22.05.2014 Views

Lecture 27 (pdf)

Lecture 27 (pdf)

Lecture 27 (pdf)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Phys-<strong>27</strong>2 <strong>Lecture</strong> 24<br />

Geometric Optics<br />

Mirrors—Plane and Spherical


+<br />

Hubble Space Telescope


Plane (Flat) Mirrors<br />

Already know physics:<br />

θ R = θ I<br />

Source: Object – emits rays<br />

in all directions.<br />

Eye intercepts cone of rays.


Plane Mirrors<br />

SIGN RULE convention for s and s′;<br />

• IF object & incoming ray same side, s pos., otherwise neg.<br />

• IF image & outgoing ray same side, s′ pos., otherwise neg.<br />

• IF curvature center & outgoing ray on same side, pos.,<br />

otherwise neg.<br />

For mirror example, we have s = -s′


Plane Mirrors


Flat Mirror<br />

(1) Draw first ray perpendicular to mirror 0 = θ i = θ r<br />

(2) Draw second ray at angle. θ i = θ r<br />

(3) Lines appear to intersect a distance d behind<br />

mirror. This is the image location.<br />

θ r<br />

θ i<br />

Virtual Image:<br />

No light actually gets here<br />

d<br />

d


Clicker<br />

A woman is looking at her reflection in a flat vertical mirror.<br />

The lowest part of her body she can see is her knee.<br />

CD<br />

If she stands closer to the mirror, what will be the lowest part of<br />

her reflection she can see in the mirror.<br />

A. Above her knee<br />

B. Her knee<br />

C. Below her knee


Clicker<br />

A woman is looking at her reflection in a flat vertical mirror. The lowest<br />

part of her body she can see is her knee. If she stands closer to the mirror,<br />

what will be the lowest part of her reflection she can see in the mirror.<br />

A. Above her knee<br />

B. Her knee<br />

C. Below her knee<br />

If the light doesn’t t get to your<br />

eye then you cant see it


Concave Mirrors<br />

Concave: Consider the case where the shape of the mirror is such<br />

that light rays parallel to the axis of the mirror are all “focused”<br />

to a common spot a distance f in front of the mirror:<br />

These mirrors are often<br />

sections of spheres<br />

(assumed in this class).<br />

f<br />

For such “spherical”<br />

mirrors, we assume all<br />

angles are small even<br />

though we draw them<br />

larger to easily see and<br />

understand…


Aside:<br />

For a spherical mirror, R = 2f<br />

R<br />

2f<br />

center of sphere<br />

sometimes labeled “C”<br />

f


Recipe for finding image:<br />

1) Draw ray parallel to axis reflection goes through focus<br />

2) Draw ray through focus reflection is parallel to axis<br />

3) Draw ray from object through radius = 2f, reflects back<br />

through 2f<br />

object<br />

2f<br />

image<br />

f<br />

You now know the position of the same point on the image


Ray tracing for a concave mirror<br />

h<br />

R-s’<br />

R<br />

θ<br />

θ<br />

s-R<br />

h’<br />

s’<br />

s


Spherical Mirror<br />

Concave Mirror<br />

Point C, center of curvature.<br />

Suppose object at P, then out<br />

Going ray passes through P’.<br />

α + θ = φ ; φ + θ = β ⇒ α + β = 2φ<br />

tanα<br />

=<br />

h<br />

s − δ<br />

;<br />

tan β =<br />

h h<br />

α ≅ β ≅ ;<br />

s s'<br />

h<br />

s'<br />

−δ<br />

Assume, angles small, δ ≅ 0,<br />

paraxial rays, approx. parallel<br />

to axis. Note s and s′ positive.<br />

h<br />

R<br />

;<br />

tanφ<br />

=<br />

h<br />

R − δ<br />

Mirror Equation:<br />

+ =<br />

; φ ≅ s s'<br />

R<br />

1<br />

1<br />

2


Spherical Mirror<br />

Infinite distance, s= ∞, s′=R/2<br />

image appears at ½ radius of<br />

curvature.<br />

1<br />

∞<br />

+<br />

1<br />

s'<br />

=<br />

2<br />

R<br />

Equation<br />

1<br />

s<br />

+<br />

1<br />

s'<br />

=<br />

2<br />

R<br />

Nomenclature; focal length,<br />

f=R/2, is image length when<br />

object is at infinity.<br />

1<br />

s<br />

+<br />

1<br />

s'<br />

=<br />

1<br />

f<br />

Real image – formed by converging rays. Can be viewed on screen.<br />

Virtual image – rays do not go through. Cannot be shown on screen.<br />

Concave mirror: can have real or virtual images.


