rise cont<strong>in</strong>uously toward<br />

the center for each <strong>of</strong> the clusters, <strong>and</strong> are <strong>in</strong> good agreement with each<br />

other, demonstrat<strong>in</strong>g that both are dom<strong>in</strong>ated by background galaxies <strong>and</strong><br />

are not contam<strong>in</strong>ated by the cluster at all radii. The g T pr<strong>of</strong>ile <strong>of</strong> the green<br />

sample lies close to zero, especially at small radii, but shows a small positive<br />

signal at large radius, close <strong>in</strong> amplitude to the background signal measured<br />

above, mean<strong>in</strong>g at beyond ∼ 5 ′ there are few cluster members <strong>in</strong> comparison<br />

to “green” background galaxies. Indeed, the virial radius derived from our<br />

best fitt<strong>in</strong>g NFW model lies at about 10 ′ − 15 ′ <strong>and</strong> so physically it is reasonable<br />

that the cluster population is small here. The measured zero level<br />

<strong>of</strong> tangential distortion <strong>in</strong>terior to this radius for the green sample re<strong>in</strong>forces<br />

95


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

our CC selection.<br />

3.7 Weak lens<strong>in</strong>g dilution<br />

We can now estimate the fraction <strong>of</strong> cluster galaxies by tak<strong>in</strong>g the ratio <strong>of</strong><br />

the WL signal between the green sample <strong>and</strong> the background sample, with<br />

the background <strong>in</strong>clud<strong>in</strong>g both red <strong>and</strong> blue galaxies as expla<strong>in</strong>ed <strong>in</strong> § 3.3.<br />

For a given radial b<strong>in</strong> (r n ) conta<strong>in</strong><strong>in</strong>g objects <strong>in</strong> the green sample (§ 3.2),<br />

the mean value <strong>of</strong> g (G)<br />

T<br />

(eq. 3.3) is an average <strong>of</strong> the signal over cluster members<br />

<strong>and</strong> some background galaxies. Thus, its mean value 〈g (G)<br />

T<br />

〉 will be lower<br />

than the true background level denoted by 〈g (B) 〉 (Fig. 3.6) <strong>in</strong> proportion to<br />

T<br />

the fraction <strong>of</strong> unlensed galaxies <strong>in</strong> the b<strong>in</strong> that lie <strong>in</strong> the cluster (rather<br />

than <strong>in</strong> the background), s<strong>in</strong>ce the cluster members on average will add no<br />

net tangential signal. Therefore,<br />

f cl (r n ) ≡<br />

N cl<br />

= 1 − 〈g T (r n ) (G) 〉<br />

N Green 〈g T (r n ) (B) 〉<br />

〈D (B) 〉<br />

〈D (G) 〉<br />

(3.5)<br />

is the cluster membership fraction <strong>of</strong> the green sample, where 〈D (B) 〉 <strong>and</strong><br />

〈D (G) 〉 are the mean lens<strong>in</strong>g depths, D ds /D s , <strong>of</strong> the background <strong>and</strong> green<br />

galaxy samples, respectively, derived <strong>in</strong> § 3.5 (see full derivation <strong>in</strong> the appendix<br />

<strong>of</strong> Medez<strong>in</strong>ski et al. 2007).<br />

In Fig. 3.7 we show this ratio for each <strong>of</strong> our new clusters. In our previous<br />

analysis <strong>of</strong> A1689, where only color-magnitude selection was done, many<br />

background galaxies were present <strong>in</strong> the green sample, so that only <strong>in</strong> the first<br />

radial b<strong>in</strong>s the fraction <strong>of</strong> cluster galaxies was high, <strong>and</strong> gradually decl<strong>in</strong>ed<br />

with radius (due to <strong>in</strong>creas<strong>in</strong>g fraction <strong>of</strong> background galaxies) at larger<br />

radii. Here, s<strong>in</strong>ce we select a tight region around the cluster <strong>in</strong> CC <strong>and</strong> are<br />

able to better resolve it, our results show that the fraction is close to unity<br />

throughout the radial range <strong>of</strong> the cluster. Only <strong>in</strong> the outer b<strong>in</strong>s, usually<br />

at r > 5 ′ − 10 ′ does the fraction decl<strong>in</strong>e, <strong>and</strong> we see a smaller percentage <strong>of</strong><br />

cluster members. Large errorbars are <strong>in</strong>troduced at outer radii s<strong>in</strong>ce there<br />

96


3.8 Cluster light pr<strong>of</strong>iles<br />

600<br />

A1689: −1.5±0.08<br />

Lum<strong>in</strong>osity density [L ο<br />

h 2 Mpc −2 ]<br />

10 12<br />

A1703: −0.95±0.1<br />

A370: −1.4±0.06<br />

RXJ1347:−0.9±0.1<br />

M/L [ hM o<br />

/L ο<br />

]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

10 11<br />

10 13 r/r vir<br />

0.1 0.2 0.5 1 2<br />

0<br />

0.1 0.2 0.5 1 2<br />

r/r vir<br />

Figure 3.8 – “g-Weighted” lum<strong>in</strong>osity<br />

density vs. r/r vir for A1689 (magenta<br />

circles), A1703 (cyan asterisks), A370<br />

(red squares) <strong>and</strong> RXJ1347-11 (green diamonds).<br />

The flux F i (green sample) <strong>of</strong> each<br />

galaxy is weighted by its tangential distortion<br />

g T,i with respect to the background<br />

distortion signal. The dashed l<strong>in</strong>es are the<br />

best fitt<strong>in</strong>g l<strong>in</strong>es whose slopes are given <strong>in</strong><br />

the legend. For clarity, the lum<strong>in</strong>osity pr<strong>of</strong>iles<br />

have been shifted by a factor: A1703<br />

shifted up by a factor <strong>of</strong> 2, A370 by a factor<br />

<strong>of</strong> 3, <strong>and</strong> RXJ1347-11 by a factor <strong>of</strong> 1.2.<br />

Figure 3.9 – <strong>Mass</strong>-to-light ratio vs.<br />

r/r vir for A1689 (magenta circles), A1703<br />

(cyan asterisks), A370 (red squares) <strong>and</strong><br />

RXJ1347-11 (green diamonds). The pr<strong>of</strong>iles<br />

are similar to each other, peak<strong>in</strong>g<br />

around 0.2r v ir, <strong>and</strong> decl<strong>in</strong><strong>in</strong>g cont<strong>in</strong>uously<br />

to the virial radius, which seems to be a<br />

general property <strong>of</strong> all well-studied clusters.<br />

are few cluster galaxies present, mak<strong>in</strong>g it harder to use this effect <strong>in</strong> order<br />

to determ<strong>in</strong>e cluster membership.<br />

3.8 Cluster light pr<strong>of</strong>iles<br />

We now turn to translate the deduced pr<strong>of</strong>ile <strong>of</strong> membership fraction to a<br />

cluster lum<strong>in</strong>osity pr<strong>of</strong>ile.<br />

To account for the background contribution <strong>in</strong><br />

the green sample <strong>and</strong> deduce only the cluster lum<strong>in</strong>osity, we first measure<br />

the flux <strong>of</strong> all the galaxies <strong>in</strong> the green sample, ∑ F (G)<br />

i , <strong>and</strong> then subtract<br />

i<br />

the flux <strong>of</strong> the i-th galaxy weighted by it’s tangential distortion, g i , relative<br />

to the background sample distortion, 〈g T (r n ) (B) 〉. When averaged over the<br />

entire green sample this will have zero contribution from the unlensed cluster<br />

members, but will remove the contribution <strong>of</strong> background galaxies present<br />

97


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

<strong>in</strong> the green sample. The total flux <strong>of</strong> the cluster <strong>in</strong> the n th radial b<strong>in</strong> is<br />

therefore,<br />

F cl (r n ) = ∑ i<br />

F (G)<br />

i − 〈D(B) 〉/〈D (G) 〉<br />

〈g T (r n ) (B) 〉<br />

∑<br />

i<br />

F (G)<br />

i g (G)<br />

T,i<br />

(3.6)<br />

<strong>and</strong> the flux is then translated to lum<strong>in</strong>osity. First we calculate the absolute<br />

magnitude,<br />

M = m − 5 log d L − K(z) + 5, (3.7)<br />

where the K-correction is evaluated for each radial b<strong>in</strong> accord<strong>in</strong>g to its color.<br />

The lum<strong>in</strong>osity is simply,<br />

L = 10 0.4(M ⊙−M) L ⊙ , (3.8)<br />

where M ⊙ is the absolute magnitude <strong>of</strong> the Sun (AB system) <strong>in</strong> the relevant<br />

b<strong>and</strong>.<br />

The results for all four clusters, <strong>in</strong>clud<strong>in</strong>g A1689, are shown <strong>in</strong> Fig. 3.8.<br />

As expla<strong>in</strong>ed <strong>in</strong> § 3.3, the green sample comprises mostly <strong>of</strong> cluster galaxies,<br />

therefore the correction is not big for r < 10 ′ , <strong>and</strong> only present at large radii,<br />

<strong>in</strong>creas<strong>in</strong>g the error. The cluster lum<strong>in</strong>osity pr<strong>of</strong>iles mostly have a steady<br />

l<strong>in</strong>ear decl<strong>in</strong>e with radius, <strong>and</strong> are well described by a power-law fit, but with<br />

different slopes <strong>of</strong> d log(L)/d log(r) ∼ −0.95 ± 0.1, −1.4 ± 0.06, −0.9 ± 0.1 for<br />

A1703, A370 <strong>and</strong> RXJ1347-11, respectively.<br />

3.9 M/L pr<strong>of</strong>iles<br />

We may now derive a radial pr<strong>of</strong>ile <strong>of</strong> the differential mass-to-light ratio<br />

(<strong>of</strong>ten referred to as δM(r)/δL(r)) by divid<strong>in</strong>g the best-fit NFW projected<br />

mass density pr<strong>of</strong>ile by the newly derived lum<strong>in</strong>osity density pr<strong>of</strong>ile obta<strong>in</strong>ed<br />

<strong>in</strong> § 3.8. The four M/L pr<strong>of</strong>iles are shown together <strong>in</strong> Fig. 3.9 to the limit <strong>of</strong><br />

our data, ∼ 3 h Mpc. The mass pr<strong>of</strong>iles for these clusters <strong>and</strong> their NFW fits<br />

were derived <strong>in</strong> our earlier work, Broadhurst et al. (2005b) for A1689 <strong>and</strong> <strong>in</strong><br />

98


3.9 M/L pr<strong>of</strong>iles<br />

Broadhurst et al. (2008) for A370, A1703 <strong>and</strong> RXJ1347 based on the sample<br />

selection scheme described <strong>in</strong> this paper.<br />

For A1689, we found previously that the M/L ratio peaks at <strong>in</strong>termediate<br />

radius around r ∼ 100 h −1 kpc <strong>and</strong> then falls <strong>of</strong>f to larger radius.<br />

Here we f<strong>in</strong>d a similar behavior for the other clusters, especially evident for<br />

A370, where M/L peaks at about r ∼ 350 h −1 kpc with values <strong>of</strong> M/L R ∼<br />

300 − 400 h(M/L) ⊙ , <strong>and</strong> decl<strong>in</strong>es to values <strong>of</strong> M/L R ∼ 100 h(M/L) ⊙ at the<br />

outskirts. A decl<strong>in</strong>e <strong>in</strong> M/L is also seen towards the center <strong>of</strong> the cluster,<br />

reach<strong>in</strong>g M/L R ∼ 200 h(M/L) ⊙ below r 200 h −1 kpc. The M/L<br />

pr<strong>of</strong>ile <strong>of</strong> A1703 also shows a similar trend, where it peaks at a radius <strong>of</strong><br />

r ∼ 200 − 300 h −1 kpc with values <strong>of</strong> M/L r ′ ∼ 300 h(M/L) ⊙ <strong>and</strong> decl<strong>in</strong>es<br />

gradually to values <strong>of</strong> M/L r ′ ∼ 100 h(M/L) ⊙ at large radii. The pr<strong>of</strong>ile<br />

<strong>of</strong> RXJ1347-11 decl<strong>in</strong>es from values <strong>of</strong> M/L R ∼ 400 − 500 h(M/L) ⊙ at<br />

r ∼ 200 − 300 h −1 kpc to values <strong>of</strong> M/L R ∼ 100 h(M/L) ⊙ at large radius.<br />

The decrease <strong>in</strong> M/L values toward the center <strong>of</strong> the cluster is only really<br />

evident for two clusters, A1689 <strong>and</strong> A370. For these clusters the lum<strong>in</strong>osity<br />

pr<strong>of</strong>iles are relatively steep, <strong>and</strong> it this is cont<strong>in</strong>uation <strong>of</strong> a steep power-law<br />

towards the center that causes M/L to decl<strong>in</strong>e, as the mass pr<strong>of</strong>iles are not<br />

power-law but have a cont<strong>in</strong>uously decl<strong>in</strong><strong>in</strong>g gradient towards the cluster centers<br />

(NFW-like), so that the proportion <strong>of</strong> M/L decl<strong>in</strong>es markedly <strong>in</strong>terior<br />

to the characteristic radius for these two clusters.<br />

The decrease <strong>in</strong> M/L toward large radius seen for all four clusters is<br />

possibly expla<strong>in</strong>ed by the <strong>in</strong>creas<strong>in</strong>g proportion <strong>of</strong> later type galaxies at larger<br />

radii, a manifestation <strong>of</strong> the morphology-density relation (Dressler 1980).<br />

Similar results have been shown by R<strong>in</strong>es et al. (2000) <strong>and</strong> Katgert et al.<br />

(2004); <strong>in</strong> R<strong>in</strong>es et al. (2000) where the differential M/L pr<strong>of</strong>ile is similar<br />

to ours, with a decreas<strong>in</strong>g M/L with radius, <strong>and</strong> their outermost value <strong>of</strong><br />

M/L R ∼ 100 h(M/L) ⊙ is <strong>in</strong> good agreement with the values we get for all our<br />

four clusters. Katgert et al. (2004) show a decrease at small radius, <strong>and</strong> by<br />

remov<strong>in</strong>g the brightest cluster members this decrease is shown to disappear.<br />

The decl<strong>in</strong><strong>in</strong>g behavior is not simply accounted for by the change <strong>of</strong> stellar<br />

population with distance from the cluster center. The galaxy colors show a<br />

99


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

10 4 r [Mpc/h]<br />

late−types<br />

early−types<br />

all types<br />

M/L R<br />

[ hM o<br />

/L r’ο<br />

]<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

10 4 r [Mpc/h]<br />

late−types<br />

early−types<br />

all types<br />

M/L R<br />

[ hM o<br />

/L Rο<br />

]<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

10 4 r [Mpc/h]<br />

late−types<br />

early−types<br />

all types<br />

M/L R<br />

[ hM o<br />

/L Rο<br />

]<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

Figure 3.10 – <strong>Mass</strong>-to-light ratio vs. radius for A1703, A370 <strong>and</strong> RXJ1347 (top to<br />

bottom plots) divided <strong>in</strong>to two different cluster sub-populations. The black squares mark<br />

the entire green sample (same M/L pr<strong>of</strong>iles shown above <strong>in</strong> Fig. 3.9); the red circles mark<br />

a subsample from a tighter selection <strong>of</strong> cluster galaxies around the red sequence (white<br />

solid l<strong>in</strong>e marked <strong>in</strong> Fig. 3.2), mostly early-type elliptical galaxies. The blue hexagrams<br />

correspond to later-type cluster members (the rest <strong>of</strong> the green population <strong>in</strong>side the white<br />

dashed l<strong>in</strong>e, but outside the solid white l<strong>in</strong>e marked <strong>in</strong> Fig. 3.2). The slope <strong>of</strong> the decl<strong>in</strong><strong>in</strong>g<br />

outer pr<strong>of</strong>ile is significantly steeper for the blue pr<strong>of</strong>iles, whereas for the red pr<strong>of</strong>iles the<br />

M/L is much flatter.


3.9 M/L pr<strong>of</strong>iles<br />

10 5 r [Mpc/h]<br />

bright early−types<br />

bright late−types<br />

fa<strong>in</strong>t early−types<br />

fa<strong>in</strong>t late−types<br />

M/L R<br />

[ hM o<br />

/L r’ο<br />

]<br />

10 4<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

10 5 r [Mpc/h]<br />

bright early−types<br />

bright late−types<br />

fa<strong>in</strong>t early−types<br />

fa<strong>in</strong>t late−types<br />

M/L R<br />

[ hM o<br />

/L Rο<br />

]<br />

10 4<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

10 5 r [Mpc/h]<br />

bright early−types<br />

bright late−types<br />

fa<strong>in</strong>t early−types<br />

fa<strong>in</strong>t late−types<br />

M/L R<br />

[ hM o<br />

/L Rο<br />

]<br />

10 4<br />

10 3<br />

10 2<br />

0.2 0.5 1 2 3<br />

Figure 3.11 – <strong>Mass</strong>-to-light ratio vs. radius for A1703, A370 <strong>and</strong> RXJ1347 (top to<br />

bottom plots) for early (red circles) <strong>and</strong> late type (blue hexagrams) clusters members, as<br />

<strong>in</strong> Fig. 3.10, but divided <strong>in</strong>to high- (solid) <strong>and</strong> low-lum<strong>in</strong>osity (empty) subsamples. Clearly<br />

the behavior <strong>of</strong> the early <strong>and</strong> later types is not a strong function <strong>of</strong> lum<strong>in</strong>osity.


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

10 3 r [Mpc]<br />

a early,bright<br />

=−1.2±0.2<br />

a early,fa<strong>in</strong>t<br />

=−0.79±0.3<br />

n [Mpc −2 ]<br />

10 2<br />

10 1<br />

a late,bright<br />

=−0.42±0.2<br />

a late,fa<strong>in</strong>t<br />

=−0.42±0.1<br />

10 3 r [Mpc]<br />

n [Mpc −2 ]<br />

10 2<br />

10 1<br />

0 0.5 1 1.5 2 2.5 3<br />

a early,bright<br />

=−1.3±0.2<br />

n [Mpc −2 ]<br />

10 3<br />

10 2<br />

r [Mpc]<br />

a early,fa<strong>in</strong>t<br />

=−1±0.2<br />

10 1<br />

n [Mpc −2 ]<br />

10 3<br />

10 2<br />

r [Mpc]<br />

a late,bright<br />

=−0.65±0.3<br />

a late,fa<strong>in</strong>t<br />

=−0.64±0.2<br />

10 1<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

a early,bright<br />

=−1.2±0.2<br />

a early,fa<strong>in</strong>t<br />

=−0.89±0.2<br />

n [Mpc −2 ]<br />

10 2<br />

10 1<br />

r [Mpc]<br />

a late,bright<br />

=−0.31±0.4<br />

a late,fa<strong>in</strong>t<br />

=−0.52±0.3<br />

n [Mpc −2 ]<br />

10 2<br />

10 1<br />

r [Mpc]<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

Figure 3.12 – Number density pr<strong>of</strong>iles for A1703, A370 <strong>and</strong> RXJ1347-11 (top to bottom<br />

plots) for early (upper panels, red circles) <strong>and</strong> late (lower panels, blue hexagrams) type<br />

cluster members further divided <strong>in</strong>to high (solid) <strong>and</strong> low-lum<strong>in</strong>osity (empty) subsamples<br />

(as <strong>in</strong> Fig. 3.11). The redder pr<strong>of</strong>iles are more centrally concentrated than the bluer<br />

pr<strong>of</strong>iles, suggest<strong>in</strong>g the proportion <strong>of</strong> early- to late-type members is a clear function <strong>of</strong><br />

radius but not as much <strong>of</strong> lum<strong>in</strong>osity, favor<strong>in</strong>g early-types at smaller radius.


