23.05.2014 Views

Growth of epitaxial graphene on 6H-SiC(0001) with face-to ... - Physics

Growth of epitaxial graphene on 6H-SiC(0001) with face-to ... - Physics

Growth of epitaxial graphene on 6H-SiC(0001) with face-to ... - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Growth</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>) <strong>with</strong><br />

<strong>face</strong>-<strong>to</strong>-<strong>face</strong> technique<br />

Report<br />

by<br />

Annemarie Köhl<br />

February 27, 2009<br />

Supervisors:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Alessandra Lanazara<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Ralph Claessen<br />

Lawrence Berkeley Labora<strong>to</strong>ry<br />

Materials Sciences Divisi<strong>on</strong>


Abstract<br />

In this work a new technique <strong>to</strong> grow <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>) silic<strong>on</strong> carbide wafers is<br />

employed <strong>to</strong> achieve a better c<strong>on</strong>trollable growth and higher quality samples. Epitaxial <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

is a reliable candidate for all kind <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s as it has similar properties <strong>to</strong> carb<strong>on</strong> nanotubes<br />

and exfoliated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> but is more appropriate for the design <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic devices as it can<br />

be grown in wafer-sized pieces. However, <strong>to</strong> this date it is still a big issue <strong>to</strong> c<strong>on</strong>trol <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

thickness and <strong>to</strong> achieve large domains. The new <strong>face</strong>-<strong>to</strong>-<strong>face</strong> growing method, which is based<br />

<strong>on</strong> a higher partial silic<strong>on</strong> pressure during the growth, is believed <strong>to</strong> improve the homogeneity in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> terrace size as well as <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness. In this project samples have been grown in<br />

this new geometry at many dierent temperatures and for dierent substrate orientati<strong>on</strong>s.<br />

The samples have been characterized using a<strong>to</strong>mic force microscopy (AFM), low energy electr<strong>on</strong><br />

diracti<strong>on</strong> (LEED), Auger electr<strong>on</strong> spectroscopy (AES) and angle resolved pho<strong>to</strong>emissi<strong>on</strong><br />

spectroscopy (ARPES). AFM measurements provide informati<strong>on</strong> about sur<strong>face</strong> morphology and<br />

terrace size. AES is used <strong>to</strong> determine the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>on</strong> the sample, which is related <strong>to</strong><br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. LEED and ARPES are useful <strong>to</strong>ols <strong>to</strong> estimate the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers and give a sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample quality.<br />

The <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness is studied extensively as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth temperature. The<br />

overall temperature which is necessary for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>with</strong> the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method<br />

is c<strong>on</strong>siderably higher than for the usual growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> in UHV. A closer analysis reveals<br />

a clear relati<strong>on</strong> between growth temperature and <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness <strong>with</strong> an increasing number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers at increasing temperatures. Actually the measurements suggest that in the<br />

interesting range <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayer <strong>to</strong> few-layer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> the growth temperature is a very sensitive<br />

parameter.<br />

In the temperature range 1500 − 1550 ◦ C several samples <strong>with</strong> m<strong>on</strong>o- <strong>to</strong> trilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> have<br />

successfully been grown. AFM as well as ARPES measurements c<strong>on</strong>rmed a improved sur<strong>face</strong><br />

quality compared <strong>to</strong> UHV grown samples. These promising results ratify the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the new<br />

technique and support the further development <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method. As an unwanted<br />

side eect a dierence in <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness has been observed between the middle and the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. Beside the temperature dependence the inuence <str<strong>on</strong>g>of</str<strong>on</strong>g> the relative directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heating current <strong>to</strong> the vicinal miscut <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate has been studied. No signicant<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the relative orientati<strong>on</strong> has been observed at our samples.<br />

2


C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong> 4<br />

2 Materials and methods 6<br />

2.1 General <str<strong>on</strong>g>graphene</str<strong>on</strong>g> properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.2 Silic<strong>on</strong> carbide substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.3 <str<strong>on</strong>g>Growth</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.4 Measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

3 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> 13<br />

3.1 Sur<strong>face</strong> morphology by AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3.2 Crystal structure by LEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

3.3 Thickness estimati<strong>on</strong> by AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

3.4 Band structure by ARPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

4 Experiment 19<br />

4.1 Sample growth <strong>with</strong> <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method . . . . . . . . . . . . . . . . . . . . . . . 19<br />

4.2 AFM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

4.3 LEED measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

4.4 AES measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

4.5 ARPES measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

5 Results and discussi<strong>on</strong> 27<br />

5.1 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

5.2 Temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

5.3 Orientati<strong>on</strong> dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

5.4 Sur<strong>face</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

6 C<strong>on</strong>clusi<strong>on</strong> 32<br />

3


1 Introducti<strong>on</strong><br />

The two dimensi<strong>on</strong>al (2D) h<strong>on</strong>eycomb lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> a<strong>to</strong>ms, which is widely referred <strong>to</strong> as<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g>, has received great interest during the last 5 years [1, 2, 3]. Although it has been<br />

known as a building part <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite, carb<strong>on</strong> nanotubes and fullerenes for quite a l<strong>on</strong>g time, it<br />

has been believed that no free state exist as this was supposed <strong>to</strong> be energetically unstable [4, 5].<br />

Therefore it was quite a surprise when Novoselov et al. [6] succeeded in producing <str<strong>on</strong>g>graphene</str<strong>on</strong>g> just<br />

a few years ago and found it <strong>to</strong> be stable <strong>with</strong> remarkable characteristics [7].<br />

Graphene shows several unusual properties like a minimum c<strong>on</strong>ductivity, an integer-quantum<br />

Hall eect at half-integer lling fac<strong>to</strong>rs and anomalous Shubnikov-de Haas oscillati<strong>on</strong>s [1, 7].<br />

These eects are theoretically unders<strong>to</strong>od and explained in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear energy-momentum<br />

dispersi<strong>on</strong>. The electr<strong>on</strong>s and holes behave like massless Dirac fermi<strong>on</strong>s <strong>with</strong> a speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c ≈ 10 −6 m/s and reveal a pseudospin due <strong>to</strong> two carb<strong>on</strong> sublattices. Besides this insight in<strong>to</strong><br />

theoretical questi<strong>on</strong>s <str<strong>on</strong>g>graphene</str<strong>on</strong>g> has many possible applicati<strong>on</strong>s.<br />

Due <strong>to</strong> its unique electr<strong>on</strong>ic properties <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is a candidate <strong>to</strong> replace silic<strong>on</strong> in all kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> devices. Beside the high carrier mobility, ballistic transport at room temperature and the<br />

possibility <strong>to</strong> use the electrical eld eect, especially the possibility <strong>to</strong> c<strong>on</strong>trol the properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheet by manipulating the boundary c<strong>on</strong>diti<strong>on</strong>s is interesting for applicati<strong>on</strong>s [6, 8].<br />

For example it would be possible <strong>to</strong> engineer a complete device c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> semic<strong>on</strong>ducting and<br />

c<strong>on</strong>ducting parts out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e material [1]. Moreover bilayer or trilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g>, which c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2 or 3 layers <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> a<strong>to</strong>ms respectively, reveal dierent properties and gain increasing<br />

interest. Bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> for example exhibits a tunable band gap, which is extremely promising<br />

for industrial use [3, 9]. Finally the advantage over other carb<strong>on</strong> based devices like carb<strong>on</strong><br />

nanotubes - the use <str<strong>on</strong>g>of</str<strong>on</strong>g> normal 2D lithographic techniques - and the high stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

under processing as well as in air is encouraging from a technical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view [10].<br />