Camera Region<br />

S >2f<br />

image is:<br />

real<br />

inverted<br />

smaller<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

M = − S ′<br />

S<br />

object<br />

2f<br />

image<br />

f<br />

S<br />

S’<br />

f


Vanity Region<br />

f > S > 0<br />

rays no-longer meet<br />

in front of the mirror<br />

but they do meet<br />

behind the mirror<br />

f<br />

object<br />

image<br />

(virtual)<br />

f<br />

S


Lateral Magnification; spherical mirror<br />

θ =<br />

y<br />

s<br />

=<br />

|<br />

y′<br />

s′<br />

|<br />

Magnification =<br />

y '<br />

y<br />

= −<br />

s'<br />

s<br />

Remarks; note that y’=-|y’|, since the arrow is upside down and<br />

s, s’, and y are positive. So the magnification by this definition<br />

is negative, since y’ is upside down.


Examples of ray tracing for concave mirrors<br />

s>R<br />

image<br />

Inverted<br />

m=s’/s<br />

s=R<br />

m=-1<br />

s=R/2=f<br />

m=∞<br />

s1<br />

Cosmetic/”vanity” mirror


More examples<br />

s>R<br />

image<br />

Inverted<br />

m=s’/s<br />

s=R/2=f<br />

m=∞<br />

2<br />

1<br />

;<br />

15<br />

10<br />

30<br />

(10)(30)<br />

;<br />

30<br />

;<br />

1<br />

1<br />

1<br />

10<br />

2<br />

;<br />

20<br />

= −<br />

′<br />

−<br />

=<br />

=<br />

−<br />

=<br />

′<br />

=<br />

−<br />

=<br />

′<br />

=<br />

′<br />

+<br />

=<br />

=<br />

=<br />

s<br />

s<br />

m<br />

cm<br />

s<br />

cm<br />

s<br />

f<br />

s<br />

fs<br />

s<br />

f<br />

s<br />

s<br />

cm<br />

R<br />

f<br />

cm<br />

R<br />

= −∞<br />

′<br />

−<br />

=<br />

= ∞<br />

−<br />

=<br />

′<br />

=<br />

−<br />

=<br />

′<br />

=<br />

′<br />

+<br />

s<br />

s<br />

m<br />

s<br />

cm<br />

s<br />

f<br />

s<br />

fs<br />

s<br />

f<br />

s<br />

s<br />

;<br />

10<br />

10<br />

(10)(10)<br />

;<br />

10<br />

;<br />

1<br />

1<br />

1


Even more examples<br />

s=R<br />

m=-1<br />

s1<br />

cosmetic mirror<br />

1<br />

;<br />

20<br />

10<br />

20<br />

(10)(20)<br />

;<br />

20<br />

;<br />

1<br />

1<br />

1<br />

= −<br />

′<br />

−<br />

=<br />

=<br />

−<br />

=<br />

′<br />

=<br />

−<br />

=<br />

′<br />

=<br />

′<br />

+<br />

s<br />

s<br />

m<br />

cm<br />

s<br />

cm<br />

s<br />

f<br />

s<br />

fs<br />

s<br />

f<br />

s<br />

s<br />

2<br />

5<br />

10)<br />

(<br />

;<br />

10<br />

10<br />

5<br />

(10)(5)<br />

;<br />

5<br />

;<br />

1<br />

1<br />

1<br />

= +<br />

−<br />

= −<br />

′<br />

−<br />

=<br />

= −<br />

−<br />

=<br />

′<br />

=<br />

−<br />

=<br />

′<br />

=<br />

′<br />

+<br />

s<br />

s<br />

m<br />

cm<br />

s<br />

cm<br />

s<br />

f<br />

s<br />

fs<br />

s<br />

f<br />

s<br />

s


Convex<br />

mirror<br />

For a convex mirror, the radius of curvature is inside the<br />

mirror. We have another RULE, that when the curvature<br />

center C is on the same side of the outgoing ray, then the<br />

radius is positive. For the convex mirror we have NEGATIVE<br />

radius. Also from our rule for s’, we observe this is negative in<br />

the above drawing. Using same recipe as we used for concave<br />

mirrors, we would find same formula:<br />

1<br />

s<br />

+<br />

1<br />

s'<br />

=<br />

2<br />

R<br />

Again, note s’ and R are negative<br />

Magnification =<br />

(this is positive)<br />

y '<br />

y<br />

s'<br />

= −<br />

s


Convex: Consider the case where the shape of the mirror is such<br />

that light rays parallel to the axis of the mirror are all “focused”<br />

to a common spot a distance f behind the mirror:<br />

f


Christmas Tree Ornament, Mirrors in 7-11’s<br />

Convex mirror, R & s’ negative<br />

Santa is 75cm from convex mirror of radius 3.6cm. What is image position and magnification?<br />

s' = −1. 76cm<br />

1<br />

s<br />

+<br />

1<br />

s'<br />

=<br />

2<br />

R<br />

=<br />

1<br />

75<br />

+<br />

1<br />

s'<br />

=<br />

−<br />

2<br />

3.6<br />

s'<br />

m = − s<br />

= −<br />

−<br />

1.76<br />

75<br />

=<br />

.0234


Another striking example:


Quick Clicker<br />

2) The diagram below shows<br />

three light rays reflected off<br />

of a concave mirror. Which<br />

ray is NOT correct?<br />

A)<br />

C)<br />

R<br />

B)<br />

f<br />

A)<br />

B)<br />

C)


Multi-part clicker<br />

I). The image produced by a concave mirror of a real object is<br />

a) always real.<br />

b) always virtual.<br />

c) sometimes real<br />

and sometimes virtual.<br />

II). The image produced by a concave mirror of a real object is<br />

a) always upright.<br />

b) always inverted.<br />

c) sometimes upright<br />

and sometimes inverted.


Is image of a real object from a concave mirror<br />

real or virtual?<br />

It depends on the position of the object relative to the focal point!<br />

• Draw Rays or..<br />

• 1/s’ = 1/f – 1/s (concave implies f > 0)<br />

Is image of a real object from a concave mirror<br />

upright or inverted?<br />

Once again, it depends on position relative to focal point!<br />

• If s’ > 0, real and inverted<br />

• If s’ < 0, virtual and upright


I). The image produced by a convex mirror of a real object is<br />

a) always real.<br />

b) always virtual.<br />

c) sometimes real<br />

and sometimes virtual.<br />

II). The image produced by a convex mirror of a real object is<br />

a) always upright.<br />

b) always inverted.<br />

c) sometimes upright<br />

and sometimes inverted.<br />

BTW has the side mirror<br />

on your car ever produced<br />

an upside-down image of<br />

the world when your car<br />

was still upright? If so,<br />

get a new car.


Is image of a real object from a convex mirror<br />

real or virtual?<br />

Same PROCEDURE as for concave mirrors we did earlier!<br />

• Draw Rays or..<br />

• 1/s’ = 1/f – 1/s (convex implies f < 0)<br />

Is image of a real object from a convex mirror<br />

upright or inverted?<br />

Once again, depends on sign of s’ (real/inverted or virtual/upright)<br />

• Here s’ < 0 ALWAYS… therefore virtual and upright


Clicker problem<br />

• In order for a real object to create a real, inverted enlarged image,<br />

a) we must use a concave mirror.<br />

b) we must use a convex mirror.<br />

c) neither a concave nor a convex mirror can produce this image.


Clicker problem<br />

• In order for a real object to create a real, inverted enlarged image,<br />

a) we must use a concave mirror.<br />

b) we must use a convex mirror.<br />

c) neither a concave nor a convex mirror can produce this image.<br />

• A convex mirror can only produce a virtual image since all reflected<br />

rays will diverge. Therefore, b) is false.<br />

• To create a real image with a concave mirror, the object must be<br />

outside the focal point.<br />

• The example we just did gave a real,<br />

inverted reduced image.<br />

• Is it possible to choose the parameters<br />

θ<br />

such that the image is enlarged?? h<br />

θ<br />

The easy (but clever) answer:<br />

• h’ is a real image.<br />

• Therefore consider the OBJECT to be<br />

h’. The IMAGE will be h !!!<br />

• Therefore it certainly IS POSSIBLE!!<br />

equations follow…<br />

s-R<br />

R-s’<br />

s<br />

h’<br />

R<br />

s’


Clicker problem<br />

• In order for a real object to create a real, inverted enlarged image,<br />

a) we must use a concave mirror.<br />

b) we must use a convex mirror.<br />

c) neither a concave nor a convex mirror can produce this image.<br />

• The example we just did gave a real,<br />

inverted reduced image.<br />

• Is it possible to choose the parameters<br />

such that the image is enlarged??<br />

1 1 1<br />

+ =<br />

fs<br />

s′<br />

=<br />

s s′<br />

f<br />

s − f<br />

M<br />

=<br />

−<br />

s′<br />

s<br />

M<br />

f<br />

= −<br />

s − f<br />

Thus to get a real image we need:<br />

s ><br />

Thus to get an inverted enlarged image we need:<br />

h<br />

s-R<br />

Thus to get a real, inverted enlarged image we need:<br />

f<br />

R-s’<br />

s < 2<br />

f<br />

s<br />

h’<br />

R<br />

f < s < 2 f<br />

θ<br />

θ<br />

s’


Keck telescope on the<br />

top of Mauna Kea<br />

(13,600 ft)<br />

Two 10m (33 ft)<br />

diameter mirrors;<br />

focal length 17.5<br />

m


Mirror for the Hubble space telescope (f =57.6 m)


<strong>Lecture</strong> End<br />

BACKUP SLIDES


Avoid the distortion and<br />

bandwidth limitations of<br />

the earth’s atomsphere.