3.9 M/L pr<strong>of</strong>iles<br />

very moderate decl<strong>in</strong>e with radius. In the case <strong>of</strong> A370, the radial color<br />

gradient is d(B − z ′ )/d log(r) = −0.13 ± 0.04, equivalent to a total change<br />

<strong>of</strong> δ(B − z ′ ) = 0.12 over the virial radius. This corresponds to a change<br />

<strong>in</strong> the mean stellar mass-to light ratio, M ∗ /L R , <strong>of</strong> only ∼ 17%. Therefore,<br />

such a small correction alone cannot expla<strong>in</strong> the decl<strong>in</strong><strong>in</strong>g trend <strong>of</strong> M/L with<br />

radius.<br />

We now further exam<strong>in</strong>e the behavior <strong>of</strong> M/L by separat<strong>in</strong>g cluster member<br />

galaxies by color <strong>and</strong> by lum<strong>in</strong>osity. There is a clear dist<strong>in</strong>ction between<br />

the M/L pr<strong>of</strong>iles based on color selection as shown <strong>in</strong> Fig. 3.10. Tightly<br />

select<strong>in</strong>g just the sequence galaxies (<strong>in</strong>side the white solid l<strong>in</strong>e marked <strong>in</strong><br />

Fig. 3.2) the M/L pr<strong>of</strong>iles are relatively flatter for all the clusters (Fig. 3.10,<br />

red circles), show<strong>in</strong>g mild decl<strong>in</strong>e with radius, whereas the rema<strong>in</strong><strong>in</strong>g nonsequence<br />

objects (the rest <strong>of</strong> the green population between the white dashed<br />

l<strong>in</strong>e <strong>and</strong> the solid while l<strong>in</strong>e marked <strong>in</strong> Fig. 3.2) have a steep dependence<br />

(Fig. 3.10, blue hexagrams) which is clearly responsible for the majority <strong>of</strong><br />

the trend <strong>of</strong> M/L found above for the cluster population as a whole (Fig. 3.10,<br />

black squares). If we now further divide these subsamples by lum<strong>in</strong>osity <strong>in</strong>to<br />

two broad b<strong>in</strong>s as shown <strong>in</strong> Fig. 3.11, we see that this difference between the<br />

sequence <strong>and</strong> non-sequence populations is not strongly dependent on lum<strong>in</strong>osity.<br />

If we also look at the number-density pr<strong>of</strong>ile <strong>of</strong> each <strong>of</strong> these four<br />

subsamples (Fig. 3.12), we see that the early-type galaxies (red circles) are<br />

more concentrated than the later types (blue hexagrams), <strong>in</strong>dependently <strong>of</strong><br />

lum<strong>in</strong>osity.<br />

It is evident from the above comparisons that later-type galaxies are relatively<br />

rare <strong>in</strong> the cluster center, an effect which most likely has its orig<strong>in</strong>s <strong>in</strong><br />

tidal <strong>and</strong>/or stripp<strong>in</strong>g <strong>of</strong> <strong>in</strong>fall<strong>in</strong>g later-type galaxies <strong>and</strong> their transformation<br />

<strong>in</strong>to redder <strong>and</strong> rounder galaxies predom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> cluster centers. We<br />

now explore tidal effects <strong>in</strong> this context <strong>and</strong> comment on other related work.<br />

3.9.1 Tidal <strong>and</strong> Ram-Pressure Stripp<strong>in</strong>g<br />

In CDM-dom<strong>in</strong>ated cosmological models, the growth <strong>of</strong> structure is hierarchical,<br />

with clusters evolv<strong>in</strong>g through many merger events dur<strong>in</strong>g which<br />

103


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

galaxies are dynamically affected to a vary<strong>in</strong>g degree based on their formation<br />

times <strong>and</strong> spatial locations <strong>in</strong> their parent systems. This process can<br />

be described by the excursion set formalism (Lacey & Cole 1993) with more<br />

detailed <strong>in</strong>sight ga<strong>in</strong>ed from hydrodynamical simulations. It has been clearly<br />

demonstrated that dur<strong>in</strong>g these merger events DM halos suffer pronounced<br />

tidal stripp<strong>in</strong>g (e.g., Moore et al. 1996). Detailed N-body simulations <strong>in</strong>dicate<br />

that up to 70% <strong>of</strong> the mass may be stripped from halos orbit<strong>in</strong>g close to<br />

the center <strong>of</strong> massive clusters when <strong>in</strong>tegrated over the Hubble time, <strong>and</strong> with<br />

∼ 20% loss even near the virial radius (Nagai & Kravtsov 2005). Statistical<br />

evidence for halo truncation is claimed also from lens<strong>in</strong>g based measurements<br />

(Natarajan et al. 2002, 2009).<br />

As can be expected, simulations show that despite the substantial effect <strong>of</strong><br />

tidal forces <strong>in</strong> remov<strong>in</strong>g the outer DM from galaxy halos, the stellar content<br />

<strong>of</strong> early-type galaxies is only weakly affected by tidal <strong>in</strong>teractions due to the<br />

centralized location <strong>of</strong> most stars with<strong>in</strong> the DM halos (Nagai & Kravtsov<br />

2005; Reed et al. 2005). Hence, the ratio <strong>of</strong> total mass to galaxy lum<strong>in</strong>osity<br />

is predicted to be approximately <strong>in</strong>dependent <strong>of</strong> radius <strong>in</strong> this context. In<br />

detail, the above simulations show a mild radial decl<strong>in</strong>e <strong>of</strong> the ratio <strong>of</strong> the<br />

total mass density over the number density <strong>of</strong> DM halos, M/n, as shown <strong>in</strong><br />

Fig. 3.13 (dashed curve). The relatively gentle decl<strong>in</strong><strong>in</strong>g trend <strong>in</strong> this ratio is<br />

the result <strong>of</strong> tidal forces (Nagai & Kravtsov 2005; Reed et al. 2005), which act<br />

over time to reduce the number <strong>of</strong> sub halos <strong>in</strong> the <strong>in</strong>ner region as compared<br />

to the cluster outskirts.<br />

This M/n ratio is a very useful prediction <strong>of</strong> the simulations which may<br />

be readily compared to our data. For each cluster we <strong>in</strong>deed f<strong>in</strong>d a gentle<br />

decl<strong>in</strong>e <strong>in</strong> the ratio <strong>of</strong> the total mass to the number <strong>of</strong> early type galaxies, the<br />

mean slope <strong>of</strong> which is <strong>in</strong> very good agreement with the prediction as shown<br />

<strong>in</strong> Fig. 3.13. The decl<strong>in</strong><strong>in</strong>g trend <strong>in</strong> this ratio is seen <strong>in</strong> the region 0.1−1 r vir ,<br />

<strong>in</strong> good agreement with the prediction by Nagai & Kravtsov (2005).<br />

As we showed <strong>in</strong> § 3.9 the ratio <strong>of</strong> the total mass density to bluer cluster<br />

members light density has a very steep decl<strong>in</strong>e with radius – much greater<br />

than the mild trend observed above for early-type red sequence galaxies. The<br />

104


3.9 M/L pr<strong>of</strong>iles<br />

0.6<br />

0.4<br />

0.2<br />

log 10<br />

(M/n)<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0.1 0.2 0.5 1 2<br />

r/r vir<br />

Figure 3.13 – Radial pr<strong>of</strong>ile <strong>of</strong> the ratio <strong>of</strong> the cluster mass density over the galaxy number<br />

density for A1703 (cyan stars), A370 (red squares) <strong>and</strong> RXJ1347-11 (green diamonds).<br />

Dashed l<strong>in</strong>e shows this ratio as calculated from the simulations <strong>of</strong> Nagai & Kravtsov<br />

(2005). The observed trend is similar to the theoretical prediction for each <strong>of</strong> the clusters<br />

<strong>and</strong> can be attributed theoretically to tidal effects by the cluster act<strong>in</strong>g on the galaxy DM<br />

halos.<br />

tendency towards an <strong>in</strong>creas<strong>in</strong>g proportion <strong>of</strong> early-type galaxies near cluster<br />

centers (also evident <strong>in</strong> Fig. 3.12) is <strong>of</strong> course well known <strong>and</strong> is understood<br />

empirically to result from the disruption <strong>of</strong> the gaseous disks <strong>of</strong> <strong>in</strong>fall<strong>in</strong>g<br />

galaxies. Radio cont<strong>in</strong>uum observations reveal that “wide-angle tails” <strong>of</strong><br />

gaseous material appear<strong>in</strong>g to trail beh<strong>in</strong>d disk galaxies (e.g., Marvel et al.<br />

1999). Recently spectacular large trails <strong>of</strong> H α emission have been detected<br />

around disk galaxies <strong>in</strong> the Coma <strong>and</strong> Virgo clusters (Bravo-Alfaro et al.<br />

2000; Vollmer et al. 2004; Kenney et al. 2008). The most impressive object<br />

is a large spiral galaxy (NGC 4438) with obvious disrupted arms <strong>and</strong> a long<br />

trail (∼ 120 kpc) <strong>of</strong> H α emission reveal<strong>in</strong>g the orbit <strong>of</strong> this galaxy has been<br />

bent around the massive central galaxy, M86, with a large relative velocity<br />

<strong>of</strong> ∼ 500 km/s (Kenney et al. 2008).<br />

Ram-pressure stripp<strong>in</strong>g has long been calculated to be important (Gunn<br />

& Gott 1972) for disk galaxies (<strong>in</strong> clusters), remov<strong>in</strong>g preferentially the relatively<br />

low-density gas with<strong>in</strong> a characteristic stripp<strong>in</strong>g radius, the scale <strong>of</strong><br />

which can be estimated from basic considerations, <strong>and</strong> which was verified<br />

105


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

by careful simulations (Abadi et al. 1999; Kronberger et al. 2008). The loss<br />

<strong>of</strong> gas has a transformative effect on both the morphology <strong>and</strong> the colors<br />

<strong>of</strong> such objects, a process which is claimed as a natural explanation for the<br />

cluster populations <strong>of</strong> S0 galaxies, (Homeier et al. 2005; Postman et al. 2005;<br />

Poggianti et al. 2009; Huertas-Company et al. 2009) <strong>and</strong> which is also related<br />

to the evolution <strong>of</strong> cluster gas metallicity (Sch<strong>in</strong>dler et al. 2005; Arieli et al.<br />

2008).<br />

3.10 Cluster lum<strong>in</strong>osity functions<br />

The data allow the LF to be usefully constructed <strong>in</strong> several <strong>in</strong>dependent<br />

radial <strong>and</strong> magnitude b<strong>in</strong>s, <strong>and</strong> hence we can exam<strong>in</strong>e the form <strong>of</strong> the LF <strong>of</strong><br />

cluster members as a function <strong>of</strong> projected distance from the cluster center.<br />

By measur<strong>in</strong>g the degree <strong>of</strong> dilution separately <strong>in</strong> each magnitude b<strong>in</strong> we can<br />

construct LFs without resort<strong>in</strong>g to uncerta<strong>in</strong> background subtraction.<br />

Here, the dilution correction is evaluated as a function <strong>of</strong> magnitude <strong>and</strong><br />

radius. Left panels <strong>of</strong> Fig. 3.14 show the tangential distortion <strong>of</strong> the green<br />

sample versus absolute magnitude b<strong>in</strong>, <strong>and</strong> the reference background distortion<br />

level is marked <strong>in</strong> the black solid l<strong>in</strong>e; see (Medez<strong>in</strong>ski et al. 2007) for<br />

more details. To correct for this we apply equation (3.5) to each magnitude<br />

b<strong>in</strong>:<br />

Φ cl (M k ) = Φ(M k )[1 − 〈g (G)<br />

T<br />

(M k)〉/〈g (B)<br />

T<br />

(r)〉] (3.9)<br />

(Note that the background signal is averaged over the whole range <strong>of</strong> magnitudes<br />

at that radius). The correction for background present <strong>in</strong> the green<br />

sample is <strong>in</strong> fact not large for the brighter b<strong>in</strong>s, but is more essential at the<br />

fa<strong>in</strong>ter b<strong>in</strong>s, with magnitude M R −18. This is similar to the observation<br />

we made <strong>in</strong> § 3.7 for the radial pr<strong>of</strong>ile <strong>of</strong> the fraction correction, only there<br />

the correction was a function <strong>of</strong> radius, <strong>and</strong> here it is a function <strong>of</strong> magnitude.<br />

We construct LFs <strong>in</strong> three broad radial annuli, except for RXJ1347-11<br />

for which this is feasible – due to its small angular size – only <strong>in</strong> two b<strong>in</strong>s.<br />

The results are shown <strong>in</strong> Fig. 3.14 (center panels). Each LF is well fitted<br />

106


3.10 Cluster lum<strong>in</strong>osity functions<br />

by a Schechter (1976) function (dashed l<strong>in</strong>es), <strong>and</strong> the confidence contours<br />

for the Schechter function parameters M ∗ <strong>and</strong> α are shown on the righth<strong>and</strong><br />

panels <strong>of</strong> Fig. 3.14. The Schechter fit parameters are also specified <strong>in</strong><br />

table 3.3. Clearly there is no evidence for a dist<strong>in</strong>ct upturn, to the limits <strong>of</strong><br />

the photometry <strong>of</strong> any <strong>of</strong> our clusters. The slope <strong>of</strong> the Schechter function<br />

is well def<strong>in</strong>ed <strong>in</strong> each case, ly<strong>in</strong>g <strong>in</strong> a tight range, from α = −0.95 ± 0.05<br />

to α = −1.24 ± 0.2. Also, there is no significant radial dependence <strong>in</strong> the<br />

shape <strong>of</strong> the LFs with distance from the cluster center. There may however<br />

be some evidence that <strong>in</strong> the outer radial b<strong>in</strong> the LFs are somewhat steeper<br />

than <strong>in</strong> the center <strong>of</strong> the cluster for A1703, as can be seen <strong>in</strong> Fig. 3.14, where<br />

the slope changes from α ∼ −0.95 to α ∼ −1.1 to α ∼ −1.25 at larger radius.<br />

The knee <strong>of</strong> the LFs, namely the bright-end break, is very dist<strong>in</strong>ct, <strong>and</strong> is<br />

around M ∗r ′ ∼ −21.5 for A1703, M ∗R ∼ −22.5 for A370, <strong>and</strong> M ∗R ∼ −22<br />

for RXJ1347-11.<br />

For A1689 we also saw no upturn at the fa<strong>in</strong>t magnitude limit, with<br />

α = −1.05 ± 0.07 (Medez<strong>in</strong>ski et al. 2007). There has been some significant<br />

disagreement regard<strong>in</strong>g the shapes <strong>and</strong> fa<strong>in</strong>t-end slopes <strong>of</strong> LFs <strong>in</strong> clusters.<br />

Popesso et al. (2006) analyz<strong>in</strong>g 69 RASS-SDSS clusters found a steep upturn<br />

at the fa<strong>in</strong>t-end by fitt<strong>in</strong>g a composite <strong>of</strong> two Schechter functions, with the<br />

fa<strong>in</strong>t-end fit slope be<strong>in</strong>g α ∼ −2. R<strong>in</strong>es & Geller (2008) made a comprehensive<br />

study <strong>of</strong> two local galaxy clusters, us<strong>in</strong>g spectroscopic data to identify<br />

securely the cluster galaxies, for a more reliable measurement <strong>of</strong> cluster LFs.<br />

They found no dist<strong>in</strong>ct upturn for either <strong>of</strong> the clusters, with α = −1.13 for<br />

A2199 <strong>and</strong> α = −1.28 for the Virgo cluster. When measur<strong>in</strong>g the overall<br />

slope <strong>of</strong> the composite cluster LF, i.e., up to the virial radius, we f<strong>in</strong>d slopes<br />

<strong>of</strong> α ∼ −1.1 ± 0.1 for all three clusters, <strong>in</strong> good agreement with the results <strong>of</strong><br />

R<strong>in</strong>es & Geller (2008). We note that general cluster-to-cluster variation <strong>in</strong><br />

the total LF fits is not necessarily unexpected, but probably depends on the<br />

specific characteristics <strong>of</strong> <strong>in</strong>dividual clusters. Our clusters all show relatively<br />

flat LFs, with only a weak radial dependence.<br />

107


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

0−0.3 Mpc/h<br />

0.2<br />

0.3−0.8 Mpc/h<br />

0.8−2.5 Mpc/h<br />

0.1<br />

0<br />

0.1<br />

Φ(M) [h 2 Mpc −2 mag −1 ]<br />

−0.93<br />

α=−0.95±0.05 M *<br />

=−21.4±0.6<br />

−0.94<br />

−0.95α<br />

10 2<br />

−0.96<br />

−1.06<br />

α=−1.08±0.08 M *<br />

=−21.7±0.8<br />

−1.07<br />

g + 0.05<br />

10 1<br />

−1.08<br />

−1.09α<br />

−1.1<br />

0<br />

0.02<br />

α=−1.24±0.2 M<br />

10 0<br />

*<br />

=−21.8±3<br />

−1.2<br />

10 3 M R<br />

g +<br />

−24 −22 −20 −18 −16 −14<br />

g +<br />

−24 −23 −22 −21<br />

0.01<br />

0<br />

−0.01<br />

−24 −22 −20 −18 −16 −14<br />

M r’<br />

10 −1<br />

M *r’<br />

−1.25α<br />

−1.3<br />

g<br />

g<br />

0.6<br />

10 3 −1.03<br />

0−0.3 Mpc/h<br />

α=−1±0.04 M *<br />

=−22.4±0.6<br />

0.3−1 Mpc/h<br />

−1.035<br />

0.4<br />

+<br />

1−2.2 Mpc/h<br />

−1.04 α<br />

0.2<br />

10 2<br />

−1.045<br />

0<br />

−1.11<br />

0.15<br />

α=−1.12±0.05 M *<br />

=−22.1±0.7<br />

g + 0.1<br />

10 1<br />

−1.12<br />

α<br />

0.05<br />

−1.13<br />

0<br />

−1.14<br />

0.06<br />

α=−1.18±0.09 M *<br />

=−22.8±1<br />

10 0<br />

−1.16<br />

0.04 +<br />

−1.18α<br />

0.02<br />

−1.2<br />

0<br />

10 −1<br />

−1.22<br />

−25 −20 −15<br />

−24 −22 −20 −18 −16 −14 −23.5 −23 −22.5 −22<br />

M R<br />

M R<br />

M *R<br />

Φ(M) [h 2 Mpc −2 mag −1 ]<br />

10 3<br />

g<br />

−23 −21<br />

0.25<br />

0−0.8 Mpc/h<br />

α=−1±0.06 M *<br />

=−21.6±0.5<br />

0.8−2 Mpc/h<br />

0.2<br />

0.15<br />

+<br />

10 2<br />

0.1<br />

0.05<br />

10 1<br />

0<br />

0.06<br />

α=−1.12±0.1 M *<br />

=−22±2<br />

10 0<br />

0.04<br />

0.02<br />

10 −1<br />

0<br />

−0.02<br />

10 −2<br />

−25 −20 −15<br />

M R<br />

−24 −22 −20<br />

M R<br />

−18 −16 −14<br />

−22<br />

M *R<br />

g +<br />

Φ(M) [h 2 Mpc −2 mag −1 ]<br />

−0.98<br />

−0.985<br />

−0.99<br />

−0.995α<br />

−1<br />

−1.005<br />

−1.01<br />

−1.08<br />

−1.1<br />

−1.12α<br />

−1.14<br />

−1.16<br />

Figure 3.14 – Lum<strong>in</strong>osity functions <strong>of</strong> A1703 (top), A370 (middle) <strong>and</strong> RXJ1347-11<br />

(bottom). Center part: LFs <strong>and</strong> their Schechter fits are shown for several <strong>in</strong>dependent<br />

radial b<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g little trend <strong>of</strong> the shape <strong>of</strong> the LF with radius. Left part: tangential<br />

distortion g T <strong>of</strong> the green sample as a function <strong>of</strong> magnitude used <strong>in</strong> the derivation <strong>of</strong><br />

the correspond<strong>in</strong>g LF. Right part: 1σ, 2σ, <strong>and</strong> 3σ contours for the Schechter function fits<br />

parameters M ∗ <strong>and</strong> α, for each <strong>of</strong> the correspond<strong>in</strong>g LFs <strong>of</strong> each radial b<strong>in</strong>.