Mechanically exfoliated akes, which are peeled o <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk graphite, have desirable characteristics<br />

like a high crystal quality and extremely weak coupling <strong>to</strong> the supporting substrate<br />

and therefore have widely been used for basic research. However, <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g>ly grown <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is<br />

the more promising candidate for large scale applicati<strong>on</strong>s [8]. Epitaxial <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is grown <strong>on</strong><br />

a silic<strong>on</strong> carbide (<strong>SiC</strong>) wafer by evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong>. It exhibits the typical 2D behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g>, but has the big advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> being available <strong>on</strong> wafer sized pieces. On the other hand<br />

till now the quality in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> layers as well as terrace size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is poor and a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> research is performed in order <strong>to</strong> produce high quality<br />

samples [11, 12].<br />

In this project a new technique <str<strong>on</strong>g>of</str<strong>on</strong>g> growing <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> samples has been employed in<br />

order <strong>to</strong> improve the sample quality. The goal was <strong>to</strong> produce samples <str<strong>on</strong>g>of</str<strong>on</strong>g> a specic thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g>, c<strong>on</strong>centrating <strong>on</strong> m<strong>on</strong>o- and bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g>, <strong>with</strong> big terrace sizes. The principle<br />

idea behind the new method is <strong>to</strong> increase the partial silic<strong>on</strong> pressure in proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample,<br />

which slows down the growth process. The high silic<strong>on</strong> pressure is achieved by the so-called <strong>face</strong><strong>to</strong>-<strong>face</strong><br />

growth, where two samples are brought geometrically very close <strong>to</strong>gether. The decreased<br />

4


speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the growing process allows <strong>on</strong>e <strong>to</strong> use higher temperatures, which generally leads <strong>to</strong> a<br />

better ordered sur<strong>face</strong> [11].<br />

To characterize quality and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples four dierent measurement techniques are<br />

employed <strong>to</strong> get a broad picture. An a<strong>to</strong>mic force microscope (AFM) is used <strong>to</strong> study the sur<strong>face</strong><br />

morphology in real space. In c<strong>on</strong>trast, low energy electr<strong>on</strong> diracti<strong>on</strong> (LEED) measurements<br />

probe the reciprocal space and therefore the crystal structure. Auger electr<strong>on</strong> spectroscopy<br />

(AES) is used <strong>to</strong> gain informati<strong>on</strong> about the chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>to</strong>pmost layers. Angle<br />

resolved pho<strong>to</strong>emissi<strong>on</strong> spectroscopy (ARPES) nally allows <strong>on</strong>e <strong>to</strong> measure the electr<strong>on</strong>ic band<br />

structure. The AFM images are used <strong>to</strong> determine the sample quality in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> terrace size.<br />

The later three methods give a characteristic signal for a dierent number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers and can be<br />

used <strong>to</strong> determine the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness by comparis<strong>on</strong> <strong>with</strong> data in the literature. Moreover<br />

ARPES and LEED can also help <strong>to</strong> determine the overall sample quality.<br />

This report starts <strong>with</strong> a short summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> and the substrate <strong>SiC</strong>.<br />

Subsequently the growth process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>, the measurement techniques and the <strong>face</strong><strong>to</strong>-<strong>face</strong><br />

method are introduced. Afterwards literature data is presented for later characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the samples. Finally the results are presented, discussed and compared <strong>with</strong> the literature.<br />

5


2 Materials and methods<br />

2.1 General <str<strong>on</strong>g>graphene</str<strong>on</strong>g> properties<br />

A sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is made <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2D h<strong>on</strong>eycomb structure <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> a<strong>to</strong>ms [1, 3]. The single<br />

a<strong>to</strong>mic layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> can be seen as the mother <str<strong>on</strong>g>of</str<strong>on</strong>g> all carb<strong>on</strong> based materials. It can be<br />

stacked in<strong>to</strong> 3D graphite, rolled up in<strong>to</strong> 1D carb<strong>on</strong> nanotubes or <strong>with</strong> some minor modicati<strong>on</strong>s<br />

be wrapped in<strong>to</strong> 0D fullerenes. The h<strong>on</strong>eycomb is built up by a hexag<strong>on</strong>al lattice <strong>with</strong> two a<strong>to</strong>ms<br />

per unit cell (see gure 1) <strong>with</strong> a unit cell vec<strong>to</strong>r <str<strong>on</strong>g>of</str<strong>on</strong>g> aG = 2.46 Å [13]. The two sublattices give<br />

rise <strong>to</strong> some special <str<strong>on</strong>g>graphene</str<strong>on</strong>g> properties as for example the pseudospin.<br />

In plane the carb<strong>on</strong> a<strong>to</strong>ms are b<strong>on</strong>ded by sp 2 b<strong>on</strong>ds in a hexag<strong>on</strong>. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> plane delocalized π-<br />

electr<strong>on</strong>s give rise <strong>to</strong> the interesting electr<strong>on</strong>ic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> the high symmetry<br />

points <str<strong>on</strong>g>of</str<strong>on</strong>g> the hexag<strong>on</strong>al Brillouin z<strong>on</strong>e are the Γ-point in the center and the K-point in the<br />

corner <str<strong>on</strong>g>of</str<strong>on</strong>g> the hexag<strong>on</strong>. Whereas nearly everything in c<strong>on</strong>densed matter physics is described by<br />

the Schroedinger equati<strong>on</strong>, <str<strong>on</strong>g>graphene</str<strong>on</strong>g> shows an unusual behavior. In c<strong>on</strong>trast <strong>to</strong> the ordinary<br />

parabolic dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a free electr<strong>on</strong>, <str<strong>on</strong>g>graphene</str<strong>on</strong>g> exhibits a linear dispersi<strong>on</strong> in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fermi sur<strong>face</strong> [7]. This is illustrated in the band structure as seen in gure 1. This band structure<br />

can best be described by the Dirac equati<strong>on</strong> as the electr<strong>on</strong>s mimic massless Dirac fermi<strong>on</strong>s. The<br />

crossing point <str<strong>on</strong>g>of</str<strong>on</strong>g> the two c<strong>on</strong>es is therefore called the Dirac point. For undoped <str<strong>on</strong>g>graphene</str<strong>on</strong>g> the<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point E D is identical <strong>with</strong> the Fermi level E F . Thus, freestanding <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

is called a semi-metal or zero-gap semic<strong>on</strong>duc<strong>to</strong>r.<br />

Figure 1: Left: A<strong>to</strong>mic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> [3] Right: Electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> [14]<br />

There are two comm<strong>on</strong> approaches for the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Exfoliated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is<br />

peeled o a graphite crystal <strong>with</strong> tape [6]. The critical point for the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> exfoliated<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> was the usage <str<strong>on</strong>g>of</str<strong>on</strong>g> an interference eect <strong>on</strong> a 300nm SiO 2 wafer, which allows <strong>on</strong>e <strong>to</strong><br />

identify few-layer-pieces <strong>with</strong> an optical microscope. Even though exfoliated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is the<br />

more natural form and was mainly used <strong>to</strong> answer initial questi<strong>on</strong>s, the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> small pieces<br />

in applicati<strong>on</strong>s lead <strong>to</strong> increased interest <strong>on</strong> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. The growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

by thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>SiC</strong> substrate will be described in more detail in the following<br />

secti<strong>on</strong>s. In c<strong>on</strong>trast <strong>to</strong> exfoliated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is grown <strong>on</strong> a substrate which<br />

gives rise <strong>to</strong> an interacti<strong>on</strong>. Although this interacti<strong>on</strong> has been found <strong>to</strong> be quite small some<br />

dierences have been observed like a blueshifted Raman Spectrum [15, 16], probably due <strong>to</strong> stress<br />

6


caused by lattice mismatch, or a shift <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point below the Fermi level due <strong>to</strong> doping<br />

[3]. Therefore <strong>on</strong>e must strictly distinguish between the two dierent types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. As this<br />

work is exclusively about <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> the term <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is used syn<strong>on</strong>ymical for <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> in the following parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the work, but the reader should always be aware about this<br />

dierence.<br />

2.2 Silic<strong>on</strong> carbide substrate<br />

As early as in 1975 van Bommel et al.[17] found that heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong> in ultrahigh vacuum (UHV)<br />

leads <strong>to</strong> evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong>, which leaves behind a carb<strong>on</strong>-rich sur<strong>face</strong>. Later it has been<br />

proven that these carb<strong>on</strong> layers order in<strong>to</strong> a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> structure [8, 18]. This instance <strong>to</strong>gether<br />

<strong>with</strong> the fact that <strong>SiC</strong> is a well known wide-gap semic<strong>on</strong>duc<strong>to</strong>r (E gap = 3 eV) has lead <strong>to</strong> the<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> research about <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> being focused <strong>on</strong> <strong>SiC</strong> as a substrate.<br />

In a <strong>SiC</strong> crystal each silic<strong>on</strong> a<strong>to</strong>m is tetrahedrally b<strong>on</strong>ded <strong>to</strong> four carb<strong>on</strong> a<strong>to</strong>ms and vice versa<br />

