22.05.2014 Views

Chapter 6. Dynamics I: Motion Along a Line

Chapter 6. Dynamics I: Motion Along a Line

Chapter 6. Dynamics I: Motion Along a Line

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> <strong>6.</strong> <strong>Dynamics</strong> I: <strong>Motion</strong><br />

<strong>Along</strong> a <strong>Line</strong><br />

This chapter focuses on objects that<br />

move in a straight line, such as runners,<br />

bicycles, cars, planes, and rockets.<br />

Gravitational, tension, thrust, friction, and<br />

drag forces will be essential to our<br />

understanding.<br />

<strong>Chapter</strong> Goal: To learn how to solve<br />

problems about motion in a straight line.


<strong>Chapter</strong> <strong>6.</strong> <strong>Dynamics</strong> I: <strong>Motion</strong><br />

Topics:<br />

• Equilibrium<br />

<strong>Along</strong> a <strong>Line</strong><br />

• Using Newton’s Second Law<br />

• Mass, Weight, and Gravity<br />

• Friction<br />

• Drag<br />

• More Examples of Newton’s<br />

Second Law


1) Object – as a particle<br />

2) Identify all the forces<br />

3) Find the net force (vector sum of all individual forces)<br />

4) Introduce convenient co-ordinate system<br />

5) Find the acceleration of the object (second Newton’s law)<br />

6) With the known acceleration find kinematics of the object<br />

3


The First Class of Problems: Equilibrium<br />

1. Static Equilibrium: no motion (velocity = 0, then acceleration = 0 )<br />

2. Dynamical Equilibrium: no acceleration (velocity = constant)<br />

- In both cases acceleration = 0<br />

- Second Newton’s Law – Net Force = 0<br />

Static Equilibrium:<br />

Convenient co-<br />

ordinate system!!<br />

r r r r<br />

F = T + T + T<br />

=<br />

net<br />

1 2 3<br />

0<br />

− T T cosθ<br />

0<br />

1 + 3 =<br />

− T T sinθ<br />

0<br />

2 + 3 =<br />

4


Special The First Class Class of of Problems: Equilibrium<br />

1. Static Equilibrium: no motion (velocity = 0, then acceleration = 0 )<br />

2. Dynamical Equilibrium: no acceleration (velocity = constant)<br />

Dynamic Equilibrium:<br />

Convenient coordinate<br />

system!!<br />

r<br />

r<br />

r<br />

r<br />

r<br />

F = n + T + w + f<br />

=<br />

net<br />

k<br />

0<br />

k<br />

T − f − w sin θ<br />

=<br />

0<br />

f r n − w cosθ<br />

=<br />

0<br />

k<br />

Kinetic friction<br />

5


The Second Special Class of Problems: Find Equilibrium Acceleration<br />

r<br />

Important:<br />

r F net<br />

- Introduce convenient co-ordinate system!! a =<br />

m<br />

- Understand what the direction of acceleration is!!<br />

a r<br />

f r k<br />

Kinetic friction<br />

r<br />

r r<br />

r r<br />

r<br />

F = n + T + w + f =<br />

ma<br />

net<br />

T − f − w sinθ<br />

=<br />

ma<br />

k<br />

k<br />

n − w cosθ<br />

=<br />

0<br />

6


The Second Special Class of Problems: Find Equilibrium Acceleration<br />

a r<br />

f r k<br />

r<br />

r r<br />

r r<br />

r<br />

F = n + T + w + f =<br />

ma<br />

net<br />

T − f − w sinθ<br />

=<br />

ma<br />

n − w cosθ<br />

=<br />

0<br />

T = 20N<br />

is given<br />

m = 1kg ⇒ w = mg ≈ 10N<br />

is given<br />

k<br />

k<br />

r<br />

a =<br />

r<br />

F net<br />

m<br />

θ =<br />

0<br />

30<br />

is given<br />

Then:<br />

= θ<br />

= =<br />

0<br />

n = w cos = 10cos 30 =<br />

8.7N<br />

T − fk<br />

− w sinθ<br />

20 − fk<br />

−<br />

5<br />

a<br />

= =<br />

m<br />

1<br />

?<br />

7


Friction<br />

Static friction:<br />

f ≤ f = µ n<br />

s<br />

s s,max<br />

s<br />

µ - coefficient of static<br />

friction (it is usually<br />

given in the problem)<br />

n<br />

- normal force<br />

Kinetic friction:<br />

k k<br />

f<br />

= µ n<br />

k<br />