3.11 Discussion <strong>and</strong> conclusions<br />

Table 3.3 – Parameters <strong>of</strong> Schechter fits to the Lum<strong>in</strong>osity function<br />

Cluster radial range α M ∗<br />

(h −1 Mpc)<br />

A1703 0 − 0.3 −0.95 ± 0.05 −21.4 ± 0.6<br />

0.3 − 0.8 −1.08 ± 0.08 −21.7 ± 0.8<br />

0.8 − 2.5 −1.24 ± 0.2 −21.8 ± 3<br />

A370 0 − 0.3 −1 ± 0.04 −22.4 ± 0.6<br />

0.3 − 1 −1.12 ± 0.05 −22.1 ± 0.7<br />

1 − 2.2 −1.18 ± 0.09 −22.8 ± 1<br />

RXJ1347-11 0 − 0.8 −1 ± 0.06 −21.6 ± 0.5<br />

0.8 − 2 −1.12 ± 0.1 −22 ± 2<br />

3.11 Discussion <strong>and</strong> conclusions<br />

In this paper we have compared <strong>in</strong> detail the dark <strong>and</strong> lum<strong>in</strong>ous properties <strong>of</strong><br />

three high mass galaxy clusters, A1703, A370 <strong>and</strong> RXJ1347-11, <strong>and</strong> exam<strong>in</strong>ed<br />

the relation between mass <strong>and</strong> light all the way out to the virial radius.<br />

We have further applied the WL dilution approach previously developed for<br />

A1689 (Medez<strong>in</strong>ski et al. 2007) as an alternative means <strong>of</strong> obta<strong>in</strong><strong>in</strong>g the<br />

LF <strong>and</strong> light pr<strong>of</strong>iles <strong>of</strong> galaxy clusters. This is based on the dilution <strong>of</strong> the<br />

lens<strong>in</strong>g distortion signal by unlensed cluster members, <strong>and</strong> has the advantage<br />

<strong>of</strong> be<strong>in</strong>g <strong>in</strong>dependent <strong>of</strong> density fluctuations <strong>in</strong> the background.<br />

We have exam<strong>in</strong>ed clusters A1703, A370 <strong>and</strong> RXJ1347-11 for which data<br />

<strong>of</strong> exceptional quality has been taken with Subaru/Suprime-Cam <strong>in</strong> multiple<br />

passb<strong>and</strong>s. We have shown how a careful separation <strong>of</strong> the cluster,<br />

foreground, <strong>and</strong> background galaxies can be achieved us<strong>in</strong>g weak lens<strong>in</strong>g <strong>in</strong>formation<br />

<strong>and</strong> galaxy colors. We also make use <strong>of</strong> the cluster<strong>in</strong>g <strong>of</strong> cluster<br />

members, f<strong>in</strong>d<strong>in</strong>g the cluster members are conf<strong>in</strong>ed to a dist<strong>in</strong>ct region <strong>of</strong><br />

CC space with relatively small mean radial distances. We have constructed<br />

a reliable background sample for WL measurements, by select<strong>in</strong>g red background<br />

galaxies whose WL signal rises all the way to the center <strong>of</strong> the cluster,<br />

<strong>and</strong> add<strong>in</strong>g to those the fa<strong>in</strong>t cloud <strong>of</strong> very blue galaxies, whose WL signal<br />

we have shown is <strong>in</strong> good agreement with the red galaxies. We have avoided<br />

109


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

dilution <strong>of</strong> the WL signal by identify<strong>in</strong>g <strong>and</strong> exclud<strong>in</strong>g the foreground population<br />

<strong>in</strong> the CC diagram for which no cluster<strong>in</strong>g or WL signal is detected.<br />

Together, the red <strong>and</strong> blue samples WL measurements can be used to reconstruct<br />

accurate mass maps <strong>of</strong> all four clusters (see Broadhurst et al. 2008).<br />

By apply<strong>in</strong>g this sample selection <strong>and</strong> WL dilution correction, the LFs<br />

are derived for each <strong>of</strong> the clusters, <strong>in</strong> several radial b<strong>in</strong>s, without the need<br />

<strong>of</strong> statistical background subtraction. The LFs extend to very fa<strong>in</strong>t magnitude<br />

limits, M R ∼ −14, <strong>and</strong> each shows a very flat fa<strong>in</strong>t-end slopes,<br />

−0.95 ≤ α ≤ −1.24, <strong>in</strong> agreement with our previous study for A1689. There<br />

are various claims <strong>in</strong> the literature regard<strong>in</strong>g the shape <strong>of</strong> the fa<strong>in</strong>t end <strong>of</strong><br />

the galaxy LF (Popesso et al. 2006; R<strong>in</strong>es & Geller 2008; Adami et al. 2008;<br />

Crawford et al. 2009), with relatively flat slopes measured <strong>and</strong> found consistent<br />

with a simple Schechter function, <strong>and</strong> other work claim<strong>in</strong>g a dist<strong>in</strong>ctive<br />

upturn at fa<strong>in</strong>t magnitudes. Differences may conceivably represent <strong>in</strong>tr<strong>in</strong>sic<br />

differences between clusters, but a worry here is the uncerta<strong>in</strong> subtraction <strong>of</strong><br />

the steep background counts <strong>of</strong> fa<strong>in</strong>t galaxies when evaluat<strong>in</strong>g the background<br />

us<strong>in</strong>g control fields. Uncerta<strong>in</strong>ties may result from <strong>in</strong>herent cluster<strong>in</strong>g <strong>of</strong> the<br />

background galaxies <strong>and</strong> also variations <strong>in</strong> photometric <strong>in</strong>completeness, or<br />

differential ext<strong>in</strong>ction between the cluster <strong>and</strong> control fields.<br />

Redshift measurements may remove concerns about the background for<br />

complete surveys, but <strong>in</strong> practice spectroscopy can only reach <strong>in</strong>terest<strong>in</strong>gly<br />

fa<strong>in</strong>t limit<strong>in</strong>g lum<strong>in</strong>osities for fairly local clusters, requir<strong>in</strong>g multiplex<strong>in</strong>g capability<br />

over a wide-fields <strong>of</strong> view on large telescopes. R<strong>in</strong>es & Geller (2008)<br />

recently provided the tightest constra<strong>in</strong>ts from spectroscopy out to a sizable<br />

fraction <strong>of</strong> the virial radius, f<strong>in</strong>d<strong>in</strong>g no significant upturn for the clusters<br />

studied. Confidence is ga<strong>in</strong><strong>in</strong>g <strong>in</strong> the use <strong>of</strong> photometric redshifts, from careful<br />

deep multi-color imag<strong>in</strong>g, which <strong>in</strong> the work <strong>of</strong> Adami et al. (2008) a<br />

relatively steep LF is claimed for Coma, but flatter slopes are measured for<br />

a sample <strong>of</strong> <strong>in</strong>termediate-redshift clusters (Crawford et al. 2009). Clearly, it<br />

is essential that there is no significant confusion <strong>of</strong> background galaxies with<br />

cluster members or foreground, as is achieved with our approach.<br />

The radial light pr<strong>of</strong>iles <strong>of</strong> these clusters are well characterized by a power-<br />

110


3.11 Discussion <strong>and</strong> conclusions<br />

law slope <strong>of</strong> approximately d log(L)/d log(r) ≃ −1 over all radii. These are<br />

compared with the mass pr<strong>of</strong>iles from WL to derive the radial pr<strong>of</strong>ile <strong>of</strong><br />

the M/L ratio, a quantity which has hitherto not been constra<strong>in</strong>ed <strong>in</strong> much<br />

detail, due to the difficulty <strong>of</strong> measur<strong>in</strong>g mass pr<strong>of</strong>iles with sufficient precision<br />

<strong>and</strong> light pr<strong>of</strong>iles free <strong>of</strong> systematic effects. Interest<strong>in</strong>gly, we f<strong>in</strong>d that all<br />

our clusters show a very similar radial trend <strong>of</strong> M/L, peak<strong>in</strong>g <strong>in</strong> the range<br />

M/L R ∼ 500 h(M/L) ⊙ at <strong>in</strong>termediate radius ≃ 0.15R vir , <strong>and</strong> decl<strong>in</strong><strong>in</strong>g to<br />

approximately a limit<strong>in</strong>g level <strong>of</strong> M/L R ∼ 100 h(M/L) ⊙ toward the virial<br />

radius <strong>of</strong> each cluster.<br />

The decl<strong>in</strong>e <strong>of</strong> M/L towards large radius is very <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> seems<br />

to be a universal feature <strong>of</strong> clusters, or at least it is clearly found <strong>in</strong> the<br />

clusters we have been able to study here <strong>in</strong> sufficient detail <strong>and</strong> for A1689<br />

(Medez<strong>in</strong>ski et al. 2007). Additionally, <strong>in</strong> the careful dynamical-based study<br />

<strong>of</strong> R<strong>in</strong>es et al. (2000) a similar decl<strong>in</strong><strong>in</strong>g trend was found for A576. We<br />

have shown that such behavior is not simply accounted for by the change<br />

<strong>in</strong> the stellar content <strong>of</strong> galaxies with distance from the cluster center. The<br />

radial trend <strong>of</strong> galaxy colors found is very mild <strong>and</strong> when corrected for us<strong>in</strong>g<br />

st<strong>and</strong>ard stellar population synthesis falls well short <strong>of</strong> expla<strong>in</strong><strong>in</strong>g the marked<br />

trend <strong>of</strong> M/L with radius.<br />

The variation <strong>of</strong> M/L is however seen to be almost entirely stemm<strong>in</strong>g<br />

from the much steeper density pr<strong>of</strong>ile <strong>of</strong> blue cluster members compared to<br />

the red sequence galaxies. The higher relative abundance <strong>of</strong> blue galaxies<br />

<strong>in</strong> the outer region <strong>of</strong> rich clusters is well known from local morphological<br />

studies <strong>and</strong> deeper work with high resolution (R<strong>in</strong>es et al. 2000; Katgert<br />

et al. 2004; Postman et al. 2005) <strong>and</strong> is part <strong>of</strong> the general morphologydensity<br />

relation (Dressler 1980). Such behavior is commonly expla<strong>in</strong>ed by<br />

the cont<strong>in</strong>ued conversion <strong>of</strong> disk galaxies <strong>in</strong>to S0 galaxies, via tidal <strong>and</strong> gas<br />

stripp<strong>in</strong>g processes (Abadi et al. 1999), <strong>and</strong> thought to be consistent with<br />

the observed evolution <strong>of</strong> the numbers <strong>of</strong> S0 galaxies relative to other cluster<br />

populations measured <strong>in</strong> the accessible redshift range z < 1 (Dressler 1980;<br />

Ellis et al. 1997; Postman et al. 2005; Poggianti et al. 2009; Simard et al.<br />

2009). Disk galaxies are expected to be relatively more affected than earlytype<br />

objects as their stellar content is relatively less bound gravitationally<br />

111


<strong>Mass</strong> <strong>and</strong> <strong>Light</strong> <strong>of</strong> A1703, A370 & RXJ1347-11<br />

<strong>and</strong> the gas is susceptible to ram pressure from the ICM.<br />

In contrast, for early-type galaxies the M/L pr<strong>of</strong>ile we obta<strong>in</strong>ed for each<br />

cluster is fairly flat, with only a shallow radial decl<strong>in</strong>e for r > 200 h −1 kpc.<br />

Interest<strong>in</strong>gly CDM based N-body simulations aimed at evaluat<strong>in</strong>g the tidal<br />

<strong>in</strong>fluence <strong>of</strong> the cluster potential do claim to predict a shallow radial decl<strong>in</strong>e <strong>in</strong><br />

the ratio <strong>of</strong> cluster mass to the number <strong>of</strong> sub-halos (Nagai & Kravtsov 2005;<br />

Reed et al. 2005; Natarajan et al. 2009), match<strong>in</strong>g well our observed trend.<br />

The simulations <strong>in</strong>dicate that although up to 70% <strong>of</strong> a galaxy halo mass can<br />

be stripped over a Hubble time for those objects with orbits br<strong>in</strong>g<strong>in</strong>g them<br />

close to the cluster center, the stellar content is not likely to be significantly<br />

affected, at least for early-type galaxies, as the stars are more tightly bound.<br />

Hence, a relatively flat relation is expected reflect<strong>in</strong>g the relatively collisionless<br />

behavior <strong>of</strong> both galaxies <strong>and</strong> DM. Therefore, even though tidal effects<br />

are significant, the lum<strong>in</strong>ous component that we measure when exam<strong>in</strong><strong>in</strong>g<br />

the M/L pr<strong>of</strong>ile <strong>of</strong> early-type galaxies is expected to be only slightly affected,<br />

<strong>in</strong> good agreement with the mild decl<strong>in</strong>e we observe for each cluster.<br />

Further work on the tidal evolution <strong>of</strong> clusters is obviously needed. This<br />

is particularly important <strong>in</strong> view <strong>of</strong> the <strong>in</strong>terest<strong>in</strong>g tension that has now<br />

emerged between the relatively concentrated mass pr<strong>of</strong>iles measured for many<br />

high mass clusters, compared to the much shallower mass pr<strong>of</strong>iles predicted<br />

by st<strong>and</strong>ard ΛCDM (Duffy et al. 2008; Broadhurst et al. 2008; Oguri et al.<br />

2009). Steeper mass pr<strong>of</strong>iles lead to stronger tidal effects <strong>and</strong> compounded<br />

with the greater ages implied by the relatively high concentrations should lead<br />

to more significant tidal effects. Measur<strong>in</strong>g directly the tidal truncation <strong>of</strong><br />

lum<strong>in</strong>ous cluster member galaxies should be feasible via lens<strong>in</strong>g <strong>in</strong> favorable<br />

cases where multiple images are locally affected by <strong>in</strong>dividual halos. The<br />

statistical <strong>in</strong>fluence on the general lens<strong>in</strong>g deflection field has been claimed<br />

to be detected for two clusters <strong>in</strong>dependently by Natarajan et al. (2009)<br />

for Cl0024+16 <strong>and</strong> by Halkola et al. (2007) for A1689. These first results<br />

encourage further deeper work with an emphasis on the degree <strong>of</strong> correlation<br />

<strong>of</strong> the lens<strong>in</strong>g signal with cluster member galaxies, a formidable challenge<br />

but one well worthy <strong>of</strong> pursuit.<br />

112


Chapter 4<br />

A Weak Lens<strong>in</strong>g Determ<strong>in</strong>ation<br />

<strong>of</strong> the Cosmological<br />

Distance-Redshift Relation<br />

Beh<strong>in</strong>d Abell 370<br />

A version <strong>of</strong> this chapter has been submitted for publication <strong>in</strong> MNRAS as<br />

Medez<strong>in</strong>ski et al. (2010)<br />

4.1 Introduction<br />

Constra<strong>in</strong><strong>in</strong>g cosmological parameters has been the focus <strong>of</strong> major surveys<br />

<strong>in</strong> the last decade, via precision cosmic microwave background (CMB) temperature<br />

correlations (Spergel et al. 2007; Brown et al. 2009) <strong>and</strong> SN-Ia light<br />

curves (Riess et al. 1998; Perlmutter et al. 1999).<br />

A st<strong>and</strong>ard, ΛCDM, cosmological model has been def<strong>in</strong>ed by this work,<br />

albeit at the price <strong>of</strong> accept<strong>in</strong>g an accelerat<strong>in</strong>g expansion driven by a cosmological<br />

constant, <strong>and</strong> non-baryonic DM <strong>of</strong> an unknown nature dom<strong>in</strong>at<strong>in</strong>g<br />

the mass density <strong>of</strong> the Universe. Measurements <strong>of</strong> the angular diameter<br />

113


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

distance <strong>of</strong> the CMB refer to z ∼ 1100, <strong>and</strong> lum<strong>in</strong>osity distances are derived<br />

from SN-Ia <strong>in</strong> the range z < 1. In pr<strong>in</strong>ciple, lens<strong>in</strong>g can provide a<br />

complementary distance measurements <strong>in</strong> the range, z > 1, from the purely<br />

geometric deflection <strong>of</strong> light, which <strong>in</strong>creases with source distance beh<strong>in</strong>d a<br />

lens.<br />

For lens<strong>in</strong>g clusters, the bend-angle <strong>of</strong> light scales l<strong>in</strong>early with angular<br />

diameter distance ratio, D ds /D s , the separation between the lens <strong>and</strong> the<br />

source, divided by distance to the source. This distance ratio has a characteristic<br />

geometric dependence on redshift, ris<strong>in</strong>g steeply beh<strong>in</strong>d the lens<br />

<strong>and</strong> then saturat<strong>in</strong>g at large source redshift (e.g., Fig. 1 <strong>of</strong> Broadhurst et al.<br />

1995). This effect has been detected beh<strong>in</strong>d massive lens<strong>in</strong>g clusters, where<br />

the separation <strong>in</strong> angle between multiple images <strong>of</strong> higher redshift sources<br />

is noticeably larger than for lower redshift sources. For example, for the<br />

well studied cluster SDSSJ1004+4112 (z = 0.68), five images <strong>of</strong> a QSO at<br />

z = 1.734 are with<strong>in</strong> an E<strong>in</strong>ste<strong>in</strong> radius <strong>of</strong> about θ E ∼ 7 ′′ (Inada et al. 2003;<br />

Oguri et al. 2004), whereas a more distant multiply lensed galaxy beh<strong>in</strong>d<br />

this cluster at z = 3.332 is at a much larger E<strong>in</strong>ste<strong>in</strong> radius <strong>of</strong> θ E ∼ 16 ′′<br />

(Sharon et al. 2005). Other sets <strong>of</strong> multiple images show this <strong>in</strong>creas<strong>in</strong>g angular<br />

scal<strong>in</strong>g with source redshift, follow<strong>in</strong>g well the expected general form<br />

<strong>of</strong> the redshift-distance relation <strong>in</strong> careful strong lens<strong>in</strong>g analyses <strong>of</strong> deep<br />

Hubble data (Soucail et al. 2004; Broadhurst et al. 2005a; Zitr<strong>in</strong> et al. 2009b;<br />

Zitr<strong>in</strong> & Broadhurst 2009; Zitr<strong>in</strong> et al. 2009a).<br />

However, these studies are not able to dist<strong>in</strong>guish between the relatively<br />

subtle changes between cosmologies <strong>in</strong> the range <strong>of</strong> <strong>in</strong>terest, due to the <strong>in</strong>herent<br />

<strong>in</strong>sensitivity <strong>of</strong> the distance ratio D ds /D s to the cosmological parameters.<br />

Moreover, the bend-angle is particularly sensitive to the gradient <strong>of</strong> the mass<br />

pr<strong>of</strong>ile, requir<strong>in</strong>g many sets <strong>of</strong> multiple images <strong>in</strong> the strong regime to simultaneously<br />

solve for both the cosmological model <strong>and</strong> the mass distribution.<br />

Instead <strong>in</strong> practice, strong lens model<strong>in</strong>g usually adopts the st<strong>and</strong>ard cosmological<br />

relation <strong>in</strong> order to better derive the mass distribution, with multiply<br />

lensed sources forced to lie on the lens<strong>in</strong>g distance-redshift relation. This<br />

helps elim<strong>in</strong>ate the otherwise considerable degeneracy <strong>in</strong> constra<strong>in</strong><strong>in</strong>g the<br />

slope <strong>of</strong> the lens<strong>in</strong>g mass pr<strong>of</strong>ile <strong>of</strong> a galaxy cluster (Broadhurst et al. 2005a;<br />

114


4.1 Introduction<br />

Zitr<strong>in</strong> et al. 2009b; Zitr<strong>in</strong> & Broadhurst 2009; Zitr<strong>in</strong> et al. 2009a). The hope<br />

<strong>of</strong> constra<strong>in</strong><strong>in</strong>g the cosmography from strong lens<strong>in</strong>g data is remote with<br />

current tools (Gilmore & Natarajan 2009).<br />

Weak lens<strong>in</strong>g (WL), by contrast, <strong>of</strong>fers a model <strong>in</strong>dependent way <strong>of</strong> constra<strong>in</strong><strong>in</strong>g<br />

the cosmological parameters via the distance-redshift relation (Taylor<br />

et al. 2004). Image distortions <strong>and</strong> magnification depend on gradients <strong>of</strong><br />

the deflection field <strong>and</strong> <strong>in</strong> the WL limit, these are just proportional to D ds /D s .<br />

The mass pr<strong>of</strong>ile enters only <strong>in</strong> the stronger regime as a second order correction<br />

(Medez<strong>in</strong>ski et al. 2007). Here we are concerned with the amplitude <strong>of</strong><br />

cluster WL dependence on source redshift, for which no mass reconstruction<br />

is required when evaluat<strong>in</strong>g the distance-redshift relation. However, although<br />

this observed effect is <strong>in</strong>dependent <strong>of</strong> the mass distribution <strong>in</strong> the weak limit,<br />

the sensitivity to cosmological parameters is still <strong>in</strong>herently very small.<br />

The analogous effect <strong>in</strong> the field has been explored <strong>in</strong> terms <strong>of</strong> the cosmic<br />

shear, to measure the general mass distribution. Optimal formalisms<br />

have been developed which cross-correlate the foreground distribution <strong>of</strong><br />

galaxies along a given l<strong>in</strong>e <strong>of</strong> sight with the distribution <strong>of</strong> background images<br />

(Wittman et al. 2001; Ja<strong>in</strong> & Taylor 2003; Bacon et al. 2003; Taylor<br />

et al. 2004, 2007) with clear detections <strong>of</strong> large scale structure, <strong>in</strong>clud<strong>in</strong>g the<br />

COMBO-17 fields (Brown et al. 2003; Kitch<strong>in</strong>g et al. 2007) <strong>and</strong> the COSMOS<br />

field (<strong>Mass</strong>ey et al. 2007b; Schrabback et al. 2010). To usefully derive cosmological<br />

parameters from general cosmic shear work, deep all-sky surveys<br />

have been proposed (e.g., LSST 1 , DES 2 , JDEM 3 , EUCLID 4 ).<br />

Here we make use <strong>of</strong> detailed color-color (CC) <strong>in</strong>formation for an <strong>in</strong>termediate<br />

redshift lens<strong>in</strong>g cluster, Abell 370 (hereafter A370, z = 0.375), <strong>and</strong><br />

def<strong>in</strong>e several samples <strong>of</strong> galaxies <strong>of</strong> differ<strong>in</strong>g background depths with which<br />

to explore the dependence <strong>of</strong> WL distortion on source redshift. With only<br />

three b<strong>and</strong>s we cannot reliably def<strong>in</strong>e photometric redshifts for a sizable proportion<br />

<strong>of</strong> objects, but <strong>in</strong>stead, by reference to the redshift disributions <strong>of</strong><br />

1 http://www.lsst.org/lsst<br />

2 https://www.darkenergysurvey.org/<br />

3 http://jdem.gsfc.nasa.gov<br />

4 http://sci.esa.<strong>in</strong>t/science-e/www/object/<strong>in</strong>dex.cfm?fobjectid=42266<br />

115


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

the well studied deep field surveys, we may reliably def<strong>in</strong>e several galaxy<br />

populations <strong>of</strong> differ<strong>in</strong>g mean depths <strong>in</strong> the CC-space covered by the filters<br />

used for our cluster.<br />

Three colour selection has also been applied <strong>in</strong> a similar context to simulations<br />

aimed at forecast<strong>in</strong>g the capabilities <strong>of</strong> WL tomograghy (Ja<strong>in</strong> et al.<br />

2007; Medez<strong>in</strong>ski et al. 2010). These simulations conv<strong>in</strong>c<strong>in</strong>gly demonstrate<br />

that greater efficieny is likely by us<strong>in</strong>g limited 3-b<strong>and</strong> imag<strong>in</strong>g for WL tomorgraphy,<br />

rather than by <strong>in</strong>vest<strong>in</strong>g greater imag<strong>in</strong>g time <strong>in</strong> additional b<strong>and</strong>s<br />

to improve photometric redshift precision. For our purposes too we show here<br />

that a judicious choice <strong>of</strong> non-orthogonal boundries <strong>in</strong> CC-space allows the<br />

def<strong>in</strong>ition <strong>of</strong> several dist<strong>in</strong>ct redshift samples <strong>of</strong> differ<strong>in</strong>g mean depth, with<br />

relatively little overlap <strong>in</strong> redshift. We rely on well studied deep field surveys<br />

to estimate the redshift distribution <strong>of</strong> these different background populations,<br />

us<strong>in</strong>g the wide-field COSMOS 30-b<strong>and</strong> photometric redshift survey<br />

(Ilbert et al. 2009) <strong>and</strong> also the deeper GOODS-MUSIC survey which has<br />

wide multi-wavelength coverage <strong>in</strong> 14 b<strong>and</strong>s (from the U b<strong>and</strong> to the Spitzer<br />