[2, 19]. These <strong>SiC</strong> clusters in turn are arranged in a hexag<strong>on</strong>al bilayer structure <strong>with</strong> a carb<strong>on</strong><br />

and silic<strong>on</strong> sublayer. As the <strong>to</strong>tal energy <str<strong>on</strong>g>of</str<strong>on</strong>g> dierent orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent bilayers is nearly<br />

degenerated, <strong>SiC</strong> grows in more than 100 dierent polytypes. Nevertheless for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

growing <str<strong>on</strong>g>graphene</str<strong>on</strong>g> most groups use the hexag<strong>on</strong>al 4H-<strong>SiC</strong> or <strong>6H</strong>-<strong>SiC</strong>. These polytypes are build up<br />

by Si-C bilayers which are stacked ABCB... or ABCACB... respectively and give rise <strong>to</strong> an overall<br />

hexag<strong>on</strong>al structure. In this work <strong>6H</strong>-<strong>SiC</strong> has been used. The unit cell is illustrated in gure 2.<br />

The Si-C b<strong>on</strong>d length is 1.89 Å and the distance between two bilayers is 2.52 Å. The hexag<strong>on</strong>al<br />

unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>6H</strong>-<strong>SiC</strong> is described by the unit cell vec<strong>to</strong>rs a<strong>SiC</strong> = 3.08 Å and cSic = 15.11 Å [2, 19].<br />

Figure 2: Crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>6H</strong>-<strong>SiC</strong>. Big purple balls represent silic<strong>on</strong> a<strong>to</strong>ms, small green balls<br />

represent carb<strong>on</strong> a<strong>to</strong>ms [19].<br />

<strong>6H</strong>-<strong>SiC</strong> has a polar c-axis, which results in two dierent bulk terminati<strong>on</strong>s <strong>on</strong> opposite sides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal. The <strong>SiC</strong>(<strong>0001</strong>) sur<strong>face</strong> is called Si-<strong>face</strong> and is terminated by silic<strong>on</strong> a<strong>to</strong>ms, while<br />

7


the <strong>SiC</strong>(<strong>0001</strong>) sur<strong>face</strong> is called C-<strong>face</strong> and is terminated by carb<strong>on</strong> a<strong>to</strong>ms (see also gure 2). It is<br />

extremely important <strong>to</strong> note this dierence as the two <strong>face</strong>s show dierent chemical and physical<br />

properties.<br />

Early studies revealed a fast growth <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>al disordered <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> the C-<strong>face</strong> leading<br />

<strong>to</strong> thick (5 <strong>to</strong> 100 layers) <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. However, <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> the Si-<strong>face</strong> is rotati<strong>on</strong>ally ordered<br />

and well aligned under an angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 ◦ in respect <strong>to</strong> the substrate. Moreover the growing process<br />

is slower and usually easy <strong>to</strong> terminate after a few layers [3, 10]. Therefore most <str<strong>on</strong>g>of</str<strong>on</strong>g> the early<br />

research c<strong>on</strong>centrated <strong>on</strong> the Si-<strong>face</strong>, although by now the C-<strong>face</strong> receives new interest. The<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> de Heer has argued that some small rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheets leads <strong>to</strong> a very<br />

weak coupling between each set <str<strong>on</strong>g>of</str<strong>on</strong>g> two layers. Therefore even as many as 100 layers can exhibit<br />

single layer behavior [2, 20].<br />

In this work all growth processes and analysis have been performed <strong>on</strong> the Si-<strong>face</strong>. Unless<br />

particular menti<strong>on</strong>ed in the following the term <strong>SiC</strong> is used instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong>(<strong>0001</strong>), but <strong>on</strong>e should<br />

always keep in mind that the C-<strong>face</strong> would give dierent results.<br />

2.3 <str<strong>on</strong>g>Growth</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

Although the process <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> evaporati<strong>on</strong> <strong>on</strong> <strong>SiC</strong> was known since 1975 [17], this graphitized<br />

<strong>SiC</strong> sur<strong>face</strong> did not gain a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. The big boom started when Berger et al. [8] showed<br />

that this thin graphite exhibits 2D electr<strong>on</strong> gas behavior. The growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is<br />

based <strong>on</strong> thermal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>SiC</strong> substrate. Both e-beam heating as well as resistive<br />

heating have been used, but no dierence seems <strong>to</strong> arise from the dierent heating methods [2].<br />

In order <strong>to</strong> avoid c<strong>on</strong>taminati<strong>on</strong>s the heating is usually performed in UHV envir<strong>on</strong>ment. Similar<br />

results have been observed for high and low base pressure growth but till now no comparative<br />

study about the inuence <str<strong>on</strong>g>of</str<strong>on</strong>g> the background pressure in the vacuum chamber has been c<strong>on</strong>ducted<br />

[2]. From the molar densities <strong>on</strong>e can calculate that approximately 3 bilayers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong> are necessary<br />

<strong>to</strong> set free enough carb<strong>on</strong> a<strong>to</strong>ms for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layer [17].<br />

If <strong>SiC</strong> is heated <strong>to</strong> temperatures between 1050 ◦ C and 1150 ◦ C, silic<strong>on</strong> starts <strong>to</strong> evaporate and<br />

a (6 √ 3 × 6 √ 3)R30 ◦ rec<strong>on</strong>structi<strong>on</strong> evolves. The latest theory suggests that this is a carb<strong>on</strong> layer<br />

<strong>with</strong> a h<strong>on</strong>eycomb structure like <str<strong>on</strong>g>graphene</str<strong>on</strong>g> [21, 22]. However, unlike <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

carb<strong>on</strong> a<strong>to</strong>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> this rec<strong>on</strong>structi<strong>on</strong> layer has covalent b<strong>on</strong>ds <strong>to</strong> underlying silic<strong>on</strong> a<strong>to</strong>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>to</strong>pmost <strong>SiC</strong> layer. Therefore, although this rec<strong>on</strong>structi<strong>on</strong> layer shows some graphitic properties<br />

and structure, it str<strong>on</strong>gly interacts <strong>with</strong> the substrate. This leads <strong>to</strong> electr<strong>on</strong>ic properties which<br />

are <strong>to</strong>tally dierent from <str<strong>on</strong>g>graphene</str<strong>on</strong>g> as for example the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> π-bands at the Fermi level and the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a band gap.<br />

In order <strong>to</strong> obtain <str<strong>on</strong>g>graphene</str<strong>on</strong>g> the annealing temperature must be increased above 1150 ◦ C. Emtsev<br />

et al.[22] propose a growth mechanism <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) where new <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers are formed<br />

beneath already existing rec<strong>on</strong>structi<strong>on</strong> layers. If a silic<strong>on</strong> a<strong>to</strong>m below the rec<strong>on</strong>structi<strong>on</strong> layer<br />

evaporates, the covalent b<strong>on</strong>d <strong>to</strong> the substrate is cut. As this dangling b<strong>on</strong>d is unstable and can't<br />

c<strong>on</strong>nect <strong>to</strong> any other a<strong>to</strong>ms the carb<strong>on</strong> a<strong>to</strong>m rehybridizes in<strong>to</strong> a sp 2 c<strong>on</strong>gurati<strong>on</strong> and develops<br />

the typical <str<strong>on</strong>g>graphene</str<strong>on</strong>g> like delocalized π-bands <strong>with</strong> neighboring carb<strong>on</strong> a<strong>to</strong>ms. Additi<strong>on</strong>ally the<br />

8


evaporating silic<strong>on</strong> a<strong>to</strong>m leaves behind three dangling b<strong>on</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> a<strong>to</strong>ms in the <strong>to</strong>pmost<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. These c<strong>on</strong>nect <strong>to</strong> each other <strong>to</strong> form an inter<strong>face</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> covalently bound<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g>, whose structure is identical <strong>to</strong> the rec<strong>on</strong>structi<strong>on</strong> layer.<br />