Artificat of<br />

CCD camera<br />

Eagle Nebula viewed by the Hubble


A field of galaxies viewed by the Hubble<br />

Gravitational<br />

lensing


Executive Summary - Mirrors:<br />

S > 2f<br />

2f > S > f<br />

real<br />

inverted<br />

smaller<br />

real<br />

inverted<br />

bigger<br />

concave<br />

(converging)<br />

f<br />

f > S > 0<br />

virtual<br />

upright<br />

bigger<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

M = − S ′<br />

S<br />

S > 0<br />

virtual<br />

upright<br />

smaller<br />

convex<br />

(diverging)<br />

f


S = 2f<br />

image is:<br />

real<br />

inverted<br />

same size<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

M = − S ′<br />

S<br />

object<br />

f<br />

image<br />

2f<br />

S’<br />

S<br />

f


2f > S > f<br />

image is:<br />

real<br />

inverted<br />

bigger<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

M = − S ′<br />

S<br />

2f<br />

object<br />

f<br />

image<br />

S’<br />

S<br />

f


f > S > 0<br />

image is:<br />

virtual<br />

upright<br />

bigger<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

M = − S ′<br />

S<br />

f<br />

object<br />

image<br />

(virtual)<br />

f<br />

S<br />

S’


convex<br />

f<br />

The size is the only thing that changes<br />

with a convex mirror, it is always<br />

virtual and upright.


An arrow is located in front of a convex<br />

spherical mirror of radius R = 50cm.<br />

The tip of the arrow is located<br />

at (-20cm, 20cm,-15cm).<br />

(-20, 20,-15)<br />

y<br />

R=50<br />

x<br />

Where is the tip of the arrow’s s image?<br />

• Conceptual Analysis<br />

• Mirror Equation: 1/s + 1/s’ = 1/f<br />

• Magnification: M = -s’/s<br />

• Strategic Analysis<br />

•Use mirror equation to figure out the x coordinate of the image<br />

•Use the magnification equation to figure out the y coordinate of the<br />

tip of the image


An arrow is located in front of a convex<br />

spherical mirror of radius R = 50cm.<br />

The tip of the arrow is located<br />

at (-20cm, 20cm,-15cm).<br />

(-20, 20,-15)<br />

y<br />

R=50<br />

x<br />

What is the focal length of the mirror?<br />

A) f =50cm B) f = 25cm C) f = -50cm D) f = -25cm<br />

For a spherical mirror | f | = R/2 = 25cm.<br />

Rule for sign: Positive on side of mirror where light goes after hitting mirro<br />

y<br />

R<br />

f = - 25 cm<br />

f<br />

< 0


An arrow is located in front of a convex<br />

spherical mirror of radius R = 50cm.<br />

The tip of the arrow is located<br />

at (-20cm, 20cm,-15cm).<br />

y<br />

R=50<br />

f = -25 cm<br />

x<br />

(-20, 20,-15)<br />

What is the x coordinate of the image?<br />

A) 11.1 cm B) 22.5 cm C) -11.1 cm D) -22.5cm<br />

Mirror<br />

equation<br />

1 1 1<br />

= −<br />

s′<br />

f s<br />

fs<br />

s′ = s = 20 cm<br />

s − f f = -25 cm<br />

( −25)(20)<br />

s′ =<br />

= -11.1 cm<br />

20 + 25<br />

Since s’ s < 0 the image is virtual (on the “other” side of the mirror)


An arrow is located in front of a convex<br />

spherical mirror of radius R = 50cm.<br />

The tip of the arrow is located<br />

at (-20cm, 20cm,-15cm).<br />

y<br />

R=50<br />

x = 11.1 cm<br />

f = -25 cm<br />

x<br />

(-20, 20,-15)<br />

What is the y coordinate of the tip of the image?<br />

A) -11.1 cm B) -10.7 cm C) -9.1 cm D) -8.3cm<br />

Magnification<br />

equation<br />

M = − S ′<br />

S<br />

s = 20 cm<br />

s’ = -11.1 cm<br />

M = 0.556<br />

y image = 0.55 y object = 0.556*(-15 cm) = -8.34 cm


Ray Tracing or Graphical techniques<br />

Useful to help describe image.<br />

To find the image position in<br />

Practice we need to find the<br />

Intersection of at least<br />

two rays. Useful rays are<br />

1) Focal point F, #2<br />

2) Ray through C, #3<br />

3) Vertex V, #4<br />

4) Parallel ray reflects<br />

through F, #1


S > 0<br />

image is:<br />

virtual<br />

upright<br />

smaller<br />

1 1 1<br />

+ =<br />

S S ′ f<br />

object<br />

image<br />

(virtual)<br />

f0 S’

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!