8 µm b<strong>and</strong>) (Grazian et al. 2006).<br />

In § 4.2 we present the cluster observations <strong>and</strong> data reduction <strong>and</strong> <strong>in</strong><br />

§ 4.3 we expla<strong>in</strong> the selection <strong>of</strong> background galaxy samples <strong>and</strong> <strong>in</strong> § 4.4 we<br />

describe the WL analysis <strong>and</strong> outl<strong>in</strong>e the formalism. In § 4.5 we derive the<br />

WL amplitude <strong>and</strong> mean redshift <strong>in</strong>formation <strong>of</strong> the background samples,<br />

present<strong>in</strong>g our results regard<strong>in</strong>g the lens<strong>in</strong>g distance-redshift relation. We<br />

discuss the requirements for constra<strong>in</strong><strong>in</strong>g the cosmological model with this<br />

method <strong>in</strong> 4.6. We summarize <strong>and</strong> conclude <strong>in</strong> § 4.7.<br />

4.2 Subaru data reduction<br />

We analyze deep images <strong>of</strong> the <strong>in</strong>termediate-redshift cluster, A370, observed<br />

with the wide-field camera Suprime-Cam (Miyazaki et al. 2002) <strong>in</strong> three<br />

optical b<strong>and</strong>s, at the prime focus <strong>of</strong> the 8.3m Subaru telescope. The cluster<br />

data are publicly available from the Subaru archive, SMOKA 5 . Subaru<br />

5 http://smoka.nao.ac.jp<br />

116


4.3 Sample selection from the color-color diagram<br />

Table 4.1 – The A370 Subaru Data<br />

Filters used 1 Exposure Time See<strong>in</strong>g<br />

(sec)<br />

(arcsec)<br />

B J 7200 0.7<br />

R C 8340 0.6<br />

z ′ 14221 0.7<br />

1 Detection b<strong>and</strong> marked <strong>in</strong> bold.<br />

reduction s<strong>of</strong>tware (SDFRED) developed by Yagi et al. (2002) is used for<br />

flat-field<strong>in</strong>g, <strong>in</strong>strumental distortion correction, differential refraction, sky<br />

subtraction, <strong>and</strong> stack<strong>in</strong>g. Photometric catalogs are created us<strong>in</strong>g SExtractor<br />

(Bert<strong>in</strong> & Arnouts 1996). S<strong>in</strong>ce our work relies much on the colors <strong>of</strong><br />

galaxies, we prefer us<strong>in</strong>g isophotal magnitudes. We use the Colorpro (Coe<br />

et al. 2006) program to detect <strong>in</strong> the R C -b<strong>and</strong> <strong>and</strong> measure colors through<br />

matched isophotes <strong>in</strong> the other two b<strong>and</strong>s. Astrometric correction is done<br />

with Scamp (Bert<strong>in</strong> 2006) us<strong>in</strong>g reference objects <strong>in</strong> the NOMAD catalog<br />

(Zacharias et al. 2004) <strong>and</strong> the SDSS-DR6 (Adelman-McCarthy et al. 2008)<br />

where available. The observational details are listed <strong>in</strong> Table 4.1.<br />

4.3 Sample selection from the color-color diagram<br />

We use Subaru observations <strong>in</strong> three broad optical passb<strong>and</strong>s <strong>and</strong> all observations<br />

are <strong>of</strong> good see<strong>in</strong>g, represent<strong>in</strong>g some <strong>of</strong> the highest quality imag<strong>in</strong>g<br />

by Subaru <strong>in</strong> terms <strong>of</strong> depth, resolution, <strong>and</strong> color coverage. We first describe<br />

how we separate the background galaxies from foreground <strong>and</strong> cluster galaxies,<br />

comb<strong>in</strong><strong>in</strong>g WL measurements <strong>and</strong> the distribution <strong>of</strong> objects <strong>in</strong> the CC<br />

plane <strong>and</strong> their cluster<strong>in</strong>g relative to the center <strong>of</strong> the cluster. We then exam<strong>in</strong>e<br />

the redshift distribution <strong>of</strong> objects selected to lie <strong>in</strong> the background us<strong>in</strong>g<br />

the CC plane with reference to the COSMOS field where deep photometric<br />

redshifts are established to fa<strong>in</strong>t limits us<strong>in</strong>g 30 <strong>in</strong>dependent passb<strong>and</strong>s<br />

117


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

cover<strong>in</strong>g a very wide range <strong>of</strong> wavelength.<br />

Note that with only three b<strong>and</strong>s, only a small fraction <strong>of</strong> the objects have<br />

well def<strong>in</strong>ed photometric redshifts, <strong>in</strong> the sense <strong>of</strong> hav<strong>in</strong>g a s<strong>in</strong>gle, narrow<br />

peak <strong>in</strong> their probability p(z), <strong>and</strong> therefore their use to separate among<br />

different redshift populations is very limited. Us<strong>in</strong>g the BRz ′ CC space<br />

<strong>in</strong> this way with reference to the now well established redshift surveys is<br />

arguably more reliable <strong>in</strong> separat<strong>in</strong>g galaxy populations <strong>of</strong> differ<strong>in</strong>g depths,<br />

<strong>in</strong> agreement with the simulations <strong>of</strong> Ja<strong>in</strong> et al. (2007).<br />

In our previous analysis <strong>of</strong> this cluster, (Medez<strong>in</strong>ski et al. 2010, hereafter<br />

M10), we demonstrated how the cluster <strong>and</strong> foreground galaxies can be reliably<br />

identified <strong>and</strong> separated from background galaxies <strong>in</strong> the CC diagram,<br />

us<strong>in</strong>g B J , R C , z ′ b<strong>and</strong>s (Fig. 4.1). We found <strong>in</strong> the field <strong>of</strong> A370 the prom<strong>in</strong>ent<br />

overdensity <strong>of</strong> galaxies centered on B J − R C ∼ 2 <strong>and</strong> R C − z ′ ∼ 0.8 denotes<br />

the red-sequence <strong>of</strong> cluster galaxies (see Fig. 4.1, left-h<strong>and</strong> panel, where this<br />

overdensity is enclosed by white dashed l<strong>in</strong>e). This was also shown by the<br />

relatively small mean distance from cluster center <strong>of</strong> galaxies <strong>in</strong> that region<br />

<strong>in</strong> CC space (Fig. 1 <strong>in</strong> M10). The WL measurements for this population <strong>of</strong><br />

objects is very close to zero, with a measured tangential distortion pr<strong>of</strong>ile,<br />

g T (r), consistent with zero all the way out to the virial radius, as expected<br />

for cluster galaxies which are unlensed. The ma<strong>in</strong> central overdensity around<br />

B J − R C ∼ 1 <strong>and</strong> R C − z ′ ∼ 0.3 consists <strong>of</strong> many foreground galaxies (see<br />

Fig. 4.1, left-h<strong>and</strong> panel, with an overdensity enclosed by solid white l<strong>in</strong>e).<br />

These galaxies show a very low level g T compared to the reference background,<br />

marked <strong>in</strong> gray on Fig. 4.1 (right panel), <strong>and</strong> their surface density<br />

pr<strong>of</strong>ile shows only modest central cluster<strong>in</strong>g (see M10) <strong>in</strong>dicat<strong>in</strong>g that most <strong>of</strong><br />

these objects lie <strong>in</strong> the foreground <strong>of</strong> the cluster. We use a bright subsample<br />

<strong>of</strong> these foreground galaxies to demonstrate the zero-level signal at a redshift<br />

po<strong>in</strong>t below the cluster (see below § 4.5), marked <strong>in</strong> gray on Fig. 4.1 (bottom<br />

panel). When select<strong>in</strong>g background galaxies we stay well away from these<br />

regions to m<strong>in</strong>imize contam<strong>in</strong>ation by these unlensed galaxies, as described<br />

below.<br />

To identify background populations <strong>in</strong> M10, we took <strong>in</strong>to account both<br />

118


4.3 Sample selection from the color-color diagram<br />

the WL signal <strong>and</strong> the density distribution <strong>of</strong> galaxies <strong>in</strong> the CC plane. In<br />

CC space a relatively red population can be rather well def<strong>in</strong>ed, dom<strong>in</strong>ated<br />

by an obvious overdensity (around B J − R C ∼ 0.5 <strong>and</strong> R C − z ′ ∼ 0.8), <strong>and</strong><br />

the bluest population is conf<strong>in</strong>ed to a separate cloud (around B J − R C ∼ 0.3<br />

<strong>and</strong> R C − z ′ ∼ 0.2) <strong>of</strong> fa<strong>in</strong>t galaxies with a clear lens<strong>in</strong>g signal. Look<strong>in</strong>g at<br />

the WL pr<strong>of</strong>iles <strong>of</strong> the red <strong>and</strong> blue samples, we see very similar behavior,<br />

with a cont<strong>in</strong>uous ris<strong>in</strong>g signal toward the cluster center. Both cases show<br />

good agreement with each other (M10). Comb<strong>in</strong>ed together, they form our<br />

reference background sample, to which all the other samples we derive<br />

below will be normalized.<br />

The validity <strong>of</strong> our selection was also demonstrated <strong>in</strong> M10 by comparison<br />

with the spectral evolution <strong>of</strong> galaxies calculated with the stellar synthesis<br />

code Galev 6 (Kotulla et al. 2009). Here we overlay the CC diagram with<br />

color-tracks <strong>of</strong> galaxy models: E-type (exponentially decl<strong>in</strong><strong>in</strong>g SFR with<br />

Z ⊙ ), S0 (gas-related SFR with Z ⊙ ), Sa (gas-related SFR with 2.5Z ⊙ ), <strong>and</strong><br />

Sd (constant SFR with 0.2Z ⊙ ). These evolutionary tracks orig<strong>in</strong>ate <strong>in</strong> the<br />

low-redshift cloud we established as foreground <strong>in</strong> CC space <strong>and</strong> evolve to<br />

higher redshift pass<strong>in</strong>g through the cluster redshift <strong>and</strong> then to bluer colors<br />

as shown <strong>in</strong> Fig. 4.5 (right), <strong>and</strong> f<strong>in</strong>ally end at the top-left corner <strong>of</strong> our CC<br />

space, dropp<strong>in</strong>g out <strong>of</strong> the B J -b<strong>and</strong> at a redshift <strong>of</strong> z ∼ 3.5<br />

In this paper we add additional samples <strong>of</strong> background galaxies. Two<br />

samples will consist <strong>of</strong> galaxies at redshifts not far beyond that <strong>of</strong> the cluster,<br />

which we term “orange” <strong>and</strong> “green”. These are selected to lie on the<br />

upper-right <strong>of</strong> the CC space, correspond<strong>in</strong>g reasonably to color-tracks <strong>of</strong> E/S0<br />

galaxies which are predicted to show a bend <strong>in</strong> the CC plane, becom<strong>in</strong>g bluer<br />

(B J − R C ∼ 2 − 2.5 <strong>and</strong> R C − z ′ ∼ 1 − 1.5) toward higher redshift, match<strong>in</strong>g<br />

well our observed distribution. A third group comprises the red-cloud<br />

described above, centered on B J − R C ∼ 0.5 <strong>and</strong> R C − z ′ ∼ 0.8, we call the<br />

“red” sample. This sample consists <strong>of</strong> an overdensity <strong>of</strong> background galaxies<br />

from the known “red” branch <strong>of</strong> the bimodality <strong>of</strong> field galaxies colors<br />

(Capak et al. 2007). A Forth sample consists <strong>of</strong> the prom<strong>in</strong>ent blue peak<br />

6 http://www.galev.org/<br />

119


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

Table 4.2 – CC-selected Sample Properties<br />

Sample magnitude limits N ¯n Γ χ 2 /d<strong>of</strong> < z s ><br />

arcm<strong>in</strong> −2 (g T -amplitude ratio) (PL)<br />

foreground 18


4.3 Sample selection from the color-color diagram<br />

x 10 −6<br />

7<br />

3<br />

6<br />

2.5<br />

5<br />

B − R<br />

2<br />

1.5<br />

4<br />

3<br />

Number/pix 2<br />

1<br />

2<br />

0.5<br />

1<br />

0<br />

0 0.5 1 1.5<br />

R − Z<br />

0<br />

3.5<br />

3.5<br />

3<br />

E−type<br />

3<br />

2.5<br />

2.5<br />

B − R<br />

2<br />

1.5<br />

2<br />

1.5<br />

redshift<br />

1<br />

S0<br />

0.5<br />

Sa<br />

Sd<br />

0<br />

−0.5 0 0.5 1 1.5 2<br />

R − Z<br />

1<br />

0.5<br />

0<br />

Figure 4.1 – Top: Number density <strong>in</strong> B J − R C vs. R C − z ′ CC space. The four dist<strong>in</strong>ct<br />

density peaks are shown to be different galaxy populations - the reddest peak <strong>in</strong> the upper<br />

right corner <strong>of</strong> the plots (dashed white l<strong>in</strong>e) depicts the overdensity <strong>of</strong> cluster galaxies,<br />

whose colors lay on the red sequence; the middle peak ly<strong>in</strong>g blueward <strong>of</strong> the cluster<br />

comprises ma<strong>in</strong>ly foreground galaxies (solid white l<strong>in</strong>e); the two peaks <strong>in</strong> the bottom part<br />

(bluest <strong>in</strong> B J −R C ) can be demonstrated to comprise <strong>of</strong> blue <strong>and</strong> red background galaxies.<br />

Together, the red+blue galaxies will serve as our “reference” background sample for WL<br />

purposes. Bottom: B J − R C vs. R C − z ′ CC diagram, show<strong>in</strong>g the distribution <strong>of</strong> galaxies<br />

<strong>in</strong> A370. Marked are the selected foreground sample (gray) <strong>and</strong> background samples:<br />

orange (orange), green (green), red (red), blue (blue) <strong>and</strong> dropout (magenta) background<br />

galaxies, selected to <strong>in</strong>clude galaxies ly<strong>in</strong>g away from the cluster <strong>and</strong> foreground regions.<br />

Overlaid are synthetic color tracks <strong>in</strong>clud<strong>in</strong>g evolution, calculated with the Galev code for<br />

an elliptical, S0, Sa <strong>and</strong> Sd type models.


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

4.4 Weak lens<strong>in</strong>g measurements<br />

To make the WL catalogs, we use the IMCAT package developed by N.<br />

Kaiser 7 to perform object detection <strong>and</strong> shape measurements, follow<strong>in</strong>g the<br />

formalism outl<strong>in</strong>ed <strong>in</strong> Kaiser, Squires, & Broadhurst (1995, hereafter KSB).<br />

Our analysis pipel<strong>in</strong>e is described <strong>in</strong> Umetsu et al. (2010). We have tested<br />

our shape measurement <strong>and</strong> object selection pipel<strong>in</strong>e us<strong>in</strong>g STEP (Heymans<br />

et al. 2006) data <strong>of</strong> mock ground-based observations (see Umetsu et al. 2010,<br />

§ 3.2). Full details <strong>of</strong> the methods are presented <strong>in</strong> Umetsu & Broadhurst<br />

(2008), Umetsu et al. (2009) <strong>and</strong> Umetsu et al. (2010).<br />

The shape distortion <strong>of</strong> an object is described by the complex reducedshear,<br />

g = g 1 + ig 2 , where the reduced-shear is def<strong>in</strong>ed as:<br />

g α ≡ γ α /(1 − κ). (4.1)<br />

The tangential component g T is used to obta<strong>in</strong> the azimuthally averaged<br />

distortion due to lens<strong>in</strong>g, <strong>and</strong> computed from the distortion coefficients g 1 , g 2 :<br />

g T = −(g 1 cos 2θ + g 2 s<strong>in</strong> 2θ), (4.2)<br />

where θ is the position angle <strong>of</strong> an object with respect to the cluster center,<br />

<strong>and</strong> the uncerta<strong>in</strong>ty <strong>in</strong> the g T measurement is σ T = σ g / √ 2 ≡ σ <strong>in</strong> terms <strong>of</strong> the<br />

RMS error σ g for the complex shear measurement. To improve the statistical<br />

significance <strong>of</strong> the distortion measurement, we calculate the weighted average<br />

<strong>of</strong> g T <strong>and</strong> its weighted error, as<br />

∑<br />

i<br />

〈g T (θ n )〉 =<br />

u g,i g<br />

∑ T,i<br />

, (4.3)<br />

i u g,i<br />

σ T (θ n ) =<br />

√ ∑<br />

i u2 g,i σ2 i<br />

( ∑ i u g,i) 2 , (4.4)<br />

where the <strong>in</strong>dex i runs over all <strong>of</strong> the objects located with<strong>in</strong> the n-th annulus<br />

with a median radius <strong>of</strong> θ n , <strong>and</strong> u g,i is the <strong>in</strong>verse variance weight for i-th<br />

7 http://www.ifa.hawaii.edu/~kaiser/imcat<br />

122


4.4 Weak lens<strong>in</strong>g measurements<br />

object, u g,i = 1/(σg,i 2 + α 2 ), where α 2 is the s<strong>of</strong>ten<strong>in</strong>g constant variance.<br />

We choose α = 0.4, which is a typical value <strong>of</strong> the mean RMS ¯σ g over<br />

the background sample. We accurately comb<strong>in</strong>e the photometry with weaklens<strong>in</strong>g<br />

measurements <strong>of</strong> as many galaxies as possible, discard<strong>in</strong>g objects<br />

below the see<strong>in</strong>g limit (given <strong>in</strong> table 4.1) plus two st<strong>and</strong>ard deviation <strong>of</strong><br />

that value <strong>in</strong> the detection b<strong>and</strong>, to remove stars <strong>and</strong> avoid unreliable shape<br />

measurements.<br />

4.4.1 Formalism: Relative Distortion Strength<br />

For a given source redshift z s <strong>and</strong> a fixed lens redshift z l , the observable<br />

(complex) reduced gravitational shear g(z s ) <strong>in</strong> the subcritical regime is expressed<br />

<strong>in</strong> terms <strong>of</strong> the gravitational shear γ <strong>and</strong> the lens convergence κ as<br />

(e.g., Seitz & Schneider 1997; Medez<strong>in</strong>ski et al. 2007)<br />

g(z s ) = γ(z s )(1 − κ[z s ]) −1 = γ ∞<br />

∞<br />

∑<br />

k=0<br />

w k+1 (z s )κ k ∞ (4.5)<br />

where κ ∞ <strong>and</strong> γ ∞ are the lens<strong>in</strong>g convergence <strong>and</strong> the gravitational shear,<br />

respectively, calculated for a hypothetical source at z s → ∞, <strong>and</strong> w(z s )<br />

is the lens<strong>in</strong>g strength <strong>of</strong> a source at z s relative to a source at z s → ∞,<br />

w(z s ) = D(z s )/D(z s → ∞); D(z s ) ≡ D ds /D s . Hence, the reduced shear<br />

averaged over the source redshift distribution is expressed as<br />

〈g〉 = γ ∞<br />

∞<br />

∑<br />

k=0<br />

〈w k+1 〉κ k ∞, (4.6)<br />

where 〈w k 〉 is def<strong>in</strong>ed such that<br />

〈w k 〉 ≡<br />

∫<br />

dzs N(z s )w k (z s )<br />

∫<br />

dz N(zs )<br />

(4.7)<br />

with the redshift distribution N(z s ). In the WL limit where |κ ∞ |, |γ| ∞ ≪ 1,<br />

then<br />

〈g〉 ≈ 〈w〉γ ∞ = 〈γ〉. (4.8)<br />

123


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

Thus, the mean reduced shear is simply proportional to the mean lens<strong>in</strong>g<br />

strength, 〈w〉 ∝ 〈D〉. The next order approximation is<br />

〈g〉 ≈ 〈γ〉 (1 + f w 〈κ〉) ≈<br />

〈γ〉<br />

1 − f w 〈κ〉 , (4.9)<br />

where f w ≡ 〈w 2 〉/〈w〉 2 is a redshift-moment ratio <strong>of</strong> the order <strong>of</strong> unity (Seitz<br />

& Schneider 1997).<br />

S<strong>in</strong>ce the tangential distortion signal, g T , is a function <strong>of</strong> cluster radius,<br />

we first decompose the tangential distortion pr<strong>of</strong>ile <strong>of</strong> our background sample<br />

(B), def<strong>in</strong>ed above as our reference (see § 4.3), <strong>in</strong>to the follow<strong>in</strong>g form:<br />

g T,B (θ) = a B × θ −b B<br />

, (4.10)<br />

where the radial shape <strong>of</strong> g T (θ) is assumed to be a s<strong>in</strong>gle power-law with a<br />

power <strong>in</strong>dex b B , <strong>and</strong> a B represents the distortion amplitude <strong>of</strong> our reference<br />

background. In practice, we fit the outer pr<strong>of</strong>ile <strong>of</strong> g T (θ), exclud<strong>in</strong>g the nonl<strong>in</strong>ear<br />

regime (θ 1), to the power-law model, constra<strong>in</strong><strong>in</strong>g simultaneously<br />

the distortion amplitude a B <strong>and</strong> the outer slope, b B . Next, for each <strong>of</strong> our<br />

other def<strong>in</strong>ed samples, we fit a power law with the same slope b i = b B , but<br />

allow the amplitude a i to vary:<br />

g T,i (θ) = a i × θ −b B<br />

. (4.11)<br />

Therefore, if we calculate the lens<strong>in</strong>g signal <strong>of</strong> i-th sample relative to the<br />

reference background (B),<br />

Γ i ≡ g T,i (θ)/g T,B (θ) = a i /a B . (4.12)<br />

From equation (4.8), we obta<strong>in</strong> the follow<strong>in</strong>g expression <strong>in</strong> the WL approximation<br />