Now the former rec<strong>on</strong>structi<strong>on</strong> layer has evolved in<strong>to</strong> a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layer which <strong>on</strong>ly interacts <strong>with</strong><br />

the inter<strong>face</strong> layer through weak Van der Waals forces and all the typical <str<strong>on</strong>g>graphene</str<strong>on</strong>g> properties can<br />

be observed. The next <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layer grows in the same manner under the inter<strong>face</strong> layer <strong>with</strong><br />

c<strong>on</strong>verting the inter<strong>face</strong> layer in<strong>to</strong> a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layer and the <strong>to</strong>pmost substrate layer in<strong>to</strong> a new<br />

inter<strong>face</strong> layer. This growth <str<strong>on</strong>g>of</str<strong>on</strong>g> new layers under the rst layer also explains the good rotati<strong>on</strong>al<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) as the former covalent b<strong>on</strong>ds <strong>to</strong> the substrate cause a rotati<strong>on</strong>al<br />

xed positi<strong>on</strong>. In c<strong>on</strong>trast, no rec<strong>on</strong>structi<strong>on</strong> layer is formed <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) due <strong>to</strong> dierences in<br />

sur<strong>face</strong> polarity and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the dangling b<strong>on</strong>ds [22]. This leads <strong>to</strong> a weak interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>with</strong> the substrate and a dierent growth mechanism, which can explain the observed<br />

azimuthal disorder.<br />

Although the structure is identical for clarity the h<strong>on</strong>eycomb layer <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> a<strong>to</strong>ms <strong>with</strong><br />

covalent b<strong>on</strong>ds is called rec<strong>on</strong>structi<strong>on</strong> layer <strong>to</strong> refer <strong>to</strong> the bare (6 √ 3×6 √ 3)R30 ◦ rec<strong>on</strong>structi<strong>on</strong><br />

<strong>on</strong> the substrate and is called inter<strong>face</strong> layer <strong>to</strong> refer <strong>to</strong> the actual inter<strong>face</strong> between <strong>SiC</strong> and<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. To avoid c<strong>on</strong>fusi<strong>on</strong> it shall be noted at this point that some publicati<strong>on</strong>s<br />

furthermore use the term buerlayer for this c<strong>on</strong>gurati<strong>on</strong> as this carb<strong>on</strong> layer acts as a buer<br />

<strong>to</strong> isolate the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> from the substrate.<br />

One should note that the given temperatures need <strong>to</strong> be treated <strong>with</strong> cauti<strong>on</strong>. Absolute<br />

growth temperatures may dier from <strong>on</strong>e experimental group <strong>to</strong> another due <strong>to</strong> measurement<br />

diculties. As <strong>SiC</strong> is transparent for infrared light, measurements <strong>with</strong> pyrometers can get<br />

inuenced by light <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample holder or the lament <str<strong>on</strong>g>of</str<strong>on</strong>g> the e-beam heating behind the sample.<br />

Moreover dierent groups tend <strong>to</strong> use dierent emissivities, which also changes the measured<br />

temperatures. Thermocouples d<strong>on</strong>'t have this problem but they can't be at the exact same place<br />

as the sample and the further away the thermocouple is mounted the more the temperature is<br />

underestimated due <strong>to</strong> a thermal gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample holder [2]. Therefore the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

direct comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature values <str<strong>on</strong>g>of</str<strong>on</strong>g> dierent groups <strong>with</strong> each other or <strong>with</strong> this study is<br />

limited. Nevertheless temperature measurements at the same setup are c<strong>on</strong>sistent and <strong>on</strong>e can<br />

study and compare the relative values.<br />

2.4 Measurement techniques<br />

2.4.1 A<strong>to</strong>mic Force Microscopy (AFM)<br />

Informati<strong>on</strong> about the sur<strong>face</strong> morphology like sur<strong>face</strong> roughness, terrace size and step height<br />

can be obtained <strong>with</strong> an a<strong>to</strong>mic force microscope (AFM) (see gure 3). Central part <str<strong>on</strong>g>of</str<strong>on</strong>g> an AFM<br />

is the oscillating cantilever <strong>with</strong> a small tip at the end. The measurements in this work have been<br />

performed in tapping mode, where the cantilever is excited <strong>to</strong> oscillati<strong>on</strong>s close <strong>to</strong> his res<strong>on</strong>ance<br />

frequency [23]. During the oscillati<strong>on</strong> the tip slightly taps <strong>on</strong> the sample sur<strong>face</strong> and the cantilever<br />

experiences sur<strong>face</strong> forces, which have an eect <strong>on</strong> the oscillati<strong>on</strong> amplitude. The change<br />

9


<str<strong>on</strong>g>of</str<strong>on</strong>g> the amplitude due <strong>to</strong> these sur<strong>face</strong> forces is determined by a laser signal which is reected<br />

from the cantilever and measured by pho<strong>to</strong>diodes. A feedback loop maintains the oscillati<strong>on</strong><br />

amplitude <strong>to</strong> be c<strong>on</strong>stant during the scanning <str<strong>on</strong>g>of</str<strong>on</strong>g> the sur<strong>face</strong>. The necessary adjustments <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> the cantilever <strong>to</strong> maintain these c<strong>on</strong>stant amplitude and therefore c<strong>on</strong>stant tip-sample<br />

distance is saved for each (x,y) data point and can be displayed as a <strong>to</strong>pographic image <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample.<br />

Figure 3: Schematics <str<strong>on</strong>g>of</str<strong>on</strong>g> an AFM setup [23]<br />

2.4.2 Low energy electr<strong>on</strong> diracti<strong>on</strong> (LEED)<br />

Low energy electr<strong>on</strong> diracti<strong>on</strong> (LEED) is a comm<strong>on</strong>ly used technique for sur<strong>face</strong> analysis [24, 25].<br />

Low-energy electr<strong>on</strong>s <strong>with</strong> an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 − 1000 eV are focused <strong>on</strong><strong>to</strong> a crystalline sur<strong>face</strong>,<br />

diracted and subsequently observed <strong>on</strong> a uorescent screen. As LEED is based <strong>on</strong> diracti<strong>on</strong><br />

the measurement can <strong>on</strong>ly be performed <strong>on</strong> ordered sur<strong>face</strong>s and provides informati<strong>on</strong> about<br />

the reciprocal space. The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the diracti<strong>on</strong> spots can be used <strong>to</strong> determine reciprocal<br />

unit vec<strong>to</strong>rs, symmetries and sur<strong>face</strong> rec<strong>on</strong>structi<strong>on</strong>s. In a layered structure the comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> dierent spots allows an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> layer thickness. The sharpness <str<strong>on</strong>g>of</str<strong>on</strong>g> spots<br />

can nally give a sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample quality in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>al order, crystal faults and<br />

c<strong>on</strong>taminati<strong>on</strong>. As the electr<strong>on</strong> mean free path at this energy is <strong>on</strong>ly around a few Å, LEED<br />

measurements are very sur<strong>face</strong> sensitive and probe <strong>on</strong>ly the rst few layers <str<strong>on</strong>g>of</str<strong>on</strong>g> a given sample.<br />

10


2.4.3 Auger electr<strong>on</strong> spectroscopy (AES)<br />

Auger electr<strong>on</strong>s arise from the Auger eect which is the n<strong>on</strong>-radiative decay <str<strong>on</strong>g>of</str<strong>on</strong>g> a hole in the<br />

core levels <str<strong>on</strong>g>of</str<strong>on</strong>g> an a<strong>to</strong>m [26, 27, 28]. When a sample is bombarded by high energy electr<strong>on</strong>s in<br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> keV, core level electr<strong>on</strong>s are removed, leaving behind a hole. This unstable state<br />

decays by an electr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an outer shell lling the hole in the core level. The additi<strong>on</strong>al energy<br />

which is set free can be emitted as a phot<strong>on</strong> (which is observed as X-ray uorescence) or given<br />

<strong>to</strong> another electr<strong>on</strong> - called Auger electr<strong>on</strong> - <str<strong>on</strong>g>of</str<strong>on</strong>g> the outer shell which subsequently leaves the<br />

crystal. Figure 4 illustrates an Auger process <strong>with</strong> a hole in the K shell. The hole is lled by an<br />

electr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the L shell, which gives the energy <strong>to</strong> another electr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the L shell.<br />

The kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> this Auger electr<strong>on</strong> depends <str<strong>on</strong>g>of</str<strong>on</strong>g> all the dierent energy levels which are<br />

involved in<strong>to</strong> this process and is therefore unique for each element. In this simple picture the<br />

kinetic energy can be calculated by<br />

E kin = E(K) − E(L 1 ) − E(L 2 )<br />

<strong>with</strong> E(K/L) being the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> in the K/L-shell. The unique kinetic<br />

energy can be used <strong>to</strong> identify the chemical elements <strong>on</strong> the sur<strong>face</strong> and <strong>to</strong> determine their<br />

relative amount.<br />

Figure 4: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a KLL Auger process<br />