µ - coefficient of kinetic<br />

friction (it is usually<br />

given in the problem)<br />

Rolling friction:<br />

r r<br />

f<br />

= µ n<br />

r<br />

µ - coefficient of rolling<br />

friction (it is usually<br />

given in the problem)<br />

µ > µ ><br />

µ<br />

Usually: s k r<br />

very small<br />

8


Friction<br />

Static friction:<br />

fs ≤ fs,max<br />

= µ<br />

sn<br />

s<br />

n<br />

µ - coefficient of static friction<br />

- normal force<br />

Find the maximum tension,<br />

T max<br />

y<br />

Equilibrium:<br />

r<br />

r<br />

r<br />

r<br />

r<br />

F = n + w + T + f<br />

=<br />

net<br />

n<br />

− w<br />

=<br />

0<br />

s<br />

0<br />

x<br />

n r<br />

T<br />

r<br />

weight,<br />

friction<br />

tension<br />

− f<br />

+ T<br />

=<br />

s<br />

n = w<br />

f = T ≤<br />

f<br />

0<br />

s s,max<br />

f r w r<br />

s<br />

f = µ n =<br />

µ<br />

w<br />

s,max<br />

s s<br />

normal<br />

Condition of equilibrium:<br />

T<br />

≤<br />

µ w<br />

s<br />

T<br />

max<br />

=<br />

µ w<br />

s<br />

9


Friction<br />

Static friction:<br />

Find the maximum tension,<br />

Equilibrium:<br />

r<br />

r<br />

r<br />

r<br />

r<br />

F = n + w + T + f<br />

=<br />

0<br />

net<br />

n<br />

− w<br />

=<br />

0<br />

− f<br />

+ T<br />

=<br />

s<br />

0<br />

s<br />

fs ≤ fs,max<br />

= µ<br />

sn<br />

s<br />

n<br />

T max<br />

f = µ n =<br />

µ<br />

w<br />

s,max<br />

s s<br />

f = T ≤<br />

f<br />

s s,max<br />

µ - coefficient of static friction<br />

- normal force<br />

fs<br />

= T<br />

y<br />

f r s<br />

x<br />

n r<br />

w r<br />

T r<br />

Condition of equilibrium:<br />

T ≤ µ w<br />

T<br />

max<br />

s<br />

= µ w<br />

s<br />

f<br />

s,max<br />

= µ w<br />

s<br />

T max<br />

T<br />

10


Kinetic friction:<br />

k k<br />

f<br />

µ n<br />

Friction<br />

= k<br />

µ - coefficient of kinetic friction<br />

n<br />

- normal force<br />

Find acceleration,<br />

( T > T )<br />

max<br />

y<br />

weight,<br />

r<br />

r r r<br />

r<br />

r<br />

F = n + w + T + f =<br />

ma<br />

net<br />

n<br />

− w<br />

=<br />

0<br />

− f + T =<br />

ma<br />

k<br />

k<br />

f r s<br />

x<br />

n r<br />

w r<br />

a r<br />

T<br />

r<br />

friction<br />

tension<br />

n<br />

= w then fk = µ kn =<br />

µ<br />

kw<br />

normal<br />

a<br />

T −<br />

fk<br />

T −<br />

µ<br />

kw T<br />

= = = −<br />

µ<br />

k<br />

g<br />

m m m<br />

11


Friction<br />

Static friction:<br />

fs ≤ fs,max<br />

= µ<br />

sn<br />

s<br />

n<br />

µ - coefficient of static friction<br />

- normal force<br />

Find the maximum angle, θ max<br />

Equilibrium:<br />

r r<br />

r<br />

r<br />

F = n + w + f<br />

=<br />

net<br />

n − w cos θ<br />

=<br />

0<br />

s<br />

0<br />

− f + w sinθ<br />

=<br />

0<br />

s<br />

n = w cosθ<br />

f = w sinθ<br />

≤<br />

f<br />

s<br />

s,max<br />

f = µ n =<br />

µ w cosθ<br />

s,max<br />

s s<br />

Condition of equilibrium:<br />

w sin<br />

θ ≤<br />

µ w sin cos(theta)<br />

θ<br />

tan<br />

θ ≤<br />

µ<br />

tan<br />

θ =<br />

µ<br />

max<br />

s<br />

s<br />

s<br />

12


Friction<br />

Static friction:<br />

fs ≤ fs,max<br />

= µ<br />

sn<br />

s<br />

n<br />

µ - coefficient of static friction<br />

- normal force<br />

Find the maximum angle, θ max<br />

f = µ n =<br />

µ w cosθ<br />

s,max<br />

s s<br />

f = w sinθ<br />

≤<br />

f<br />

s<br />

s,max<br />

f = w sinθ<br />

s<br />

f<br />

s,max<br />

=<br />

µ w cos<br />

θ<br />

s<br />

θ max<br />

θ<br />

Condition of equilibrium: tan ≤<br />

s<br />

θ µ<br />

13


Kinetic friction:<br />

f<br />

k<br />