(|〈κ〉|, |〈γ〉| ≪ 1):<br />

Γ i = a i /a B ≈ 〈w〉 i /〈w〉 B = 〈D〉 i /〈D〉 B , (4.13)<br />

where 〈 〉 i (i = 1, 2, ..., B) represents averag<strong>in</strong>g over the redshift distribu-<br />

124


4.5 Results<br />

tion N i (z s ) <strong>of</strong> i-th galaxy sample. The relative distortion strength Γ i can<br />

be regarded as a function <strong>of</strong> the discrete background sample i with the redshift<br />

distribution N i (z s ), which is observationally available <strong>and</strong> calibrated by<br />

deep, multi-b<strong>and</strong> blank surveys such as the COSMOS survey. For a given<br />

cosmological model, one can readily construct its theoretical prediction Γ i<br />

(i = 1, 2, ..., B) us<strong>in</strong>g a set <strong>of</strong> redshift distribution functions N i (z s ). The<br />

function Γ i can be formally labeled by its mean redshift<br />

∫<br />

〈z s 〉 i ≡<br />

∫<br />

dz s N i (z s ) z s /<br />

dz s N i (z s ) (4.14)<br />

which is <strong>in</strong>dependent <strong>of</strong> the cosmological model.<br />

To the next order <strong>of</strong> approximation, the distortion amplitude ratio is<br />

written as (Appendix B <strong>of</strong> Medez<strong>in</strong>ski et al. 2007)<br />

Γ i = 〈D〉 i<br />

〈D〉 B<br />

{<br />

1 + (fw,i 〈w〉 i − f w,B 〈w〉 B ) κ ∞ (θ) + O(κ 2 ∞) } (4.15)<br />

with f w,i ≡ 〈w 2 〉 i /〈w〉 2 i <strong>and</strong> f w,B ≡ 〈w 2 〉 B /〈w〉 2 B . The next order correction<br />

term is proportional to (f w,i 〈w〉 i − f w,B 〈w〉 B )κ ∞ (θ), which is much smaller<br />

than unity for the galaxy samples <strong>of</strong> our <strong>in</strong>terest <strong>in</strong> the mildly nonl<strong>in</strong>ear<br />

regime (θ 1).<br />

We thus simply adopt equation (4.13) obta<strong>in</strong>ed <strong>in</strong> the<br />

WL approximation. This can be further justified by the fact that the slope<br />

parameter b B is constra<strong>in</strong>ed by a least χ 2 fit to the outer distortion pr<strong>of</strong>ile.<br />

The mean weighted cluster radius 〈θ〉 ≡ ∑ i u g,iθ i / ∑ i u g,i used for a fit is<br />

〈θ〉 ∼ 10 − 11 arcm<strong>in</strong> for our clusters, where the weak lens<strong>in</strong>g approximation<br />

is valid.<br />

4.5 Results<br />

4.5.1 Weak lens<strong>in</strong>g pr<strong>of</strong>iles<br />

In the background <strong>of</strong> A370 a reference background sample has been def<strong>in</strong>ed<br />

(expla<strong>in</strong>ed above <strong>in</strong> § 4.3). The WL tangential distortion, g T , vs. distance<br />

125


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

χ 2 /d<strong>of</strong> = 19/8<br />

0.6<br />

g T<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1 2 5 10<br />

θ [arcm<strong>in</strong>]<br />

Figure 4.2 – Tangential distortion g T vs. distance from cluster center for A370 reference<br />

background samples. Overlaid is the power-law fit (dashed black l<strong>in</strong>e) with 1−σ confidence<br />

levels (shaded region) <strong>and</strong> the PL-fit χ 2 is <strong>in</strong>dicated.<br />

from cluster center, θ, is plotted <strong>in</strong> Fig. 4.2 (black crosses). The reference<br />

background sample is fitted by a power-law accord<strong>in</strong>g to Eq. 4.10, but only<br />

<strong>in</strong> the WL regime, i.e., outside θ 1 ′ . The fit is estimated us<strong>in</strong>g two ways –<br />

we fit the entire sample dataset, weight<strong>in</strong>g each galaxy g T,i by u g,i (see § 4.4),<br />

<strong>and</strong> we also fit the b<strong>in</strong>ned g T pr<strong>of</strong>ile, 〈g T (θ n )〉, weight<strong>in</strong>g by the b<strong>in</strong> error,<br />

1/σ 2 T (θ n ). We f<strong>in</strong>d good consistency between the two fitt<strong>in</strong>g schemes. The<br />

goodness-<strong>of</strong>-fit χ 2 values <strong>of</strong> the b<strong>in</strong>ned fit are displayed next to each powerlaw<br />

fit, <strong>and</strong> also <strong>in</strong> Table 4.2. As can be seen, a simple power-law serves as<br />

a reasonable fit <strong>in</strong> all cases.<br />

For each <strong>of</strong> our def<strong>in</strong>ed samples (foreground, orange, green, red, blue<br />

<strong>and</strong> dropouts) we aga<strong>in</strong> plot g T vs. radius <strong>in</strong> Figure 4.4 (top: foreground,<br />

orange, green, red, blue bright samples, bottom: green, red, blue dropout<br />

fa<strong>in</strong>t samples). We fit each sample with the same power-law <strong>in</strong>dex, b B , given<br />

by its relevant reference background (the sample fit is shown as dashed black<br />

l<strong>in</strong>e with 1 − σ confidence bounds, <strong>and</strong> the reference background fit is also<br />

shown as a dotted l<strong>in</strong>e). The WL amplitude <strong>of</strong> each sample relative to the<br />

reference background is given <strong>in</strong> each panel as Γ i ≡ a i /a B (as def<strong>in</strong>ed by<br />

Eq. 4.12) <strong>and</strong> detailed <strong>in</strong> Table 4.2. We see that <strong>in</strong>deed, for the foreground<br />

126


4.5 Results<br />

n [arcm<strong>in</strong> −2 ]<br />

10 1<br />

10 0<br />

θ [arcm<strong>in</strong>]<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Figure 4.3 – Galaxy surface number density vs. radius for A370 foreground sample (gray<br />

triangles), orange (orange diamonds), green (green pentagrams), red (red squares), blue<br />

(blue circles) <strong>and</strong> dropout (magenta hexagrams) background samples.<br />

samples, the g T (θ) pr<strong>of</strong>ile agrees with zero throughout, <strong>and</strong> gives a relative<br />

WL amplitude <strong>of</strong> zero.<br />

As another consistency check, we plot the galaxy surface number density<br />

vs. radius for A370 samples <strong>in</strong> Figure. 4.3. As can be seen, no cluster<strong>in</strong>g is<br />

observed toward the center for any <strong>of</strong> the samples, which demonstrate that<br />

there is no contam<strong>in</strong>ation by cluster members <strong>in</strong> the samples compris<strong>in</strong>g<br />

only background members. The foreground sample (gray triangles) shows<br />

a modest <strong>in</strong>crease <strong>in</strong> number density (factor <strong>of</strong> 2 <strong>in</strong>crease from θ = 20 to<br />

θ = 2) compared to the cluster, despite the exclusion <strong>of</strong> the cluster earlytype<br />

galaxies by colour. Bluer later-type cluster members are to be expected<br />

here given the redshift w<strong>in</strong>dow sampled by reference to Figure 4.6, which<br />

shows that the tail <strong>of</strong> the distribution reaches just beyond the redshift <strong>of</strong><br />

A370 § 4.5.2).<br />

4.5.2 COSMOS photometric redshifts<br />

To estimate the respective depths <strong>of</strong> the different samples def<strong>in</strong>ed above from<br />

our Subaru photometry, we make use <strong>of</strong> the accurate photometric redshifts<br />

127


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

g T<br />

g T<br />

g T<br />

g T<br />

g T<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

θ [arcm<strong>in</strong>]<br />

θ [arcm<strong>in</strong>]<br />

θ [arcm<strong>in</strong>]<br />

θ [arcm<strong>in</strong>]<br />

1 2 5 10<br />

θ [arcm<strong>in</strong>]<br />

χ 2 Γ=−0.04±0.1<br />

/d<strong>of</strong> = 13/6<br />

χ 2 Γ=0.41±0.2<br />

/d<strong>of</strong> = 1/6<br />

χ 2 Γ=0.85±0.2<br />

/d<strong>of</strong> = 11/6<br />

χ 2 Γ=0.87±0.1<br />

/d<strong>of</strong> = 17/8<br />

χ 2 Γ=0.95±0.2<br />

/d<strong>of</strong> = 6/8<br />

g T<br />

g T<br />

g T<br />

g T<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

1<br />

0.5<br />

0<br />

θ [arcm<strong>in</strong>]<br />

θ [arcm<strong>in</strong>]<br />

θ [arcm<strong>in</strong>]<br />

1 2 5 10<br />

θ [arcm<strong>in</strong>]<br />

χ 2 Γ=0.88±0.2<br />

/d<strong>of</strong> = 6/7<br />

χ 2 Γ=1±0.1<br />

/d<strong>of</strong> = 27/8<br />

χ 2 Γ=1.1±0.2<br />

/d<strong>of</strong> = 23/8<br />

χ 2 Γ=1.3±0.2<br />

/d<strong>of</strong> = 13/8<br />

Figure 4.4 – g T vs. cluster radius for A370 bright samples (top: foreground, orange,<br />

green, red & blue) <strong>and</strong> fa<strong>in</strong>t (bottom: green, red, blue & dropouts), where the fixed<br />

power-law fit is overlaid (dashed black l<strong>in</strong>e) with 1 − σ confidence levels (shaded region).<br />

Also plotted is the power-law fit <strong>of</strong> the equivalent “reference” background sample (dotted<br />

curve). In each case the result<strong>in</strong>g normalized g T amplitude ratio, Γ, is denoted next to<br />

the pr<strong>of</strong>ile.


4.5 Results<br />

3.5<br />

3<br />

2.5<br />

4<br />

3.5<br />

3<br />

B − R<br />

2<br />

1.5<br />

2.5<br />

2<br />

redshift z<br />

1<br />

0.5<br />

0<br />

−0.5 0 0.5 1 1.5 2<br />

R − z<br />

1.5<br />

1<br />

0.5<br />

Figure 4.5 – Left: B J − R C vs. R C − z ′ CC diagram, show<strong>in</strong>g the distribution <strong>of</strong> galaxies<br />

<strong>in</strong> COSMOS field. Apply<strong>in</strong>g the same CC-cuts as our selection for A370, we def<strong>in</strong>e galaxy<br />

samples: foreground (gray), orange (orange) ,green (green), red (red), blue (blue), <strong>and</strong><br />

dropout (magenta) galaxies, <strong>in</strong> order to estimate the mean redshifts <strong>and</strong> mean depths<br />

<strong>of</strong> these samples us<strong>in</strong>g COSMOS photo-z’s. Right: Average COSMOS redshift <strong>in</strong> CC<br />

b<strong>in</strong>s. Overlaid are the boundaries <strong>of</strong> the foreground (th<strong>in</strong> dashed gray l<strong>in</strong>e), orange(thick<br />

dotted-dashed orange l<strong>in</strong>e), green (th<strong>in</strong> solid green l<strong>in</strong>e), red (thick dashed red l<strong>in</strong>e), blue<br />

(th<strong>in</strong> dotted-dashed blue l<strong>in</strong>e) <strong>and</strong> dropout (thick solid magenta l<strong>in</strong>e) samples selected <strong>in</strong><br />

the COSMOS field accord<strong>in</strong>g to A370 CC-cuts. Evidently, different regions <strong>of</strong> CC space<br />

correspond to different redshift populations <strong>of</strong> galaxies. Most notably, The top left corner<br />

denotes dropout galaxies <strong>of</strong> z 3.5, correspond<strong>in</strong>g well to our selection <strong>of</strong> highly distorted<br />

dropout galaxies.


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

derived for the well studied multi-b<strong>and</strong> field survey, COSMOS (Capak et al.<br />

2007). For COSMOS, photometric redshifts have been derived by Ilbert et al.<br />

(2009) us<strong>in</strong>g 30 b<strong>and</strong>s <strong>in</strong> the UV to mid-IR. S<strong>in</strong>ce the COSMOS photometry<br />

does not cover the Subaru R C b<strong>and</strong>, we estimate R C -b<strong>and</strong> magnitudes for<br />

it. For this we use the HyperZ (Bolzonella et al. 2000) template fitt<strong>in</strong>g code<br />

to obta<strong>in</strong> the best-fitt<strong>in</strong>g spectral template for each galaxy, from which the<br />

R C magnitude is derived with the transmission curve <strong>of</strong> the Subaru R C -b<strong>and</strong><br />

filter (see Umetsu et al. 2010).<br />

We then select samples by apply<strong>in</strong>g the same CC/magnitude limits as<br />

we did above for A370. This is shown <strong>in</strong> Fig. 4.5 (left) for the COSMOS<br />

catalog <strong>and</strong> plotted <strong>in</strong> terms <strong>of</strong> the same CC plane as A370. The color<br />

distribution <strong>of</strong> COSMOS field galaxies seen <strong>in</strong> this B, R, z ′ CC-space is very<br />

similar to that <strong>of</strong> A370, display<strong>in</strong>g the same morphology, <strong>in</strong>clud<strong>in</strong>g red, blue<br />

<strong>and</strong> dropout populations, but without the density peak associated with the<br />

massive cluster A370. We also show how redshift varies <strong>in</strong> this CC-plane by<br />

calculat<strong>in</strong>g the mean photo-z redshift from COSMOS <strong>in</strong> f<strong>in</strong>e b<strong>in</strong>s over the CC<br />

plane (Fig. 4.5, right), with the samples boundaries displayed as well. This<br />

demonstrates that the ma<strong>in</strong> overdensity <strong>in</strong> the CC plane near B J − R C ∼ 1<br />

<strong>and</strong> R C − z ′ ∼ 0.3 has a mean redshift <strong>of</strong> around z 0.5, which agrees with<br />

our estimation for A370 where we found very little WL signal imply<strong>in</strong>g these<br />

object lie predom<strong>in</strong>antly <strong>in</strong> the foreground <strong>of</strong> the cluster. We also see from<br />

this figure that the region where we picked “red” galaxies corresponds to<br />

z ∼ 1 − 1.5, <strong>and</strong> the “blue” galaxies occupy a region <strong>of</strong> mean redshift around<br />

z ∼ 2. Most notably, the top left corner <strong>of</strong> “dropout” galaxies corresponds<br />

to high-z with z 3.5. We further plot the redshift distribution <strong>of</strong> all the<br />

samples <strong>in</strong> Fig. 4.6. We calculate the median redshift <strong>of</strong> each sample <strong>and</strong><br />

summarized <strong>in</strong> Table 4.2.<br />

However, if we look at the distribution <strong>of</strong> COSMOS redshifts <strong>of</strong> the<br />

dropout sample (Fig. 4.7, red), we f<strong>in</strong>d it is somewhat double-peaked, with<br />

most galaxies ly<strong>in</strong>g around z ∼ 3.5, but a significant fraction identified as<br />

hav<strong>in</strong>g z ∼ 0.4. S<strong>in</strong>ce we are certa<strong>in</strong> most <strong>of</strong> the galaxies <strong>in</strong> this region are<br />

<strong>in</strong> fact high redshift dropout galaxies, justified by the apparent high WL distortions<br />

measured for these galaxies (see Fig. 4.4) <strong>and</strong> by reference to deep<br />

130


4.5 Results<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

foreground<br />

orange<br />

green−b<br />

green−f<br />

red−b<br />

red−f<br />

blue−b<br />

blue−f<br />

drops<br />

N(z)<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

z<br />

Figure 4.6 – Redshift distribution <strong>of</strong> all A370 samples: foreground (dashed gray), orange<br />

(dotted-dashed orange), green (green) bright (solid) <strong>and</strong> fa<strong>in</strong>t (dashed), red (red) bright<br />

(solid) <strong>and</strong> fa<strong>in</strong>t (dashed), blue (blue) bright (solid) <strong>and</strong> fa<strong>in</strong>t (dashed), <strong>and</strong> dropout<br />

(dotted-dashed magenta) us<strong>in</strong>g COSMOS photo-z’s.<br />

Figure 4.7 – Redshift distribution <strong>of</strong> the dropout-selected sample us<strong>in</strong>g COSMOS photoz’s<br />

(light red) <strong>and</strong> us<strong>in</strong>g GOODS-MUSIC photo-z’s (dark blue). The low-z peak seen more<br />

notably from the COSMOS photo-z’s is most likely due to misclassified galaxy redshifts,<br />

supported by the smaller numbers found when us<strong>in</strong>g the GOODS-MUSIC photo-z catalog.


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

spectroscopic work <strong>in</strong> this ris<strong>in</strong>g plume <strong>of</strong> “dropout” galaxies (Steidel et al.<br />

1999), we may conclude the low redshifts assigned to some <strong>of</strong> these galaxies<br />

may be misclassified as low redshift early type/dusty galaxies <strong>in</strong> the photo-z<br />

catalog <strong>of</strong> the COSMOS field. This is not surpris<strong>in</strong>g, s<strong>in</strong>ce at fa<strong>in</strong>t magnitudes<br />

the COSMOS photo-z have a relative high catastrophic failure rate<br />

(Ilbert et al. 2009).<br />

We further exam<strong>in</strong>e this issue us<strong>in</strong>g the somewhat deeper GOODS-MUSIC<br />

catalog (Grazian et al. 2006; Sant<strong>in</strong>i et al. 2009), which has 15 b<strong>and</strong>s, <strong>in</strong>clud<strong>in</strong>g<br />

high quality ACS photometry (GOODS-S) <strong>and</strong> deep IRAC imag<strong>in</strong>g<br />

which is very helpful <strong>in</strong> reduc<strong>in</strong>g the outlier rate a high-z. Us<strong>in</strong>g the z ′ -b<strong>and</strong><br />

selected GOODS-MUSIC photo-z, we derive a spectral classification for each<br />

galaxy us<strong>in</strong>g a library <strong>of</strong> ∼ 200 PEGASE (Fioc & Rocca-Volmerange 1997)<br />

templates very similar to that described <strong>in</strong> Grazian et al. (2006), as <strong>in</strong>cluded<br />

<strong>in</strong> the EAZY s<strong>of</strong>tware (Brammer et al. 2009), <strong>and</strong> then calculate Subaru<br />

magnitudes for all the galaxies us<strong>in</strong>g the BPZ (Benítez 2000) code.<br />

By mak<strong>in</strong>g the same CC selection, we plot the redshift distribution <strong>of</strong> the<br />

same dropout sample (Fig. 4.7, blue), but here no low-z peak is observed,<br />

<strong>and</strong> all galaxies <strong>in</strong> this region are estimated to have high redshifts, z 2.5.<br />

This comparison between COSMOS <strong>and</strong> GOODS-MUSIC redshifts allows us<br />

to securely set a conservative lower B − R limit to avoid <strong>in</strong>clusion <strong>of</strong> real<br />

low-z objects. We can thus safely assume all objects identified as low-z <strong>in</strong><br />

the COSMOS catalog are largely mistakenly classified, a po<strong>in</strong>t also made <strong>in</strong><br />

relation to this by Schrabback et al. (2010). Estimat<strong>in</strong>g the median redshift<br />

<strong>of</strong> the dropout sample gives z ≃ 3.8, a value very close to the mean redshift<br />

<strong>of</strong> all galaxies ly<strong>in</strong>g above z > 1.5 galaxies. This further demonstrates the<br />

low-z peak is a low-significance contam<strong>in</strong>ation. A further exam<strong>in</strong>ation <strong>of</strong> the<br />

photometric redshift estimation for such objects <strong>in</strong> the COSMOS field seems<br />

worthwhile <strong>in</strong> view <strong>of</strong> these results.<br />

4.5.3 Lens<strong>in</strong>g strength dependence on magnitude<br />

As another check, we plot Γ, the g T -amplitude ratio, vs. z ′ -b<strong>and</strong> magnitude<br />

for A370 selected samples, to see if there is any trend <strong>of</strong> the lens<strong>in</strong>g amplitude<br />

132


4.5 Results<br />

Γ (g T<br />

amplitude ratio)<br />

2<br />

1<br />

0<br />

−1<br />

2<br />

1<br />

0<br />

2<br />

0<br />

2<br />

03<br />

2<br />

1<br />

0<br />

20 21 22 23 24 25 26<br />

z’ [mag]<br />

Figure 4.8 – Γ, the g T amplitude ratio, vs. magnitude (z ′ b<strong>and</strong>) for A370 orange,<br />

green, red, blue <strong>and</strong> dropout galaxy samples (top to bottom). Overlaid is the lens<strong>in</strong>g<br />

depth, D ds /D s , vs. magnitude calculated from COSMOS photo-z’s for each <strong>of</strong> the samples<br />

(dashed black l<strong>in</strong>e) with 1 − σ confidence levels (shaded region).<br />

with magnitude. We also plot the mean D ds /D s as a function <strong>of</strong> magnitude<br />

(all values normalized to the reference background values) calculated <strong>in</strong> <strong>in</strong>dependent<br />

magnitude b<strong>in</strong>s for each sample us<strong>in</strong>g the COSMOS photo-z catalog.<br />

This serves as a further consistency check. Interest<strong>in</strong>gly, for the blue galaxies<br />