2.4.4 Angle-resolved pho<strong>to</strong>emissi<strong>on</strong> spectroscopy (ARPES)<br />

Angle-resolved pho<strong>to</strong>emissi<strong>on</strong> spectroscopy is an extremely useful <strong>to</strong>ol <str<strong>on</strong>g>of</str<strong>on</strong>g> sur<strong>face</strong> sciences [29]. In<br />

a very simple picture it can be explained by the pho<strong>to</strong>electric eect where a phot<strong>on</strong> is absorbed<br />

and transfers its energy <strong>to</strong> an electr<strong>on</strong>. If the phot<strong>on</strong> energy is high enough the electr<strong>on</strong> will<br />

leave the crystal <strong>with</strong> a kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E kin = hν − Φ − |E B |<br />

where hν is the phot<strong>on</strong> energy, Φ is the work functi<strong>on</strong> and E B is the binding energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

emitted electr<strong>on</strong>.<br />

11


Figure 5: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ARPES geometry [30]<br />

Figure 5 shows the experimental setup <str<strong>on</strong>g>of</str<strong>on</strong>g> an ARPES measurement. The hemispherical electr<strong>on</strong><br />

energy analyzer measures the energy E kin . Using geometric c<strong>on</strong>siderati<strong>on</strong>s the informati<strong>on</strong> about<br />

the angles ϑ and ϕ can be used <strong>to</strong> extract informati<strong>on</strong> about the momentum ⃗ k. As the translati<strong>on</strong><br />

invariance is broken at the sur<strong>face</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal <strong>on</strong>ly k || can be determined, but for 2D sur<strong>face</strong><br />

states this is the mainly important value. Sample and analyzer can be rotated versus each other<br />

<strong>to</strong> achieve any possible combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the angles and therefore any point <str<strong>on</strong>g>of</str<strong>on</strong>g> the Brillouin z<strong>on</strong>e.<br />

Detecting E kin , ϕ and ϑ nally allows <strong>to</strong> probe directly the band structure E B (k || ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a system.<br />

12


3 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

3.1 Sur<strong>face</strong> morphology by AFM<br />

As scattering at terrace steps has an inuence <strong>on</strong> the electr<strong>on</strong>ic transport properties, great eort<br />

has been made in order <strong>to</strong> achieve an ordered sur<strong>face</strong>. Even nominally <strong>on</strong>-axis <strong>SiC</strong> substrates typically<br />

have a small miscut and are therefore not completely at. After H 2 etching the substrates<br />

show well ordered terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> several µm [2]. However, the graphitizati<strong>on</strong> in UHV envir<strong>on</strong>ment<br />

causes sur<strong>face</strong> roughening, so that the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sur<strong>face</strong> shows random steps and valleys (compare<br />

gure 6). The achieved average terrace size after the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth is approximately 50nm<br />

[2, 12]. The kinetic processes behind the growth are still not clear and under extensive research<br />

[12, 31]. The studies agree <strong>on</strong> the fact that the growth process starts at sur<strong>face</strong> steps and that<br />

pits form due <strong>to</strong> dierent retracti<strong>on</strong> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the steps. A fast high-temperature annealing is<br />

supposed <strong>to</strong> lead <strong>to</strong> a higher nucleati<strong>on</strong> density and therefore better sur<strong>face</strong> quality.<br />

Figure 6: AFM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a UHV grown nominally 1 ML <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sample <strong>on</strong> <strong>6H</strong>-<strong>SiC</strong> [11]<br />

Recent progress in the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> better ordered sur<strong>face</strong>s has been made by Hupalo et al.[12]<br />

by growing <str<strong>on</strong>g>graphene</str<strong>on</strong>g> in short heating ashes <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 sec<strong>on</strong>ds and lead <strong>to</strong> 150 nm terraces. Emtsev<br />

et al.[11] performed growing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> in an arg<strong>on</strong> envir<strong>on</strong>ment and succeeded in growing<br />

terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> a width <str<strong>on</strong>g>of</str<strong>on</strong>g> up <strong>to</strong> 3 µm. They also c<strong>on</strong>rmed that these bigger terraces give rise<br />

<strong>to</strong> a higher carrier mobility. Whereas these modicati<strong>on</strong>s during the growth process lead <strong>to</strong><br />

promising results, it is <strong>to</strong> this date uncertain if pregraphitizati<strong>on</strong> procedures like H 2 etching or<br />

preparing Si-rich sur<strong>face</strong>s have an eect <strong>on</strong> the sur<strong>face</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. For example a<br />

recent study suggested that H 2 etching even worses the quality as the step borders are necessary<br />

starting points for the growth process [12].<br />

13


Surprisingly the overall coherent size <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheet as determined by transport measurements<br />

is bigger than the terrace size [2]. This is explained by the observati<strong>on</strong> in scanning<br />

tunneling microscope (STM) images that <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheets can grow over substrate steps as well<br />

as over <str<strong>on</strong>g>graphene</str<strong>on</strong>g> steps [2, 32, 12] (see gure 7).<br />

Figure 7: STM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheet growing over a <strong>SiC</strong> step [12]<br />

3.2 Crystal structure by LEED<br />

The LEED pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphitized Si-<strong>face</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong> has been studied widely [3, 8, 18, 33]. During<br />

step by step heating <strong>to</strong> higher temperatures dierent sur<strong>face</strong> rec<strong>on</strong>structi<strong>on</strong>s are observed. While<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the early patterns depend <strong>on</strong> preparati<strong>on</strong> techniques, all groups agree in the observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ( √ 3 × √ 3)R30 ◦ pattern for temperatures in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1050 ◦ . Further annealing leads<br />

<strong>to</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> a (6 √ 3 × 6 √ 3)R30 ◦ rec<strong>on</strong>structi<strong>on</strong>. [18, 22]. The LEED pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is illustrated in gure 8.<br />

In gure 8 orange arrows indicate spots which are due <strong>to</strong> the <strong>SiC</strong> substrate and reveal the<br />

hexag<strong>on</strong>al symmetry as expected from the hexag<strong>on</strong>al unit cell in real space (compare secti<strong>on</strong><br />

2.2). White arrows indicate spots which can be explained by a thin graphite overlayer, which<br />

also exhibits a hexag<strong>on</strong>al symmetry. The fact that sharp peaks are visible, indicates that the<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> overlayer is rotati<strong>on</strong>ally well aligned. The angle between the <strong>SiC</strong> and the graphite<br />

reciprocal vec<strong>to</strong>rs is 30 ◦ and corresp<strong>on</strong>ds <strong>to</strong> a 30 ◦ rotati<strong>on</strong> between substrate and overlayer in<br />

real space. Moreover <strong>on</strong>e can observe that the graphite spots appear further outside <strong>on</strong> the LEED<br />

pattern. This larger reciprocal unit vec<strong>to</strong>r corresp<strong>on</strong>ds <strong>to</strong> a smaller unit cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> compared<br />

<strong>to</strong> <strong>SiC</strong> in real space. This ts well <strong>to</strong> the real space unit vec<strong>to</strong>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite (a<strong>SiC</strong> = 2.46 Å,<br />

compare secti<strong>on</strong> 2.1) and <strong>SiC</strong> (a<strong>SiC</strong> = 3.08 Å, compare secti<strong>on</strong> 2.2).<br />

14


Figure 8: Left: LEED pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e m<strong>on</strong>olayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Orange arrows indicate <strong>SiC</strong>-spots,<br />

white arrows indicate graphite spots [3].<br />

Right: Schematic LEED pattern <strong>with</strong> unit vec<strong>to</strong>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> reciprocal lattice for <strong>SiC</strong> ⃗s 1 /⃗s 2<br />

and graphite overlayer ⃗c 1 /⃗c 2 . Additi<strong>on</strong>al spots are due <strong>to</strong> sum vec<strong>to</strong>rs. [18]<br />