µ<br />

Friction<br />

=<br />

kn<br />

k<br />

µ - coefficient of kinetic friction<br />

n<br />

- normal force<br />

Find acceleration<br />

( θ<br />

><br />

θ<br />

)<br />

max<br />

r r r r<br />

r<br />

F = n + w + f =<br />

ma<br />

net<br />

n − w cosθ<br />

=<br />

0<br />

− f + w sinθ<br />

=<br />

ma<br />

k<br />

k<br />

a r<br />

n = w cosθ<br />

then fk = µ kn =<br />

µ kw<br />

cos<br />

θ<br />

− fk<br />

+ w sinθ − µ kw cosθ +<br />

w sinθ<br />

a<br />

= = = g(sinθ −<br />

µ k<br />

cos θ<br />

)<br />

m<br />

m<br />

14


Weight and Apparent Weight<br />

Weight – gravitational force - pulls the objects down<br />

r r m - mass of the object (the same on all planets)<br />

w = mg<br />

How can we measure weight?<br />

g<br />

= 9.8 m - free-fall acceleration (different<br />

2<br />

s on different planets)<br />

1. We can measure mass by comparing with<br />

the known mass<br />

m<br />

unknown<br />

=<br />

m<br />

known<br />

2. We can measure the weight by comparing<br />

with the known force<br />

w = F spring<br />

15


Weight and Apparent Weight<br />

Apparent Weight – reading of the scale<br />

(or the normal force)<br />

In equilibrium:<br />

r<br />

F<br />

net<br />

=<br />

0<br />

then<br />

r r<br />

Fnet<br />

= ma<br />

F − w =<br />

ma<br />

spring<br />

then<br />

F = m( g +<br />

a)<br />

spring<br />

Fspring<br />

=<br />

w<br />

<strong>Motion</strong> with acceleration:<br />

a r<br />

r r<br />

Fnet<br />

= ma<br />

F −<br />

w = −<br />

ma<br />

spring<br />

then<br />

F = m( g −<br />

a)<br />

spring<br />

a r<br />

The man feels heavier than<br />

normal while accelerating upward<br />

The man feels lighter than normal<br />

while accelerating upward<br />

16


<strong>Chapter</strong> <strong>6.</strong> Summary Slides


General Strategy


General Strategy


Important Concepts


Important Concepts


Applications


Applications


An elevator that has descended from the<br />

50th floor is coming to a halt at the 1st<br />

floor. As it does, your apparent weight is<br />

A. less than your true weight.<br />

B. equal to your true weight.<br />

C. more than your true weight.<br />

D. zero.


An elevator that has descended from the<br />

50th floor is coming to a halt at the 1st<br />

floor. As it does, your apparent weight is<br />

A. less than your true weight.<br />

B. equal to your true weight.<br />

C. more than your true weight.<br />

D. zero.


Rank order, from largest to r smallest, r the<br />

size of the friction forces f a to fe in these five<br />

different situations. The box and the floor<br />

are made of the same materials in all<br />

situations.<br />

A. f c > f d > f e > f b > f a .<br />

B. f b > f c = f d = f e > f a .<br />

C. f b > f c > f d > f e > f a .<br />

D. f a > f c = f d = f e > f b .<br />

E. f a = f b > f c = f d = f e .


Rank order, from largest to smallest, the<br />

size of the friction forces r to in these five<br />

different situations. The box and the floor<br />

are made of the same materials in all<br />

situations.<br />

f a<br />

r<br />

fe<br />

A. f c > f d > f e > f b > f a .<br />

B. f b > f c = f d = f e > f a .<br />

C. f b > f c > f d > f e > f a .<br />

D. f a > f c = f d = f e > f b .<br />

E. f a = f b > f c = f d = f e .


The terminal speed of a Styrofoam ball is<br />

15 m/s. Suppose a Styrofoam ball is shot<br />

straight down with an initial speed of<br />

30 m/s. Which velocity graph is correct?


The terminal speed of a Styrofoam ball is<br />

15 m/s. Suppose a Styrofoam ball is<br />

shot straight down with an initial speed of<br />

30 m/s. Which velocity graph is correct?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!