(<strong>and</strong> the dropout galaxies to some extent), the mean signal seems to drop<br />

slightly with fa<strong>in</strong>ter magnitudes. This trend is somewhat counter-<strong>in</strong>tuitive,<br />

s<strong>in</strong>ce we expect that fa<strong>in</strong>ter galaxies will be at higher redshifts, <strong>and</strong> therefore<br />

have on average a higher signal.<br />

The dim<strong>in</strong>ished WL signal could possibly h<strong>in</strong>t at a problem with estimat<strong>in</strong>g<br />

the WL signal from fa<strong>in</strong>t blue galaxies, which are <strong>in</strong> general quite<br />

irregular <strong>in</strong> morphology, <strong>and</strong> empirical simulations with higher space based<br />

resolution can be made to exam<strong>in</strong>e this better. The decl<strong>in</strong><strong>in</strong>g trend <strong>of</strong> the<br />

predicted D ds /D s <strong>in</strong> the case <strong>of</strong> blue galaxies, based on the COSMOS photo-z<br />

estimation, shown <strong>in</strong> Fig. 4.8 (dashed curves), could possibly po<strong>in</strong>t to a missclassification<br />

<strong>of</strong> blue galaxies with photo-z methods, a well known problem<br />

133


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

for blue galaxies, or even simply a limit<strong>in</strong>g magnitude beyond which the<br />

photo-z method fails <strong>in</strong> this catalog. We set our magnitude limits conservatively<br />

to m<strong>in</strong>imize these possible problems, with 19 < z ′ < 23 for the orange<br />

sample, 20 < z ′ < 24.5 for the green sample, 23 < z ′ < 25 for the blue sample,<br />

22 < z ′ < 26 for the red sample, <strong>and</strong> 24.5 < z ′ < 26.5 for the dropout<br />

sample.<br />

4.5.4 Lens<strong>in</strong>g strength vs. redshift<br />

We may now f<strong>in</strong>ally comb<strong>in</strong>e the WL distortion <strong>in</strong>formation with the redshift<br />

<strong>in</strong>formation for all the samples <strong>of</strong> background galaxies def<strong>in</strong>ed above. In order<br />

to compare the result<strong>in</strong>g trend with the cosmological trend, we plot Γ, the<br />

g T -amplitude ratio, aga<strong>in</strong>st median redshift, 〈z s 〉, <strong>in</strong> Fig. 4.9. Each po<strong>in</strong>t <strong>in</strong><br />

the figure represents an <strong>in</strong>dependent sample, where the first po<strong>in</strong>t represents<br />

the foreground sample <strong>in</strong> front <strong>of</strong> the cluster, <strong>and</strong> the other po<strong>in</strong>ts represent<br />

background galaxy samples. For each sample, we also calculate the median<br />

lens<strong>in</strong>g distance ratio, 〈D ds /D s 〉, for each cosmological model – ΛCDM<br />

(empty circles), E<strong>in</strong>ste<strong>in</strong>-de Sitter (crosses), <strong>and</strong> an empty universe (empty<br />

squares), us<strong>in</strong>g the COSMOS photo-z measurements <strong>of</strong> galaxies with<strong>in</strong> the<br />

same CC-magnitude boundaries def<strong>in</strong>ed for each background sample <strong>and</strong> thus<br />

obta<strong>in</strong> the predicted depth. We <strong>in</strong>terpolate between these discrete predicted<br />

values to provide the theoretical relation, D ds /D s (z) for each cosmological<br />

model. We can thus compare how the WL strength Γ agrees with predicted<br />

D ds /D s . A clear trend <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g WL amplitude is seen with redshift. A<br />

null result <strong>of</strong> no distance-redshift <strong>in</strong>crease is easily excluded with low significance<br />

– χ 2 /N = 91/8. It is evident that the WL amplitude agrees well with<br />

the theoretical relations for D ds /D s as a function <strong>of</strong> redshift, ris<strong>in</strong>g steeply<br />

beh<strong>in</strong>d the lens <strong>and</strong> saturat<strong>in</strong>g at high redshifts, albeit currently consistent<br />

with a wide range <strong>of</strong> cosmologies.<br />

134


4.5 Results<br />

1.6<br />

1.4<br />

1.2<br />

Γ (g T<br />

amplitude ratio)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

ΛCDM; χ 2 /N=3.4/8<br />

EdS; χ 2 /N=3.3/8<br />

Ω M<br />

=0,Ω Λ<br />

=0; χ 2 /N=3.5/8<br />

−0.2<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

<br />

Figure 4.9 – g T amplitude ratio, Γ, vs. redshift for A370 bright (stars) <strong>and</strong> fa<strong>in</strong>t (circles)<br />

samples. Also plotted is the lens<strong>in</strong>g depth, D ds /D s , vs. redshift for different cosmologies<br />

- ΛCDM (circles+solid l<strong>in</strong>e), E<strong>in</strong>ste<strong>in</strong>-de Sitter (crosses+dashed l<strong>in</strong>e), <strong>and</strong> an empty Universe<br />

(squares+dashed-dotted l<strong>in</strong>e) estimated us<strong>in</strong>g the COSMOS photometric redshift<br />

catalog.


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

4.6 Constra<strong>in</strong><strong>in</strong>g cosmological parameters<br />

The clear detection here <strong>of</strong> the distance-redshift relation from our WL analysis<br />

<strong>of</strong> A370, prompts the question <strong>of</strong> how many such clusters would be<br />

required <strong>in</strong> order to provide a useful cosmological constra<strong>in</strong>t. This issue has<br />

been explored more generally <strong>in</strong> the context <strong>of</strong> planned field <strong>and</strong> cluster surveys<br />

by Ja<strong>in</strong> & Taylor (2003); Taylor et al. (2007); Kitch<strong>in</strong>g et al. (2007).<br />

Taylor et al. (2007) present a detailed analysis <strong>of</strong> the sensitivity <strong>of</strong> cosmological<br />

cluster surveys to the ratio <strong>of</strong> shear values measured <strong>in</strong> <strong>in</strong>dependent<br />

redshift b<strong>in</strong>s, f<strong>in</strong>d<strong>in</strong>g that a large fraction <strong>of</strong> the potential <strong>in</strong>tegrated signal on<br />

the sky is contributed by abundant small, cluster mass range (M ≈ 10 14 M ⊙ ),<br />

but that a large contribution also comes from the largest clusters, like those<br />

studied here.<br />

Here we use an order-<strong>of</strong>-magnitude calculation to estimate how well our<br />

newly approved MCT/CLASH 8<br />

survey (P.I. M. Postman) can do <strong>in</strong> this<br />

context, for which we aim to complete very high quality WL data for approximately<br />

25 massive clusters, similar <strong>in</strong> quality to the B J R C z ′ imag<strong>in</strong>g <strong>of</strong><br />

A370.<br />

As def<strong>in</strong>ed above <strong>in</strong> Eq.(4.12), Γ, is a shear ratio statistic between any<br />

two <strong>in</strong>dependent redshift b<strong>in</strong>s summed over N cl clusters, given by:<br />

Γ ij ≈ γ i<br />

γ j<br />

= r[χ(z j)]r[χ(z i ) − χ(z l )]<br />

r[χ(z i )]r[χ(z j ) − χ(z l )] , (4.16)<br />

where r = f K (χ) is the comov<strong>in</strong>g angular diameter distance <strong>in</strong> the given<br />

curvature K, χ(z) is the comov<strong>in</strong>g distance <strong>and</strong> z l is the redshift <strong>of</strong> the<br />

lens, <strong>and</strong> Γ scales with the dark energy equation <strong>of</strong> state parameter, w, as<br />

Γ ≈ |w| −0.02 (Taylor et al. 2007). The fractional error on w is given by<br />

∆w<br />

w<br />

= 2 ( ) −1 d ln Γ σ<br />

√ e<br />

, (4.17)<br />

γ t d ln w Nb<br />

where γ T is the typical mean tangential shear <strong>of</strong> each cluster, <strong>and</strong> σ e = 0.3 is<br />

the measured <strong>in</strong>tr<strong>in</strong>sic scatter <strong>in</strong> galaxy ellipticity per mode (KSB), <strong>and</strong> N b<br />

8 http://www.stsci.edu/~postman/CLASH/<br />

136


4.7 Discussion <strong>and</strong> conclusions<br />

is the total number <strong>of</strong> galaxies summed up beh<strong>in</strong>d all the clusters co-added<br />

for this purpose.<br />

Assum<strong>in</strong>g γ ≈ 0.05 <strong>and</strong> N b ≈ 1.25 × 10 6 , summed over the available<br />

background for 25 clusters, (tak<strong>in</strong>g A370 as our guide to the number <strong>of</strong><br />

background galaxies detected per cluster) we f<strong>in</strong>d the expected precision on w<br />

from our sample is ∆w ≈ 0.6. While this seems a relatively large uncerta<strong>in</strong>ty,<br />

the first application <strong>of</strong> the method by Kitch<strong>in</strong>g et al. (2007) suggests that the<br />

error distribution is non-Gaussian, with a rather sharp cut-<strong>of</strong>f at high values<br />

<strong>of</strong> w plac<strong>in</strong>g a relatively tight upper limit. Other geometric probes currently<br />

do not succeed much better than this <strong>in</strong>dividually, e.g., from Baryon acoustic<br />

oscillations <strong>and</strong> SN-Ia, ∆w ≈ 0.3. Furthermore, the shear-ratio test has a<br />

different degeneracy with respect to the cosmological parameters to other<br />

probes, mak<strong>in</strong>g even a crude measurement worthwhile.<br />

4.7 Discussion <strong>and</strong> conclusions<br />

Us<strong>in</strong>g deep observational data, the dependence <strong>of</strong> the amplitude <strong>of</strong> WL with<br />

source distance has been measured for the massive galaxy cluster A370, us<strong>in</strong>g<br />

<strong>in</strong>dependent samples <strong>of</strong> background galaxies <strong>of</strong> differ<strong>in</strong>g depths with a visible<br />

<strong>in</strong>creas<strong>in</strong>g trend. For A370 we have Subaru imag<strong>in</strong>g <strong>of</strong> relatively high quality<br />

<strong>in</strong> B, R <strong>and</strong> z ′ b<strong>and</strong>s, allow<strong>in</strong>g us to further subdivide these samples <strong>in</strong>to<br />

<strong>in</strong>dependent bright <strong>and</strong> fa<strong>in</strong>t populations. Still, small number statistics <strong>and</strong><br />

possible dilution, especially <strong>in</strong> the case <strong>of</strong> the dropout sample, may lead to<br />

large uncerta<strong>in</strong>ties <strong>and</strong> underestimated values. Our photometry comprises<br />

only three optical b<strong>and</strong>s <strong>and</strong> so we do not rely on photo-z estimates, but<br />

<strong>in</strong>stead determ<strong>in</strong>e the depth <strong>of</strong> these background populations with reference<br />

to the very well studied COSMOS <strong>and</strong> GOODS-MUSIC fields, by apply<strong>in</strong>g<br />

CC <strong>and</strong> magnitude cuts equal to that <strong>of</strong> our background populations.<br />

The trend <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g WL-amplitude with redshift uncovered here follows<br />

the expected form <strong>of</strong> the lens<strong>in</strong>g distance-redshift relation but with<br />

uncerta<strong>in</strong>ties presently too large to dist<strong>in</strong>guish between cosmologies. The<br />

137


WL Determ<strong>in</strong>ation <strong>of</strong> the Distance-Redshift Relation<br />

encourag<strong>in</strong>g results found here merit further application <strong>of</strong> this approach to<br />

a larger sample <strong>of</strong> clusters.<br />

The recently approved MCT/CLASH program will observe 25 clusters<br />

with HST ACS/WFC3, most <strong>of</strong> which have deep multi-color Subaru imag<strong>in</strong>g,<br />

so that we estimate a WL based precision on w <strong>of</strong> ∆w ≈ 0.6, but<br />

with a different degeneracy relative to other probes, complement<strong>in</strong>g exist<strong>in</strong>g<br />

methods. Comb<strong>in</strong><strong>in</strong>g this WL estimate with the distance-redshift relation<br />

from strong lens<strong>in</strong>g will provide an enhanced geometric-based cosmological<br />

constra<strong>in</strong>t.<br />

To extract the cosmological parameters from such accurate data will require<br />

further ref<strong>in</strong>ement <strong>of</strong> the method. We must take account <strong>of</strong> the greater<br />

mean depth that lens<strong>in</strong>g magnification generates whose effect on cluster lens<strong>in</strong>g<br />

has been explored <strong>in</strong> some detail previously (Broadhurst et al. 1995), <strong>and</strong><br />

also a second order correction for the surface density described <strong>in</strong> § 4.4.1.<br />

These effects, although small <strong>in</strong> terms <strong>of</strong> the lens<strong>in</strong>g amplitude, are comparable<br />

with the relatively small differences <strong>of</strong> <strong>in</strong>terest between compet<strong>in</strong>g<br />

cosmologies <strong>and</strong> thus must be explored <strong>in</strong> any serious study <strong>of</strong> cosmology<br />

with this method.<br />

138


Chapter 5<br />

Discussion<br />

5.1 Summary<br />

In this thesis, I presented a weak lens<strong>in</strong>g study <strong>of</strong> four massive galaxy clusters.<br />

I comb<strong>in</strong>ed observations from the ground-based telescope Subaru, <strong>and</strong> also<br />

from space-based HST /ACS observations for some <strong>of</strong> the cluster centers.<br />

I developed <strong>and</strong> employed new techniques to determ<strong>in</strong>e cluster mass <strong>and</strong><br />

light properties based on the weak lens<strong>in</strong>g effect measured from background<br />

galaxies, <strong>and</strong> also from the weak lens<strong>in</strong>g dilution caused by <strong>in</strong>clud<strong>in</strong>g cluster<br />

galaxies, <strong>in</strong> a new <strong>and</strong> <strong>in</strong>novative way. The deep <strong>and</strong> wide multi-b<strong>and</strong> data<br />

were used to determ<strong>in</strong>e accurate cluster mass <strong>and</strong> light pr<strong>of</strong>iles. With these<br />

detailed cluster pr<strong>of</strong>iles, I was able to make useful constra<strong>in</strong>ts on cosmological<br />

predictions <strong>of</strong> structure formation models, <strong>and</strong> better exam<strong>in</strong>e the physics.<br />

cluster environment.<br />

In Chapter 2, I showed how we utilized the color-magnitude diagram <strong>and</strong><br />

the weak lens<strong>in</strong>g signal to derive the lum<strong>in</strong>ous properties <strong>of</strong> cluster galaxies.<br />

We used the E/S0 sequence <strong>of</strong> a cluster to obta<strong>in</strong> a reliable weak lens<strong>in</strong>g signal<br />

from background galaxies ly<strong>in</strong>g redward <strong>of</strong> the sequence, uncontam<strong>in</strong>ated by<br />

cluster members. For bluer colors, both background <strong>and</strong> cluster members are<br />

present, reduc<strong>in</strong>g the distortion signal by the proportion <strong>of</strong> unlensed cluster<br />

members. The new method we have devised relies on this dilution <strong>of</strong> the<br />

139


Discussion<br />

lens<strong>in</strong>g distortion signal by unlensed cluster members was employed <strong>in</strong> turn<br />

to measure the cluster light. It was applied to deep Subaru <strong>and</strong> HST /ACS<br />

imag<strong>in</strong>g <strong>of</strong> A1689, a massive galaxy cluster at a relatively low redshift (z =<br />

0.183), which is a known strong lens. We derived radial light pr<strong>of</strong>ile <strong>of</strong> the<br />

cluster, a color pr<strong>of</strong>ile <strong>and</strong> radial lum<strong>in</strong>osity functions more reliably than<br />

the usual approach <strong>of</strong> simply subtract<strong>in</strong>g background counts. the data, r <<br />

2 h −1 Mpc, with a constant slope, d log(L)/d log(r) = −1.12±0.06, unlike the<br />

lens<strong>in</strong>g mass pr<strong>of</strong>ile which steepens cont<strong>in</strong>uously with radius. We derived the<br />

radial pr<strong>of</strong>ile <strong>of</strong> the M/L ratio, which has not been previously constra<strong>in</strong>ed<br />

<strong>in</strong> such detail, due to the difficulty <strong>of</strong> measur<strong>in</strong>g mass <strong>and</strong> light pr<strong>of</strong>iles with<br />

such accuracy <strong>and</strong> free <strong>of</strong> systematic effects. We found that M/L peaks<br />

at an <strong>in</strong>termediate radius, ∼ 100 h −1 kpc, with a somewhat high value <strong>of</strong><br />

M/L B ∼ 400h(M/L) ⊙ , <strong>and</strong> then falls at larger radius. The cluster lum<strong>in</strong>osity<br />

function was found to have a flat slope, α = −1.05 ± 0.05, <strong>in</strong>dependent <strong>of</strong><br />

radius <strong>and</strong> with no fa<strong>in</strong>t upturn to M i ′ < −12 as claimed <strong>in</strong> previous work.<br />

We established that the very bluest objects are negligibly contam<strong>in</strong>ated by<br />

the cluster (V − i ′ < 0.2), because their distortion pr<strong>of</strong>ile rises towards the<br />

center follow<strong>in</strong>g the red background, but <strong>of</strong>fset higher by ≃ 20%, consistent<br />

with the greater estimated depth <strong>of</strong> the fa<strong>in</strong>t blue galaxies, 〈z〉 ∼ 2 compared<br />

to 〈z〉 ∼ 0.85 for the red background. F<strong>in</strong>ally, we improved upon our earlier<br />

mass pr<strong>of</strong>ile by comb<strong>in</strong><strong>in</strong>g both the red <strong>and</strong> blue background populations,<br />

clearly exclud<strong>in</strong>g low-concentration CDM pr<strong>of</strong>iles.<br />

In Chapter 3 I further employed my methods to explore three massive<br />

clusters where excellent multi-b<strong>and</strong> data are available. We discovered that<br />

the color-color space can be used to better separate cluster members from the<br />

foreground <strong>and</strong> background populations beh<strong>in</strong>d clusters A1703 (z = 0.258),<br />

A370 (z = 0.375) <strong>and</strong> RXJ1347-11 (z = 0.451) imaged with Subaru. The<br />

cluster<strong>in</strong>g <strong>of</strong> cluster members reveals that they are conf<strong>in</strong>ed to a dist<strong>in</strong>ct<br />

region <strong>of</strong> CC space. A reliable background sample for weak lens<strong>in</strong>g measurements<br />

was obta<strong>in</strong>ed by select<strong>in</strong>g red background galaxies from the CC<br />

diagram whose weak lens<strong>in</strong>g signal is undiluted, <strong>and</strong> add<strong>in</strong>g to those fa<strong>in</strong>t<br />

blue galaxies, whose weak lens<strong>in</strong>g signal is <strong>in</strong> good agreement with the red<br />

galaxies. We avoided dilution <strong>of</strong> the weak lens<strong>in</strong>g signal by identify<strong>in</strong>g <strong>and</strong><br />

140


5.1 Summary<br />

exclud<strong>in</strong>g the foreground population <strong>in</strong> the CC diagram for which no cluster<strong>in</strong>g<br />

or weak lens<strong>in</strong>g signal is detected. The comb<strong>in</strong>ed red <strong>and</strong> blue samples<br />

were used to reconstruct accurate mass maps <strong>of</strong> all four clusters <strong>in</strong> a subsequent<br />

paper (Broadhurst et al. 2008). The lum<strong>in</strong>osity functions <strong>of</strong> these<br />

clusters, when corrected for dilution, showed similar fa<strong>in</strong>t-end slopes to what<br />

we found for A1689, α ≃ −1.0, with still no marked fa<strong>in</strong>t-end upturn to our<br />

limit <strong>of</strong> M R ≃ −15.0, <strong>and</strong> only a mild radial gradient <strong>of</strong> the slope. claims <strong>in</strong><br />

the literature for a dist<strong>in</strong>ctive upturn at fa<strong>in</strong>t magnitudes was thus clearly<br />

excluded, <strong>and</strong> may represent uncerta<strong>in</strong> subtraction <strong>of</strong> the steep background<br />

counts <strong>of</strong> fa<strong>in</strong>t galaxies when evaluat<strong>in</strong>g the background us<strong>in</strong>g control fields<br />

Interest<strong>in</strong>gly, here we also f<strong>in</strong>d that all our clusters show a very similar radial<br />

trend <strong>of</strong> M/L, peak<strong>in</strong>g at an <strong>in</strong>termediate radius, ≃ 0.2r vir , to a value <strong>of</strong><br />

M/L R ∼ 500 h(M/L) ⊙ <strong>and</strong> decl<strong>in</strong><strong>in</strong>g outward to a typical field value. The<br />

radial trend <strong>of</strong> galaxy colors is very mild <strong>and</strong> falls short <strong>of</strong> expla<strong>in</strong><strong>in</strong>g the observed<br />

radial trend <strong>of</strong> M/L. We concluded this behavior is likely due to the<br />

relative paucity <strong>of</strong> central late-type galaxies, whereas for the E/S0-sequence<br />

only a mild radial decl<strong>in</strong>e <strong>in</strong> M/L is found for each cluster. This may stem<br />

from disk galaxies hav<strong>in</strong>g their stellar content more susceptible to stripp<strong>in</strong>g<br />

processes than early-type galaxies, whose stars are more tightly bound.<br />

In Chapter 4 I explored the scal<strong>in</strong>g <strong>of</strong> the weak lens<strong>in</strong>g signal with source<br />

redshift. Us<strong>in</strong>g three-color Subaru imag<strong>in</strong>g <strong>of</strong> A370 we selected several <strong>in</strong>dependent<br />

samples <strong>of</strong> galaxies <strong>of</strong> differ<strong>in</strong>g depths (0.6 < z < 3.8) <strong>in</strong> the<br />

background <strong>of</strong> the cluster. Their weak lens<strong>in</strong>g amplitude vs. redshift was<br />

measured <strong>and</strong> compared to the lens<strong>in</strong>g distance-redshift relation. We def<strong>in</strong>ed<br />

the depth <strong>of</strong> lensed populations with reference to the COSMOS <strong>and</strong> GOODS<br />

fields, provid<strong>in</strong>g a consistency check <strong>of</strong> photo-z estimates over a wide range<br />