The mismatch <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit cells gives rise <strong>to</strong> a coincidence lattice <strong>with</strong> a large hexag<strong>on</strong>al unit cell<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a (6 √ 3 × 6 √ 3)R30 ◦ periodicity [2, 22]. In the reciprocal space this is observed as a hexag<strong>on</strong>al<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> spots close <strong>to</strong> the (0,0) spot. The unit cell in reciprocal space is very small and marked<br />

gray in the schematic LEED pattern. Finally spots are visible at positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sum vec<strong>to</strong>rs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

⃗s 1 , ⃗s 2 ,⃗c 1 ,⃗c 2 . The spot a in gure 8 is for example at the positi<strong>on</strong> ⃗c 1 + ⃗c 2 − ⃗s 2 , spot b at positi<strong>on</strong><br />

⃗s 1 + ⃗s 2 − ⃗c 1 . Theoretically all dierent combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these unit vec<strong>to</strong>rs are possible so that<br />

the whole (6 √ 3 × 6 √ 3)R30 ◦ mesh would appear, but as double diracti<strong>on</strong> is involved most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

them are extremely faint and therefore invisible.<br />

3.3 Thickness estimati<strong>on</strong> by AES<br />

AES has been used <strong>to</strong> identify the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>on</strong> the <strong>SiC</strong> substrate [8, 10, 16, 17]. The<br />

Si-LVV Auger peak is located at 92 eV and the C-KLL peak at 271 eV [28]. Li [19] has calculated<br />

theoretically the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> the silic<strong>on</strong> and the carb<strong>on</strong> peak as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers, based <strong>on</strong> the attenuati<strong>on</strong> in each layer, the backscattering fac<strong>to</strong>r,<br />

sensitivity fac<strong>to</strong>rs and mole fracti<strong>on</strong>s.<br />

These calculati<strong>on</strong>s used dierent models for the inter<strong>face</strong>: an inter<strong>face</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> a<strong>to</strong>ms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1/3 the a<strong>to</strong>m density <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>SiC</strong>-bilayer, a analogous inter<strong>face</strong> layer <strong>with</strong> carb<strong>on</strong> a<strong>to</strong>ms, or the<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> directly <strong>on</strong> the substrate. As discussed in secti<strong>on</strong> 2.3, the most likely model<br />

for the inter<strong>face</strong> between <strong>SiC</strong> and <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an inter<strong>face</strong> layer which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

15


Figure 9: Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Si:C Auger peak intensity ratio versus number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers for <strong>SiC</strong>(<strong>0001</strong>)<br />

substrates. Solid line: Model <strong>with</strong> inter<strong>face</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> C ada<strong>to</strong>ms at 1/3 their bilayer<br />

density. Dotted line: Model <strong>with</strong> inter<strong>face</strong> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> ada<strong>to</strong>ms at 1/3 their bilayer<br />

density. Dashed line: Model <strong>with</strong> bulk terminated <strong>SiC</strong>(<strong>0001</strong>). Inset shows Auger<br />

spectra obtained after (a) ex-situ H 2 etching (no UHV preparati<strong>on</strong>), (b) UHV anneal<br />

at 1150 ◦ C (LEED √ 3 × √ 3 pattern), (c) UHV anneal at 1350 ◦ C (LEED 6 √ 3 × 6 √ 3<br />

pattern) [10]<br />

carb<strong>on</strong> a<strong>to</strong>ms in a h<strong>on</strong>eycomb structure <strong>with</strong> covalent b<strong>on</strong>ds <strong>to</strong> the substrate. Although dierent<br />

binding c<strong>on</strong>gurati<strong>on</strong>s can change the AES signal slightly, the signal height is mainly determined<br />

by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> a<strong>to</strong>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> a given element. The inter<strong>face</strong> layer has the same a<strong>to</strong>m density as<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> although the binding c<strong>on</strong>gurati<strong>on</strong> is dierent [22]. Therefore it is most accurate <strong>to</strong><br />

use the bulk terminated model (dashed line) and take in<strong>to</strong> account that the rst layer <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

is the inter<strong>face</strong> layer. Therefore the axis at the graph should be called number <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> layers<br />

and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> actual <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers is always n-1. For example at a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Si:C=0.1 two<br />

carb<strong>on</strong> layer are measured which corresp<strong>on</strong>ds <strong>to</strong> a m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. A recent review states<br />

that AES usually overestimates the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers by <strong>on</strong>e <strong>to</strong> two layers if Li's model<br />

is used [2]. Therefore the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the inter<strong>face</strong> layer could explain this systematical error.<br />

16


3.4 Band structure by ARPES<br />

Figure 10 shows the band structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k || <strong>with</strong>in the Brillouin z<strong>on</strong>e<br />

is indicated by the green inset. The observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the band structure allows <strong>on</strong>e <strong>to</strong> observe the<br />

whole development <str<strong>on</strong>g>of</str<strong>on</strong>g> the sur<strong>face</strong> from the bare substrate <strong>to</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Whereas<br />

the rec<strong>on</strong>structi<strong>on</strong> layer <strong>on</strong>ly exhibits the σ-bands, m<strong>on</strong>olayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> reveals the typical linear<br />

dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the π-bands close <strong>to</strong> the K-point as <strong>on</strong>e can see in gure 10. One branch <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

symmetrical c<strong>on</strong>e (compare secti<strong>on</strong> 2.1) is suppressed due <strong>to</strong> matrix elements if the image is<br />

taken al<strong>on</strong>g the ΓK directi<strong>on</strong>. A measurement where k || is perpendicular <strong>to</strong> the ΓK directi<strong>on</strong><br />

would reveal both branches <strong>with</strong> equal intensity.<br />

Figure 10: ARPES <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> for the whole Brillouin z<strong>on</strong>e [3]<br />

As states close <strong>to</strong> the Fermi level are mainly resp<strong>on</strong>sible for the electr<strong>on</strong>ic properties, most<br />

interest is focused <strong>on</strong> this area. Figure 11 shows the band structure close <strong>to</strong> the Fermi level for<br />

dierent numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. One can see a signicant development <str<strong>on</strong>g>of</str<strong>on</strong>g> the band structure<br />

<strong>with</strong> thickness which is also reproduced by the theoretical calculati<strong>on</strong>s. The most obvious<br />

dierence is the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al bands for more <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers which is explained by<br />

interlayer splitting [34]. Moreover <strong>on</strong>e can observe a shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point. Due <strong>to</strong> charge<br />

transfer from the substrate the Dirac point <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is shifted below the Fermi<br />

level. As this substrate eect decreases for increasing thickness the Dirac point approaches the<br />

Fermi level for more <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. Adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkali a<strong>to</strong>ms like potassium which will transfer<br />

charges <strong>to</strong> the <strong>to</strong>pmost layer can systematically change the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point or<br />

17


even open and close the gap in the bilayer band structure [3]. Comparing the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bands<br />

and the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac point can be used <strong>to</strong> identify the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> a given sample.<br />

Figure 11: ARPES data and theoretical calculati<strong>on</strong>s close <strong>to</strong> the Dirac point show clear variati<strong>on</strong>s<br />

depending <strong>on</strong> the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness [3]<br />

18


4 Experiment<br />

4.1 Sample growth <strong>with</strong> <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method<br />

As explained in secti<strong>on</strong> 2.3 it is comm<strong>on</strong>ly known that during heating <strong>SiC</strong> silic<strong>on</strong> evaporates and<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> develops. This work presents a new technique for growing <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>, which<br />

can lead <strong>to</strong> more ordered sur<strong>face</strong>s than the usual growth in UHV.<br />

Commercial, nominally <strong>on</strong>-axis oriented wafers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>6H</strong>-<strong>SiC</strong> <strong>with</strong> a vicinal miscut <str<strong>on</strong>g>of</str<strong>on</strong>g> less than<br />