<strong>of</strong> redshifts <strong>and</strong> magnitudes. The predicted distance-redshift relation is followed<br />

well for a wide range <strong>of</strong> cosmologies, but currently without the ability<br />

to make clear dist<strong>in</strong>ction us<strong>in</strong>g results from only one cluster due to large uncerta<strong>in</strong>ties.<br />

We estimated that with a dataset as deep as that <strong>of</strong> A370, scaled<br />

to our new survey <strong>of</strong> ∼ 25 massive clusters, we should be able to provide a<br />

useful cosmological constra<strong>in</strong>t on w, <strong>of</strong> about ∆w ≈ 0.6, complement<strong>in</strong>g exist<strong>in</strong>g<br />

techniques, with distance measurements cover<strong>in</strong>g an untested redshift<br />

141


Discussion<br />

range, 1 < z < 5.<br />

5.2 Further application <strong>of</strong> the methods <strong>in</strong> other<br />

work<br />

By apply<strong>in</strong>g my methods to carefully separate <strong>and</strong> select background galaxies<br />

for a weak lens<strong>in</strong>g study, we measured distortion effects <strong>in</strong> all four massive<br />

clusters studied <strong>in</strong> my work, A1689, A1703, A370 & RXJ1347, <strong>and</strong> derived<br />

the most accurate published mass pr<strong>of</strong>iles to date (Broadhurst et al. 2008).<br />

In produc<strong>in</strong>g these pr<strong>of</strong>iles, we comb<strong>in</strong>ed the strong lens<strong>in</strong>g <strong>in</strong>formation obta<strong>in</strong>ed<br />

from sets <strong>of</strong> multiple images found <strong>in</strong> high-quality HST/ACS imag<strong>in</strong>g,<br />

with the weak lens<strong>in</strong>g distortion to background galaxies <strong>in</strong> deep, wide-field,<br />

multi-b<strong>and</strong> Subaru/Suprime-Cam imag<strong>in</strong>g. The mass pr<strong>of</strong>iles all agree with<br />

the predicted form for CDM-dom<strong>in</strong>ated halos, with cont<strong>in</strong>uously steepen<strong>in</strong>g<br />

pr<strong>of</strong>iles, consistent with the expectation that DM is cold. In detail, however,<br />

these pr<strong>of</strong>iles are somewhat more concentrated than predicted, 8 < c vir < 15<br />

(< c vir >= 10.39 ± 0.91). If this behavior proves to be typical it will require<br />

modification <strong>of</strong> the underly<strong>in</strong>g model.<br />

In (Broadhurst et al. 2008) we also exam<strong>in</strong>ed the lens<strong>in</strong>g magnification<br />

effect, seen as a depletion <strong>in</strong> the surface number density pr<strong>of</strong>iles <strong>of</strong> red background<br />

galaxies near the cluster center. The measured depletion compared<br />

to the expected depletion for the best-fitt<strong>in</strong>g NFW density pr<strong>of</strong>ile (derived<br />

from the correspond<strong>in</strong>g distortion pr<strong>of</strong>iles) were found to be consistent, which<br />

strengthens our conclusions <strong>and</strong> more importantly establishes the utility <strong>of</strong><br />

the background red galaxies for measur<strong>in</strong>g magnification. By comb<strong>in</strong><strong>in</strong>g<br />

magnification <strong>and</strong> distortion we improve upon the accuracy <strong>of</strong> lens<strong>in</strong>g mass<br />

determ<strong>in</strong>ations.<br />

Further implementation <strong>of</strong> the color-color selection method was used to<br />

study the mass structure <strong>of</strong> the galaxy cluster Cl0024+17 <strong>in</strong> Umetsu et al.<br />

(2009) <strong>and</strong> <strong>in</strong> Zitr<strong>in</strong> et al. (2009b). Based on deep Subaru BR c z ′ imag<strong>in</strong>g<br />

<strong>and</strong> our recent comprehensive strong lens<strong>in</strong>g analysis <strong>of</strong> HST/ACS/NIC3<br />

142


5.3 Future work<br />

observations we obta<strong>in</strong>ed strong+weak lens<strong>in</strong>g distortion <strong>and</strong> magnification<br />

pr<strong>of</strong>iles. Unlike previous lens<strong>in</strong>g studies <strong>of</strong> this cluster, the weak <strong>and</strong> strong<br />

lens<strong>in</strong>g were found to be <strong>in</strong> excellent agreement where the data overlap.<br />

This together with the anomalously low X-ray emission <strong>and</strong> complex <strong>in</strong>ternal<br />

dynamics strongly <strong>in</strong>dicate that this cluster system is <strong>in</strong> a post collision state,<br />

which is consistent with our mass pr<strong>of</strong>ile for a major merger occurr<strong>in</strong>g along<br />

the l<strong>in</strong>e <strong>of</strong> sight, viewed approximately 2 − 3 Gyr after impact when the<br />

gravitational potential has had time to relax <strong>in</strong> the center, but before the<br />

outer cluster region is virialized.<br />

5.3 Future work<br />

I plan to cont<strong>in</strong>ue <strong>and</strong> apply our robust approach to other X-ray (e.g., Ebel<strong>in</strong>g<br />

et al. 2001, MACS) <strong>and</strong> SZ (e.g., Staniszewski et al. 2009, SPT; Geisbüsch<br />

et al. 2005, Planck) selected clusters. Such samples are arguably less prone<br />

to selection-biases than optically-selected, <strong>and</strong> therefore may provide a more<br />

secure determ<strong>in</strong>ation <strong>of</strong> the concentration-mass relation for comparison with<br />

theoretical ΛCDM predictions.<br />

I have so far obta<strong>in</strong>ed <strong>and</strong> reduced data from the Subaru/Suprime-Cam<br />

archive, consist<strong>in</strong>g <strong>of</strong> seven MACS cluster <strong>in</strong> multiple b<strong>and</strong>s - B J , V J , R C , I C , z ′ ,<br />

<strong>and</strong> at least a dozen more MACS clusters are available <strong>in</strong> the archive. Highresolution<br />

imag<strong>in</strong>g <strong>of</strong> the central parts <strong>of</strong> the clusters will be required from<br />

space <strong>in</strong> order to determ<strong>in</strong>e the strong lens<strong>in</strong>g properties <strong>of</strong> the cores.<br />

An <strong>in</strong>tegral part <strong>of</strong> this study will be to also determ<strong>in</strong>e the light properties<br />

<strong>of</strong> these clusters us<strong>in</strong>g the dilution method I have developed. I <strong>in</strong>tend to<br />

further explore the decl<strong>in</strong><strong>in</strong>g M/L characteristic by exam<strong>in</strong><strong>in</strong>g the connection<br />

between morphology <strong>and</strong> the color-color plane. To that end higher resolution<br />

imag<strong>in</strong>g <strong>and</strong> spectroscopy <strong>of</strong> close-by (z < 0.1) clusters will aid <strong>in</strong> identify<strong>in</strong>g<br />

cluster galaxy morphologies.<br />

143


Discussion<br />

5.3.1 MCT/CLASH<br />

Our recently approved multi-cycle treasury (MCT) HST program CLASH<br />

will accurately measure the distribution <strong>of</strong> mass pr<strong>of</strong>iles from 10 kpc to beyond<br />

2 Mpc for an unbiased <strong>and</strong> representative sample <strong>of</strong> 25 relaxed galaxy<br />

clusters observed with 525 orbits to 1) def<strong>in</strong>itively derive the representative<br />

equilibrium mass pr<strong>of</strong>ile shape, <strong>and</strong> 2) robustly measure the cluster DM mass<br />

concentrations <strong>and</strong> their dispersion as a function <strong>of</strong> cluster mass <strong>and</strong> their<br />

evolution with redshift.<br />

We have selected our clusters to be relaxed on the basis <strong>of</strong> their symmetric<br />

<strong>and</strong> smooth X-ray emission (Allen et al. 2004) with no lens<strong>in</strong>g <strong>in</strong>formation<br />

used a-priori. This selection ensures that this sample <strong>of</strong> clusters is<br />

not preferentially aligned along the l<strong>in</strong>e <strong>of</strong> sight, <strong>in</strong> contrast with a purely<br />

lens<strong>in</strong>g-selected sample, where the surface mass density is, on average, biased<br />

upward along the l<strong>in</strong>e <strong>of</strong> sight by <strong>in</strong>tr<strong>in</strong>sic triaxiality (Oguri et al. 2005; Hennawi<br />

et al. 2007). We will match the characteristics <strong>of</strong> our observed cluster<br />

sample with those from simulations <strong>of</strong> relaxed DM halos (e.g., Neto et al.<br />

2007). Our study will, for the first time, place statistically significant limits<br />

on the distribution <strong>of</strong> the parameters <strong>of</strong> the DM mass pr<strong>of</strong>ile.<br />

144


References<br />

Abadi, M. G., Moore, B., & Bower, R. G. 1999, MNRAS, 308, 947<br />

Adami, C., Ilbert, O., Pelló, R., Cuill<strong>and</strong>re, J. C., Durret, F., Mazure, A.,<br />

Picat, J. P., & Ulmer, M. P. 2008, A&A, 491, 681<br />

Adami, C., Ulmer, M. P., Durret, F., Nichol, R. C., Mazure, A., Holden,<br />

B. P., Romer, A. K., & Sav<strong>in</strong>e, C. 2000, A&A, 353, 930<br />

Adelman-McCarthy, J. K. et al. 2008, ApJS, 175, 297<br />

Allen, S. W. 1998, MNRAS, 296, 392<br />

Allen, S. W., Schmidt, R. W., Ebel<strong>in</strong>g, H., Fabian, A. C., & van Speybroeck,<br />

L. 2004, MNRAS, 353, 457<br />

Andreon, S., Punzi, G., & Grado, A. 2005, MNRAS, 360, 727<br />

Arabadjis, J. S., Bautz, M. W., & Garmire, G. P. 2002, ApJ, 572, 66<br />

Arieli, Y., Rephaeli, Y., & Norman, M. L. 2008, ApJ, 683, L111<br />

Bacon, D. J., <strong>Mass</strong>ey, R. J., Refregier, A. R., & Ellis, R. S. 2003, MNRAS,<br />

344, 673<br />

Bardeau, S., Kneib, J.-P., Czoske, O., Soucail, G., Smail, I., Ebel<strong>in</strong>g, H., &<br />

Smith, G. P. 2005, A&A, 434, 433<br />

Bell, E. F., McIntosh, D. H., Katz, N., & We<strong>in</strong>berg, M. D. 2003, ApJS, 149,<br />

289<br />

Benítez, N. 2000, ApJ, 536, 571<br />

145


REFERENCES<br />

Benítez, N. et al. 2004, ApJS, 150, 1<br />

Bernste<strong>in</strong>, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P., & Wittman, D.<br />

1995, AJ, 110, 1507<br />

Bert<strong>in</strong>, E. 2006, <strong>in</strong> Astronomical Society <strong>of</strong> the Pacific Conference Series, Vol.<br />

351, Astronomical Data Analysis S<strong>of</strong>tware <strong>and</strong> Systems XV, ed. C. Gabriel,<br />

C. Arviset, D. Ponz, & S. Enrique, 112–+<br />

Bert<strong>in</strong>, E., & Arnouts, S. 1996, A&AS, 117, 393<br />

Biviano, A., & Salucci, P. 2006, A&A, 452, 75<br />

Blumenthal, G. R., Faber, S. M., Flores, R., & Primack, J. R. 1986, ApJ,<br />

301, 27<br />

Bolzonella, M., Miralles, J.-M., & Pelló, R. 2000, A&A, 363, 476<br />

Bonnet, H., Fort, B., Kneib, J., Mellier, Y., & Soucail, G. 1993, A&A, 280,<br />

L7<br />

Bouwens, R., Broadhurst, T., & Silk, J. 1998, ApJ, 506, 557<br />

Brammer, G. B. et al. 2009, ApJ, 706, L173<br />

Bravo-Alfaro, H., Cayatte, V., van Gorkom, J. H., & Balkowski, C. 2000,<br />

AJ, 119, 580<br />

Bridle, S., Kneib, J.-P., Bardeau, S., & Gull, S. 2002, <strong>in</strong> The shapes <strong>of</strong><br />

galaxies <strong>and</strong> their dark halos, Proceed<strong>in</strong>gs <strong>of</strong> the Yale Cosmology Workshop<br />

”The Shapes <strong>of</strong> <strong>Galaxies</strong> <strong>and</strong> Their Dark Matter Halos”, New Haven,<br />

Connecticut, USA, 28-30 May 2001. Edited by Priyamvada Natarajan. S<strong>in</strong>gapore:<br />

World Scientific, 2002, ISBN 9810248482, p.38, ed. P. Natarajan,<br />

38–+<br />

Broadhurst, T. et al. 2005a, ApJ, 621, 53<br />

Broadhurst, T., Takada, M., Umetsu, K., Kong, X., Arimoto, N., Chiba, M.,<br />

& Futamase, T. 2005b, ApJ, 619, L143<br />

146


REFERENCES<br />

Broadhurst, T., Umetsu, K., Medez<strong>in</strong>ski, E., Oguri, M., & Rephaeli, Y. 2008,<br />

ApJ, 685, L9<br />

Broadhurst, T. J., & Barkana, R. 2008, MNRAS, 390, 1647<br />

Broadhurst, T. J., Ellis, R. S., & Shanks, T. 1988, MNRAS, 235, 827<br />

Broadhurst, T. J., Taylor, A. N., & Peacock, J. A. 1995, ApJ, 438, 49<br />

Brown, M. L. et al. 2009, ApJ, 705, 978<br />

Brown, M. L., Taylor, A. N., Bacon, D. J., Gray, M. E., Dye, S., Meisenheimer,<br />

K., & Wolf, C. 2003, MNRAS, 341, 100<br />

Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V.,<br />

Klyp<strong>in</strong>, A. A., Primack, J. R., & Dekel, A. 2001, MNRAS, 321, 559<br />

Calzetti, D., K<strong>in</strong>ney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582<br />

Capak, P. et al. 2007, ApJS, 172, 99<br />

—. 2004, AJ, 127, 180<br />

Carlberg, R. G., Yee, H. K. C., & Ell<strong>in</strong>gson, E. 1997, ApJ, 478, 462<br />

Carlberg, R. G., Yee, H. K. C., Morris, S. L., L<strong>in</strong>, H., Hall, P. B., Patton,<br />

D. R., Sawicki, M., & Shepherd, C. W. 2001, ApJ, 552, 427<br />

Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 49, 137<br />

Clowe, D., Gonzalez, A., & Markevitch, M. 2004, ApJ, 604, 596<br />

Clowe, D., & Schneider, P. 2001, A&A, 379, 384<br />

Coe, D., Benítez, N., Sánchez, S. F., Jee, M., Bouwens, R., & Ford, H. 2006,<br />

AJ, 132, 926<br />

Colín, P., Klyp<strong>in</strong>, A. A., Kravtsov, A. V., & Khokhlov, A. M. 1999, ApJ,<br />

523, 32<br />

Corless, V. L., & K<strong>in</strong>g, L. J. 2007, MNRAS, 380, 149<br />

147


REFERENCES<br />

Crawford, S. M., Bershady, M. A., & Hoessel, J. G. 2009, ApJ, 690, 1158<br />

De Lucia, G., Kauffmann, G., Spr<strong>in</strong>gel, V., White, S. D. M., Lanzoni, B.,<br />

Stoehr, F., Tormen, G., & Yoshida, N. 2004, MNRAS, 348, 333<br />

Diaferio, A., Geller, M. J., & R<strong>in</strong>es, K. J. 2005, ApJ, 628, L97<br />

Diego, J. M., S<strong>and</strong>vik, H. B., Protopapas, P., Tegmark, M., Benítez, N., &<br />

Broadhurst, T. 2005, MNRAS, 362, 1247<br />

Dressler, A. 1978, ApJ, 223, 765<br />

—. 1980, ApJ, 236, 351<br />

Dub<strong>in</strong>ski, J., & Carlberg, R. G. 1991, ApJ, 378, 496<br />

Duffy, A. R., Schaye, J., Kay, S. T., & Dalla Vecchia, C. 2008, MNRAS, 390,<br />

L64<br />

Ebel<strong>in</strong>g, H., Edge, A. C., & <strong>Henry</strong>, J. P. 2001, ApJ, 553, 668<br />

El-Zant, A., Shlosman, I., & H<strong>of</strong>fman, Y. 2001, ApJ, 560, 636<br />

Ellis, R. S., Smail, I., Dressler, A., Couch, W. J., Oemler, A. J., Butcher, H.,<br />

& Sharples, R. M. 1997, ApJ, 483, 582<br />

Erben, T., Van Waerbeke, L., Bert<strong>in</strong>, E., Mellier, Y., & Schneider, P. 2001,<br />

A&A, 366, 717<br />

Falco, E. E., Gorenste<strong>in</strong>, M. V., & Shapiro, I. I. 1985, ApJ, 289, L1<br />

Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950<br />

Fort, B., Prieur, J. L., Mathez, G., Mellier, Y., & Soucail, G. 1988, A&A,<br />

200, L17<br />

Frye, B., Broadhurst, T., & Benítez, N. 2002, ApJ, 568, 558<br />

Fukugita, M., Futamase, T., & Kasai, M. 1990, MNRAS, 246, 24P<br />

Futamase, T. 1995, Progress <strong>of</strong> Theoretical Physics, 93, 647<br />

148


REFERENCES<br />

Gaidos, E. J. 1997, AJ, 113, 117<br />

Gao, L., White, S. D. M., Jenk<strong>in</strong>s, A., Stoehr, F., & Spr<strong>in</strong>gel, V. 2004,<br />

MNRAS, 355, 819<br />

Garilli, B., Maccagni, D., & Andreon, S. 1999, A&A, 342, 408<br />

Gavazzi, R. 2005, A&A, 443, 793<br />

Gavazzi, R., Fort, B., Mellier, Y., Pelló, R., & Dantel-Fort, M. 2003, A&A,<br />

403, 11<br />

Geisbüsch, J., Kneissl, R., & Hobson, M. 2005, MNRAS, 360, 41<br />

Ghigna, S., Moore, B., Governato, F., Lake, G., Qu<strong>in</strong>n, T., & Stadel, J. 1998,<br />

MNRAS, 300, 146<br />

—. 2000, ApJ, 544, 616<br />

Gilmore, J., & Natarajan, P. 2009, MNRAS, 396, 354<br />

Grazian, A. et al. 2006, A&A, 449, 951<br />

Gunn, J. E., & Gott, J. R. I. 1972, ApJ, 176, 1<br />

Halkola, A., Seitz, S., & Pannella, M. 2006, MNRAS, 372, 1425<br />

—. 2007, ApJ, 656, 739<br />

Hamana, T. et al. 2003, ApJ, 597, 98<br />

Hammer, F., Gioia, I. M., Shaya, E. J., Teyss<strong>and</strong>ier, P., Le Fevre, O., &<br />

Lupp<strong>in</strong>o, G. A. 1997, ApJ, 491, 477<br />

Hansen, S. M., McKay, T. A., Wechsler, R. H., Annis, J., Sheldon, E. S., &<br />

Kimball, A. 2005, ApJ, 633, 122<br />

Hattori, M., Kneib, J., & Mak<strong>in</strong>o, N. 1999, Progress <strong>of</strong> Theoretical Physics<br />

Supplement, 133, 1<br />

Hausman, M. A., & Ostriker, J. P. 1978, ApJ, 224, 320<br />

149


REFERENCES<br />

Hennawi, J. F., Dalal, N., Bode, P., & Ostriker, J. P. 2005, ArXiv Astrophysics<br />

e-pr<strong>in</strong>ts<br />

—. 2007, ApJ, 654, 714<br />

Hetterscheidt, M., Simon, P., Schirmer, M., Hildebr<strong>and</strong>t, H., Schrabback, T.,<br />

Erben, T., & Schneider, P. 2007, A&A, 468, 859<br />

Heymans, C. et al. 2006, MNRAS, 368, 1323<br />

Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636<br />

Hoekstra, H. et al. 2006, ApJ, 647, 116<br />

Homeier, N. L. et al. 2005, ApJ, 621, 651<br />

Hudson, M. J., Gwyn, S. D. J., Dahle, H., & Kaiser, N. 1998, ApJ, 503, 531<br />

Huertas-Company, M., Foex, G., Soucail, G., & Pelló, R. 2009, A&A, 505,<br />

83<br />

Ilbert, O. et al. 2009, ApJ, 690, 1236<br />

Inada, N. et al. 2003, Nature, 426, 810<br />

Ja<strong>in</strong>, B., Connolly, A., & Takada, M. 2007, J. Cosmology Astropart. Phys.,<br />

3, 13<br />

Ja<strong>in</strong>, B., & Taylor, A. 2003, Physical Review Letters, 91, 141302<br />

Jee, M. J. et al. 2009, ApJ, 704, 672<br />

Jee, M. J., White, R. L., Benítez, N., Ford, H. C., Blakeslee, J. P., Rosati,<br />