±0.06 ◦ and a polished Si-<strong>face</strong> are purchased from Cree Research, Inc. The resistivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the N-<br />

doped wafer is ρ ≈ 0.1 Ωcm. Pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.5 cm x 6.5 cm were cut <strong>with</strong> a diam<strong>on</strong>d saw in dierent<br />

orientati<strong>on</strong>s <strong>with</strong> respect <strong>to</strong> the miscut <str<strong>on</strong>g>of</str<strong>on</strong>g> the wafer. The necessary temperatures are obtained by<br />

resistive heating, but in a new c<strong>on</strong>gurati<strong>on</strong>, which we call the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method. The principle<br />

idea is <strong>to</strong> bring two samples facing each other very close <strong>to</strong>gether, which will give rise <strong>to</strong> a higher<br />

silic<strong>on</strong> pressure between the samples. This will in turn cause higher growing temperatures,<br />

which normally increases the mobility. Therefore the diusi<strong>on</strong> is enhanced and the ordering in<br />

the energetically most stable state <str<strong>on</strong>g>of</str<strong>on</strong>g> big terraces is more likely. This is similar <strong>to</strong> the approach<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> growing <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) under an arg<strong>on</strong> atmosphere [11] or the RF-furnace growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) [2, 20]. In both cases a better ordered sur<strong>face</strong> compared <strong>to</strong> UHVgrown<br />

samples has been achieved. For the samples which are grown in the arg<strong>on</strong> atmosphere<br />

an enhanced carrier mobility was measured as expected due <strong>to</strong> the reduced scattering. This<br />

supports that it is worth putting eort in<strong>to</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the sur<strong>face</strong> quality.<br />

Technically the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> c<strong>on</strong>gurati<strong>on</strong> is obtained by cutting a L-shaped piece <str<strong>on</strong>g>of</str<strong>on</strong>g> tantalum<br />

foil (d = 0.025 mm), where the short end is put between the two samples <strong>to</strong> provide a small<br />

distance and the l<strong>on</strong>g side is wrapped around the two samples several times <strong>to</strong> x the tantalum<br />

foil in this place (see gure 12). The polished Si-<strong>face</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wafers which are used for the growth<br />

are looking at each other, which gives the name <strong>face</strong>-<strong>to</strong>-<strong>face</strong>. As the two samples are very close<br />

<strong>to</strong>gether the evaporating silic<strong>on</strong> is captured in the small gap and gives rise <strong>to</strong> a higher silic<strong>on</strong><br />

pressure.<br />

Figure 12: Pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> wrapping procedure<br />

This sample-sandwich is subsequently clamped between two nuts <strong>on</strong> a rod <strong>on</strong> both sides (see<br />

gure 13). The rods are c<strong>on</strong>nected <strong>to</strong> a electrical feedthrough which provides the possibility<br />

<strong>to</strong> perform resistive heating. This mounting part is inserted in<strong>to</strong> a little vacuum chamber and<br />

19


Figure 13: Mounting <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample, red is the <strong>SiC</strong>-substrate, blue tantalum foil<br />

pumped down <strong>to</strong> a base pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 8 × 10 −7 Torr. Afterwards the sample is<br />

heated <strong>to</strong> 700 ◦ C for approximately 4 hours <strong>to</strong> clean the sur<strong>face</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong>s like oxygen<br />

and water. The temperature is measured <strong>with</strong> an pyrometer at ɛ = 0.96.<br />

After the wrapping the sample sandwich has a very high resistance in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

100 kΩ, which can be explained by a bad c<strong>on</strong>tact between the substrate and the tantalum foil.<br />

However, in the rst minute <str<strong>on</strong>g>of</str<strong>on</strong>g> the cleaning process the resistance drops in<strong>to</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 Ω.<br />

This is probably due <strong>to</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrical c<strong>on</strong>tact between the foil and the substrate<br />

by running a current through the c<strong>on</strong>tact points. Sometimes bright spots or even sparks can be<br />

observed at places close <strong>to</strong> the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the wrap, which also support this theory.<br />

After these preparati<strong>on</strong>s the sample is heated <strong>to</strong> a specic temperature for 20 minutes. The<br />

necessary increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the current leads <strong>to</strong> a further drop <str<strong>on</strong>g>of</str<strong>on</strong>g> the resistance in<strong>to</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

10 Ω. The temperature is the main parameter which has been varied in this work. During the<br />

project in <strong>to</strong>tal 14 sets <str<strong>on</strong>g>of</str<strong>on</strong>g> samples have been grown <strong>with</strong> dierent parameters. After the sample<br />

has cooled down the chamber is vented and the sample is unwrapped. For further measurements<br />

the two facing samples are analyzed independently.<br />

In order <strong>to</strong> perform LEED, AES and ARPES the samples are attached <strong>to</strong> a molybdenum puck<br />

by spotwelding two tantalum stripes. The samples are brought in<strong>to</strong> a UHV chamber <strong>with</strong> a<br />

base pressure below 5 × 10 −10 Torr. Prior <strong>to</strong> performing the measurements, the samples are<br />

heated by e-beam heating <strong>to</strong> a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> T = 1000 ◦ C <strong>with</strong> the pressure being kept below<br />

5×10 −8 Torr. This temperature has proven <strong>to</strong> give good ARPES results in earlier studies <strong>with</strong>out<br />

being believed <strong>to</strong> change the sample compositi<strong>on</strong> [35].<br />

20


4.2 AFM measurements<br />

All samples are examined <strong>with</strong> a Dimensi<strong>on</strong> T M 3100 A<strong>to</strong>mic F orce Microscope from Digital<br />

Instruments in tapping mode. An AFM image <str<strong>on</strong>g>of</str<strong>on</strong>g> the bare <strong>SiC</strong> substrate as it looks like before<br />

any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment is shown in gure 14.<br />

Figure 14: AFM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>SiC</strong> substrate (sur<strong>face</strong> polished, no further treatment)<br />

The sur<strong>face</strong> is quite at <strong>on</strong> a height scale <str<strong>on</strong>g>of</str<strong>on</strong>g> 8nm <strong>with</strong> some scratches which originate from<br />

the polishing process. Some white spots are visible which are probably pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> dirt. One <strong>face</strong><strong>to</strong>-<strong>face</strong><br />

set has <strong>on</strong>ly been wrapped and heated <strong>to</strong> 700 ◦ C in order <strong>to</strong> examine the eect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cleaning procedure. It turns out, that at 700 ◦ C the sur<strong>face</strong> does not change signicantly. After<br />

the cleaning the white spots disappear but the scratches <str<strong>on</strong>g>of</str<strong>on</strong>g> the polishing are still visible.<br />

For all samples which are heated above 1200 ◦ C a change compared <strong>to</strong> the bare substrate appears.<br />

However, the sur<strong>face</strong> morphology is not identical at all positi<strong>on</strong>s. Places <strong>on</strong> the substrate,<br />

which were covered <strong>with</strong> Ta-foil are usually very rough. The middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample is normally<br />

the best ordered place <strong>with</strong> at terraces while places close <strong>to</strong> the border show some roughening.<br />

For low temperatures both samples <str<strong>on</strong>g>of</str<strong>on</strong>g> the same set are roughly similar and show terraces in<br />

the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. The terrace size increases <strong>to</strong>wards higher temperatures as illustrated<br />

in gure 15.<br />

At temperatures above 1500 ◦ C the situati<strong>on</strong> becomes more diverse. One sample typically<br />

shows terraces while the other <strong>on</strong>e is very rough <strong>with</strong> many pits and holes. As the two samples are<br />

grown under nominally identical c<strong>on</strong>diti<strong>on</strong>s this is quite surprising. In order <strong>to</strong> nd a explanati<strong>on</strong><br />

for the dierent properties <strong>on</strong>e needs <strong>to</strong> nd a dierence between the two samples. As they are<br />

cut in the same way out <str<strong>on</strong>g>of</str<strong>on</strong>g> the same wafer the <strong>on</strong>ly critical point is the wrapping <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample<br />

in<strong>to</strong> the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> geometry. As this is d<strong>on</strong>e by hand it is not possible <strong>to</strong> c<strong>on</strong>trol the wrap<br />

perfectly. One could imagine that the c<strong>on</strong>tact <str<strong>on</strong>g>of</str<strong>on</strong>g> the foil <strong>to</strong> the two samples is dierent. This<br />

could be supported by the observati<strong>on</strong> that the overall resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample sandwich drops<br />

during the rst minute <str<strong>on</strong>g>of</str<strong>on</strong>g> the cleaning process. Perhaps even if the initial c<strong>on</strong>tact is similar,<br />

this improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tact is dierent for the two samples. For example if the c<strong>on</strong>tact<br />

21


Figure 15: Trend <str<strong>on</strong>g>of</str<strong>on</strong>g> terrace size <strong>to</strong> increase for temperature range 1200 ◦ C-1400 ◦ C<br />

becomes signicantly better <strong>on</strong> <strong>on</strong>e side, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the current will run through this sample so the<br />

mechanism which initially improved the c<strong>on</strong>tact w<strong>on</strong>'t work for the sec<strong>on</strong>d sample.<br />