P., Demarco, R., & Ill<strong>in</strong>gworth, G. D. 2005, ApJ, 618, 46<br />

J<strong>in</strong>g, Y. P. 2000, ApJ, 535, 30<br />

J<strong>in</strong>g, Y. P., & Suto, Y. 2002, ApJ, 574, 538<br />

Jones, C., & Forman, W. 1984, ApJ, 276, 38<br />

150


REFERENCES<br />

Kaiser, N. 1995, ApJ, 439, L1<br />

Kaiser, N., & Squires, G. 1993, ApJ, 404, 441<br />

Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460<br />

Kashikawa, N. et al. 2004, PASJ, 56, 1011<br />

Katgert, P., Biviano, A., & Mazure, A. 2004, ApJ, 600, 657<br />

Kauffmann, G., Nusser, A., & Ste<strong>in</strong>metz, M. 1997, MNRAS, 286, 795<br />

Kenney, J. D. P., Tal, T., Crowl, H. H., Feldmeier, J., & Jacoby, G. H. 2008,<br />

ApJ, 687, L69<br />

K<strong>in</strong>g, I. 1962, AJ, 67, 471<br />

K<strong>in</strong>ney, A. L., Calzetti, D., Bohl<strong>in</strong>, R. C., McQuade, K., Storchi-Bergmann,<br />

T., & Schmitt, H. R. 1996, ApJ, 467, 38<br />

Kitayama, T., & Suto, Y. 1996, ApJ, 469, 480<br />

Kitch<strong>in</strong>g, T. D., Heavens, A. F., Taylor, A. N., Brown, M. L., Meisenheimer,<br />

K., Wolf, C., Gray, M. E., & Bacon, D. J. 2007, MNRAS, 376, 771<br />

Kneib, J.-P., Ellis, R. S., Smail, I., Couch, W. J., & Sharples, R. M. 1996,<br />

ApJ, 471, 643<br />

Kneib, J.-P. et al. 2003, ApJ, 598, 804<br />

Kotulla, R., Fritze, U., Weilbacher, P., & Anders, P. 2009, MNRAS, 396, 462<br />

Kronberger, T., Kapferer, W., Ferrari, C., Unterguggenberger, S., &<br />

Sch<strong>in</strong>dler, S. 2008, A&A, 481, 337<br />

Lacey, C., & Cole, S. 1993, MNRAS, 262, 627<br />

Lapi, A., & Cavaliere, A. 2009, ApJ, 695, L125<br />

Limber, D. N., & Mathews, W. G. 1960, ApJ, 132, 286<br />

151


REFERENCES<br />

Limous<strong>in</strong>, M. et al. 2007, ApJ, 668, 643<br />

Limous<strong>in</strong>, M., Sommer-Larsen, J., Natarajan, P., & Milvang-Jensen, B. 2009,<br />

ApJ, 696, 1771<br />

Lu, T. et al. 2009, ArXiv e-pr<strong>in</strong>ts<br />

Lynds, R., & Petrosian, V. 1986, <strong>in</strong> Bullet<strong>in</strong> <strong>of</strong> the American Astronomical<br />

Society, Vol. 18, Bullet<strong>in</strong> <strong>of</strong> the American Astronomical Society, 1014–+<br />

Markevitch, M., Gonzalez, A. H., Clowe, D., Vikhl<strong>in</strong><strong>in</strong>, A., Forman, W.,<br />

Jones, C., Murray, S., & Tucker, W. 2004, ApJ, 606, 819<br />

Markevitch, M., Gonzalez, A. H., David, L., Vikhl<strong>in</strong><strong>in</strong>, A., Murray, S., Forman,<br />

W., Jones, C., & Tucker, W. 2002, ApJ, 567, L27<br />

Marvel, K. B., Shukla, H., & Rhee, G. 1999, ApJS, 120, 147<br />

<strong>Mass</strong>ey, R. et al. 2007a, MNRAS, 376, 13<br />

—. 2007b, ApJS, 172, 239<br />

Medez<strong>in</strong>ski, E. et al. 2007, ApJ, 663, 717<br />

Medez<strong>in</strong>ski, E., Broadhurst, T., Umetsu, K., Oguri, M., Rephaeli, Y., &<br />

Benítez, N. 2010, MNRAS, 405, 257<br />

Miyazaki, S. et al. 2002, PASJ, 54, 833<br />

Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379,<br />

613<br />

Moore, B., Qu<strong>in</strong>n, T., Governato, F., Stadel, J., & Lake, G. 1999, MNRAS,<br />

310, 1147<br />

Nagai, D., & Kravtsov, A. V. 2005, ApJ, 618, 557<br />

Natarajan, P., Kneib, J.-P., Smail, I., Treu, T., Ellis, R., Moran, S.,<br />

Limous<strong>in</strong>, M., & Czoske, O. 2009, ApJ, 693, 970<br />

152


REFERENCES<br />

Natarajan, P., Loeb, A., Kneib, J.-P., & Smail, I. 2002, ApJ, 580, L17<br />

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563<br />

—. 1997, ApJ, 490, 493<br />

Navarro, J. F. et al. 2004, MNRAS, 349, 1039<br />

Neto, A. F. et al. 2007, MNRAS, 381, 1450<br />

Oemler, Jr., A. 1974, ApJ, 194, 1<br />

Oguri, M., & Bl<strong>and</strong>ford, R. D. 2009, MNRAS, 392, 930<br />

Oguri, M. et al. 2009, ApJ, 699, 1038<br />

—. 2004, ApJ, 605, 78<br />

Oguri, M., Takada, M., Umetsu, K., & Broadhurst, T. 2005, ApJ, 632, 841<br />

Okabe, N., Takada, M., Umetsu, K., Futamase, T., & Smith, G. P. 2009,<br />

ArXiv e-pr<strong>in</strong>ts<br />

Ouchi, M. et al. 2004, ApJ, 611, 660<br />

Paczynski, B. 1987, Nature, 325, 572<br />

Paolillo, M., Andreon, S., Longo, G., Puddu, E., Gal, R. R., Scaramella, R.,<br />

Djorgovski, S. G., & de Carvalho, R. 2001, A&A, 367, 59<br />

Perlmutter, S. et al. 1999, ApJ, 517, 565<br />

Poggianti, B. M. et al. 2009, ApJ, 697, L137<br />

Popesso, P., Biviano, A., Böhr<strong>in</strong>ger, H., & Romaniello, M. 2006, A&A, 445,<br />

29<br />

Popesso, P., Böhr<strong>in</strong>ger, H., Romaniello, M., & Voges, W. 2005, A&A, 433,<br />

415<br />

Postman, M. et al. 2005, ApJ, 623, 721<br />

153


REFERENCES<br />

Pracy, M. B., Driver, S. P., De Propris, R., Couch, W. J., & Nulsen, P. E. J.<br />

2005, MNRAS, 364, 1147<br />

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425<br />

Reed, D., Governato, F., Qu<strong>in</strong>n, T., Gardner, J., Stadel, J., & Lake, G. 2005,<br />

MNRAS, 359, 1537<br />

Reiprich, T. H., Saraz<strong>in</strong>, C. L., Kempner, J. C., & Tittley, E. 2004, ApJ,<br />

608, 179<br />

Richstone, D. O. 1975, ApJ, 200, 535<br />

Riess, A. G. et al. 1998, AJ, 116, 1009<br />

R<strong>in</strong>es, K., & Geller, M. J. 2008, AJ, 135, 1837<br />

R<strong>in</strong>es, K., Geller, M. J., Diaferio, A., Kurtz, M. J., & Jarrett, T. H. 2004,<br />

AJ, 128, 1078<br />

R<strong>in</strong>es, K., Geller, M. J., Diaferio, A., Mohr, J. J., & Wegner, G. A. 2000,<br />

AJ, 120, 2338<br />

R<strong>in</strong>es, K., Geller, M. J., Kurtz, M. J., & Diaferio, A. 2003, AJ, 126, 2152<br />

Sadeh, S., & Rephaeli, Y. 2008, MNRAS, 388, 1759<br />

Sadeh, S., Rephaeli, Y., & Silk, J. 2006, MNRAS, 368, 1583<br />

S<strong>and</strong>, D. J., Treu, T., & Ellis, R. S. 2002, ApJ, 574, L129<br />

S<strong>and</strong>, D. J., Treu, T., Smith, G. P., & Ellis, R. S. 2004, ApJ, 604, 88<br />

Sant<strong>in</strong>i, P. et al. 2009, A&A, 504, 751<br />

Schechter, P. 1976, ApJ, 203, 297<br />

Sch<strong>in</strong>dler, S. et al. 2005, A&A, 435, L25<br />

Schneider, P., & Seitz, C. 1995, A&A, 294, 411<br />

154


REFERENCES<br />

Schrabback, T. et al. 2010, A&A, 516, A63+<br />

Seitz, C., & Schneider, P. 1997, A&A, 318, 687<br />

Sharon, K. et al. 2005, ApJ, 629, L73<br />

Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323, 1<br />

Simard, L. et al. 2009, A&A, 508, 1141<br />

Smail, I., & Dick<strong>in</strong>son, M. 1995, ApJ, 455, L99+<br />

Soucail, G., Fort, B., Mellier, Y., & Picat, J. P. 1987a, A&A, 172, L14<br />

Soucail, G., Kneib, J., & Golse, G. 2004, A&A, 417, L33<br />

Soucail, G., Mellier, Y., Fort, B., Mathez, G., & Hammer, F. 1987b, A&A,<br />

184, L7<br />

Spergel, D. N. et al. 2007, ApJS, 170, 377<br />

Spr<strong>in</strong>gel, V., White, S. D. M., Tormen, G., & Kauffmann, G. 2001, MNRAS,<br />

328, 726<br />

Staniszewski, Z. et al. 2009, ApJ, 701, 32<br />

Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dick<strong>in</strong>son, M., & Pett<strong>in</strong>i,<br />

M. 1999, ApJ, 519, 1<br />

Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments on Astrophysics <strong>and</strong><br />

Space Physics, 4, 173<br />

Tasitsiomi, A., Kravtsov, A. V., Gottlöber, S., & Klyp<strong>in</strong>, A. A. 2004, ApJ,<br />

607, 125<br />

Taylor, A. N. et al. 2004, MNRAS, 353, 1176<br />

Taylor, A. N., Kitch<strong>in</strong>g, T. D., Bacon, D. J., & Heavens, A. F. 2007, MNRAS,<br />

374, 1377<br />

Tyson, J. A., & Fischer, P. 1995, ApJ, 446, L55+<br />

155


REFERENCES<br />

Umetsu, K. et al. 2009, ApJ, 694, 1643<br />

Umetsu, K., & Broadhurst, T. 2008, ApJ, 684, 177<br />

Umetsu, K., Medez<strong>in</strong>ski, E., Broadhurst, T., Zitr<strong>in</strong>, A., Okabe, N., Hsieh,<br />

B., & Molnar, S. M. 2010, ApJ, 714, 1470<br />

Van Waerbeke, L. et al. 2000, A&A, 358, 30<br />

Voit, G. M. 2005, Reviews <strong>of</strong> Modern Physics, 77, 207<br />

Vollmer, B., Beck, R., Kenney, J. D. P., & van Gorkom, J. H. 2004, AJ, 127,<br />

3375<br />

Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381<br />

Wittman, D., Tyson, J. A., Margon<strong>in</strong>er, V. E., Cohen, J. G., & Dell’Antonio,<br />

I. P. 2001, ApJ, 557, L89<br />

Wuyts, S., Franx, M., Cox, T. J., Hernquist, L., Hopk<strong>in</strong>s, P. F., Robertson,<br />

B. E., & van Dokkum, P. G. 2009, ApJ, 696, 348<br />

Yagi, M., Kashikawa, N., Sekiguchi, M., Doi, M., Yasuda, N., Shimasaku,<br />

K., & Okamura, S. 2002, AJ, 123, 66<br />

Zacharias, N., Monet, D. G., Lev<strong>in</strong>e, S. E., Urban, S. E., Gaume, R., &<br />

Wyc<strong>of</strong>f, G. L. 2004, <strong>in</strong> Bullet<strong>in</strong> <strong>of</strong> the American Astronomical Society,<br />

Vol. 36, Bullet<strong>in</strong> <strong>of</strong> the American Astronomical Society, 1418–+<br />

Zekser, K. C. et al. 2006, ApJ, 640, 639<br />

Zitr<strong>in</strong>, A., & Broadhurst, T. 2009, ApJ, 703, L132<br />

Zitr<strong>in</strong>, A., Broadhurst, T., Rephaeli, Y., & Sadeh, S. 2009a, ApJ, 707, L102<br />

Zitr<strong>in</strong>, A. et al. 2009b, MNRAS, 396, 1985<br />

Zwicky, F. 1933, Helvetica Physica Acta, 6, 110<br />

—. 1937, ApJ, 86, 217<br />

156


כפי שמתואר בפרק השלישי,‏ העבודה הורחבה לעוד שלושה צבירים,‏<br />

, A1703 z=0.258<br />

RXJ1347−11 z=0.451 ו-‏ , A370 z=0.375<br />

שצולמו עם סובארו בלפחות שלושה פילטרים.‏<br />

עם הנתונים מרובי הפילטרים הזמינים כאן,‏ השתמשתי בתרשים צבע-צבע כדי להדגים כיצד ניתן<br />

לרתום את העידוש על מנת להפריד את הגלקסיות שבצביר מהאוכלוסיות שבחזית וברקע באופן<br />

בטוח יותר,‏ ולזהות כמה אוכלוסיות רקע בעלות אופי שונה למדידת העידוש החלש.‏ לפונקציות<br />

הבהירות של כל הצבירים הללו,‏ לאחר תיקון עבור דילול,‏ יש שיפוע דומה המתאר את התפלגות<br />

≃−1.0<br />

הגלקסיות החיוורות,‏ α, ללא השתנות מעלה בקצה החיוור עד גבול בהירות הנתונים,‏<br />

, אבל עם שינוי רדיאלי קל.‏ גם כאן,‏ לכל אחד מהצבירים שלנו פרופיל יחס המסה<br />

M R<br />

≃−15.0<br />

לבהירות M/L מגיע לשיא ברדיוס אמצעי,‏<br />

r≃0.2r vir<br />

, ברמה של<br />

, 300−500 M / L R<br />

o<br />

M / L~100 M / L R<br />

o<br />

ואז נופל<br />

ברדיוס הויריאלי,‏ ערך השדה הממוצע.‏ התנהגות זו<br />

בהתמדה לעבר ערך של<br />

מחסור אינטרינזי קרוב למרכז של גלקסיות מסוג מאוחר יחסית לסוג<br />

נובעת ככל הנראה בשל הקדום יותר,‏ ואילו עבור רצף ה-‏ E/S0 רק ירידה קלה עם הרדיוס M/L נצפית עבור כל צביר.‏ זו<br />

יכולה להיות מוסברת על ידי המרה מתמשכת של גלקסיות דיסק לגלקסיות S0, דרך תהליכים של<br />

הסרת הגז וכוחות גיאות.‏ אנחנו דנים בהתנהגות זו בהקשר של סימולציות מפורטות בהן תחזיות<br />

לקריעה באמצעות כוחות גאות ניתנות כעת לבדיקה באופן מדויק עם תצפיות.‏<br />

המשרעת של העידוש החלש עולה עם היסט לאדום של המקור,‏ ופרופורציונאלית ליחס מרחקי<br />

העידוש,‏<br />

D ds<br />

/ D s<br />

, העולה בתלילות מאחורי העדשה ומגיע לרוויה בהיסט לאדום גדול.‏ יחס זה<br />

מספק,‏ באופן עקרוני,‏ דרך עצמאית למדידת פרמטרים קוסמולוגיים.‏ באמצעות התצפיות מסובארו<br />

של A370, אני חוקרת קשר זה בפרק הרביעי.‏ על ידי יישום שיטות הבחירה שפיתחתי אנחנו<br />

מפרידים ובוחרים מתוך דיאגרמת צבע-צבע עוד אוכלוסיות רקע במרחקים שונים )<br />

,( 0.6z3.8<br />

כולל מדגם בולט של גלקסיות ‏"נשירה”‏ רחוקות,‏ עם חפיפה מועטה בין הקבוצות של ההיסט<br />

לאדום.‏ אנו מודדים במדויק את משרעת העידוש שלהם,‏ תוך שאנו לוקחים בחשבון את השינוי<br />

הרדיאלי של פרופיל העידוש החלש.‏ אנחנו מגדירים את העומקים של האוכלוסיות המעודשות<br />

ביחס לסקרי השדה COSMOS ו-‏GOODS‏.‏ יחס המרחק-היסט לאדום החזוי מאושש עבור מגוון רחב<br />

של מודלים קוסמולוגים,‏ אם כי ללא יכולת להבחין בין מודלים באמצעות צביר אחד בלבד.‏ התאמת<br />

תוצאה זו לסקר CLASH החדש והמאושר שנערוך באמצעות טלסקופ החלל ‏"האבל"‏ עבור כ-‏‎25‎<br />

צבירים רגועים,‏ צפויה לספק חסם קוסמולוגי שימושי על פרמטר משוואת המצב של האנרגיה<br />

האפלה,‏ w, שישלים את הטכניקות הקיימות,‏ עם מדידות מרחק שמכסות טווח ההיסט לאדום<br />

שטרם נבדק,‏<br />

. 1z5


תקציר<br />

צבירי גלקסיות הם המבנים הקשורים כבידתית המאסיביים ביותר ביקום.‏ בורות הפוטנציאל<br />

העמוקים שלהם מסיטים את האור של גלקסיות ברקע ויוצרים תמונות מעודשות של הגלקסיות.‏<br />

עידוש כבידתי יכול לשמש ככלי אבחון כדי לקבוע את פרופילי המסה של צבירים.‏ בתחום העידוש<br />

החלש,‏ המדידה של מסת הצביר יכולה להיפגע מאוד מנוכחות של גלקסיות בצביר ובחזיתו שאינן<br />

מעודשות,‏ הגורמות לדילול האות האמיתי מהעידוש.‏ בתיזה זו,‏ אני חוקרת את מאפייני המסה והאור<br />

של צבירי גלקסיות באמצעות תצפיות של עידוש כבידתי חלש . בחלק הראשון,‏ אני מראה את<br />

החשיבות של בידוד גלקסיות הרקע מגלקסיות בחזית ובצביר למען מדידה נקייה של העידוש<br />

החלש,‏ על מנת למנוע את דילול האות.‏ הדילול עצמו משמש כדי לקבוע את תכונות האור של<br />

הצבירים.‏ המוקד השני של העבודה מראה את השימוש במדידות המפורטות כדי לקבוע את<br />

התגברות אות העידוש החלש עם ההיסט לאדום,‏ שיכול לשמש כבחן קוסמולוגי חשוב.‏<br />

לאחר מבוא לתחום צבירי הגלקסיות ועידוש כבידתי בפרק הראשון,‏ אני מדגימה את השיטות<br />

והתוצאות שקיבלתי עבור ארבעה צבירי גלקסיות מאסיביים בפרקים 2 ו-‏‎3‎‏.‏ בפרק השני אני חוקרת<br />

את הצביר<br />

A1689 z=0.183<br />

מתצפיות אופטיות עמוקות מהטלסקופ סובארו בפילטרים<br />

, V ,i '<br />

באמצעות תרשים הבהירות-צבע ואות העידוש החלש בכדי למצוא את תכונות האור של צביר<br />

הגלקסיות.‏ העיוות המשיקי של גלקסיות הכחולות יותר מאשר קו רצף גלקסיות הצביר (E/S0) נופל<br />

במהירות לכיוון מרכז הצביר ביחס לאות העידוש של גלקסיות הרקע האדומות יותר מהרצף.‏ אנו<br />

משתמשים באפקט הדילול להפיק את פרופיל האור של הצביר ואת פונקציית התפלגות בהירות<br />

גלקסיות הצביר עד לרדיוס גדול,‏ כשהיתרון של שיטה זו הוא כי לא נדרש חיסור של מניות הרקע<br />

משדה רחוק.‏ לפרופיל האור יש נטיית דעיכה קבועה,‏<br />

של הנתונים,‏<br />

באמצע,‏<br />

dlog L/dlogr=−1.12±0.06<br />

rh −1 Mpc<br />

, ואילו פרופיל המסה נהיה תלול עם הרדיוס,‏ כך ש<br />

M/L<br />

r~100h −1 kpc<br />

הגלקסיות החיוורות,‏<br />

בהירות<br />

עד לגבול<br />

מגיע לשיא<br />

. לפונקציית הבהירות של הצביר יש שיפוע שטוח המתאר את התפלגות<br />

=−1.05±0.05 ,α בלתי<br />

M i '<br />

−12<br />

גלקסיות הצביר )<br />

תלוי ברדיוס וללא התגברות בתחום החיוור עד<br />

. אנחנו מראים כי עצמים כחולים מאוד מזוהמים במידה אפסית על ידי<br />

V −i '0.2<br />

). משילוב של שתי האוכלוסיות – גלקסיות הרקע האדומות<br />

והכחולות – אנו מקבלים מדידה משופרת של פרופיל המסה כמו גם אילוצים על פרמטר ריכוזיות<br />

הצביר,‏ כשאנו שוללים בבירור פרופילי חומר אפל פחות מרוכזים.‏


עבודה זו נעשתה בהנחייתם של<br />

ד"ר טום ברודהרסט<br />

ופרופ'‏ יואל רפאלי<br />

בית הספר לפיזיקה ואסטרונומיה<br />

אוניברסיטת תל­אביב


התפלגות המסה והאור<br />

בצבירי גלקסיות<br />

חיבור לשם קבלת התואר ‏"דוקטור לפילוסופיה"‏<br />

מאת<br />

אלינור מידזינסקי<br />

הוגש לסנאט של אוניברסיטת תל­אביב<br />

תשרי תשע"א

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!