If a dierent current is running through the samples this could cause a dierent temperature<br />

which would explain a dierent sur<strong>face</strong> morphology. Moreover this eect could be self-energizing<br />

as a higher temperature will further decrease the resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ducting <strong>SiC</strong> substrate.<br />

On the other hand <strong>on</strong>e would normally expect thermal radiati<strong>on</strong> <strong>to</strong> be very high at this temperature<br />

and therefore due <strong>to</strong> the small distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the two samples a similar temperature should<br />

be at both samples. The temperature reading <strong>with</strong> the pyrometer will always give the highest<br />

temperature as <strong>SiC</strong> is transparent for the infrared light and can't shield the radiati<strong>on</strong>.<br />

So far the reas<strong>on</strong> for the discrepancy between the two samples couldn't be determined. Further<br />

studies <strong>to</strong> investigate this questi<strong>on</strong> are necessary. Due <strong>to</strong> the restricted time usually <strong>on</strong>ly <strong>on</strong>e<br />

sample was introduced in<strong>to</strong> the UHV chamber and analyzed. For this purpose it has always been<br />

chosen the sample <strong>with</strong> the better ordered sur<strong>face</strong>.<br />

4.3 LEED measurements<br />

LEED measurements characterize the sur<strong>face</strong> structure and crystal order. As the spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> gun is in the order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e millimeter, the images are always average images <str<strong>on</strong>g>of</str<strong>on</strong>g> a large<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. A kinetic energy <str<strong>on</strong>g>of</str<strong>on</strong>g> E kin = 98.9 eV has been used and a camera has been<br />

employed <strong>to</strong> take pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> the uorescent screen. Figure 16 shows images which are taken at<br />

dierent samples and illustrate dierent steps in the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth process.<br />

Pattern a) shows <strong>on</strong>ly the bulk <strong>SiC</strong> spots. In this case no c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> is<br />

grown. In pattern b)/c) <strong>SiC</strong> spots as well as graphite spots and rec<strong>on</strong>structi<strong>on</strong> spots are visible<br />

(compare chapter 3.2). While in b) the graphite spots are very weak they are even brighter<br />

than the <strong>SiC</strong> spots in pattern c). Therefore <strong>on</strong>e can c<strong>on</strong>clude that sample c) has more <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

layers than sample b). A drop in the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>SiC</strong> spots can be observed because the<br />

22


Figure 16: LEED pattern at dierent stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth. Orange circle marks <strong>SiC</strong> spot,<br />

white circle marks graphite spot.<br />

a) <strong>SiC</strong> substrate b) Rec<strong>on</strong>structi<strong>on</strong> layer/M<strong>on</strong>olayer c) Bilayer d) 5-6 layers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

additi<strong>on</strong>al <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers prevent the electr<strong>on</strong>s <strong>to</strong> reach the <strong>SiC</strong> layers due <strong>to</strong> the nite mean<br />

free path at 98.9 eV. Pattern d) nally shows nearly undetectable <strong>SiC</strong> spots. This corresp<strong>on</strong>ds<br />

<strong>to</strong> many <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. For more than 6-8 <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers the LEED image is identical <strong>to</strong> that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graphite as the electr<strong>on</strong>s d<strong>on</strong>'t probe the <strong>SiC</strong> sur<strong>face</strong> any more.<br />

Although LEED is a very fast <strong>to</strong>ol <strong>to</strong> get a sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the sur<strong>face</strong> structure it is hard <strong>to</strong> achieve<br />

accurate thickness estimati<strong>on</strong>s based <strong>on</strong> LEED images. Firstly the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> a LEED spot<br />

is energy dependent. Therefore <strong>on</strong>e can <strong>on</strong>ly compare patterns which have been taken at the<br />

same energy. As the LEED patterns in the literature are taken at many dierent energies direct<br />

comparis<strong>on</strong> is not possible. Moreover the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an intensity ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the spots is very<br />

error-pr<strong>on</strong>e as background intensity, adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> the lenses and the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured spot<br />

can change the calculated intensity. Nevertheless LEED is an useful <strong>to</strong>ol for rough estimati<strong>on</strong>s.<br />

The human eye can quite easily give an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ratio which allows relative statements<br />

between images taken in the exact same manner. If some samples are characterized by other<br />

methods, the thickness can be classied in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> similar, more or less than a given reference<br />

sample.<br />

4.4 AES measurement<br />

AES measurements are performed <strong>with</strong> a SPECS Phoibos 150 hemispherical analyzer and an<br />

electr<strong>on</strong> gun which provides electr<strong>on</strong>s at an energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 keV. The data is taken <strong>with</strong> the medium<br />

area lens mode and a pass energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 eV. After the measurement the data is averaged over<br />

the angle and dierentiated <strong>to</strong> decrease the eect <str<strong>on</strong>g>of</str<strong>on</strong>g> the background. Moreover this allows <strong>to</strong><br />

compare the data <strong>with</strong> reference AES data which has been taken <strong>with</strong> a cylindric mirror analyzer<br />

(CMA).<br />

Figure 17 shows an example <str<strong>on</strong>g>of</str<strong>on</strong>g> the data. In order <strong>to</strong> get a c<strong>on</strong>sistent value for the Si:C<br />

ratio a t <strong>with</strong> an exp<strong>on</strong>ential background and two Lorentzian peaks is performed. Comparis<strong>on</strong><br />

<strong>with</strong> the literature data (secti<strong>on</strong> 3.3) shows that our data have a distinctly higher silic<strong>on</strong> peak<br />

than expected. The sample <str<strong>on</strong>g>of</str<strong>on</strong>g> gure 17 for example exhibits m<strong>on</strong>olayer <strong>to</strong> bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> as<br />

23


Figure 17: AES data <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample <strong>with</strong> a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-2 layer <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. The inset shows the<br />

raw data and the main graph gives the derivate (red) and the t functi<strong>on</strong> (blue).<br />

determined by LEED and ARPES and should therefore have a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Si : C ≈ 0.1 if the<br />

inter<strong>face</strong> layer is taken in<strong>to</strong> account or Si : C ≈ 0.3 otherwise. This is an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

smaller than the measured ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Si : C = 2.4.<br />

Several explanati<strong>on</strong>s for this dierence have been suggested. A c<strong>on</strong>tributi<strong>on</strong> <strong>to</strong> the dierence is<br />

denitely the analyzer mode. The signal intensity as measured by an electr<strong>on</strong> energy analyzer is<br />

not independent from the kinetic energy [36]. Two dierent operati<strong>on</strong> modes <strong>with</strong> two dierent<br />

energy dependences are possible. In Fixed Retardati<strong>on</strong> Ratio (FRR) mode all particles are<br />

decelerated <strong>with</strong> the same xed fac<strong>to</strong>r. This causes the measured intensity <strong>to</strong> increase <strong>with</strong><br />

the kinetic energy as I ∝ E kin . In the Fixed Analyzer Transmissi<strong>on</strong> (FAT) mode the energy<br />

resoluti<strong>on</strong> is kept c<strong>on</strong>stant for all energies. This leads <strong>to</strong> an decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the intensity <strong>with</strong><br />

increasing kinetic energy as I ∝ 1<br />

E kin<br />

. Due <strong>to</strong> experimental limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our system, data could<br />

<strong>on</strong>ly be acquired in FAT mode. In c<strong>on</strong>trast, most Auger data is taken <strong>with</strong> a CMA which uses<br />

FFR and direct acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the derivative. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> this dierent modes will change the<br />

measured peak ratios. Knowing the energy dependences, <strong>on</strong>e can calculate the dierence in the<br />

ratio which will arise due <strong>to</strong> this dierence in data acquisiti<strong>on</strong>. The mathematical treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this eect leads <strong>to</strong> a smaller Si:C ratio but it is still not comparable <strong>to</strong> the literature data. A<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental c<strong>on</strong>diti<strong>on</strong>s is under way so an experimental test <str<strong>on</strong>g>of</str<strong>on</strong>g> the dierent<br />

analyzer modes can be performed so<strong>on</strong>.<br />

Another dierence between a CMA and a hemispherical analyzer is the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> incoming<br />

electr<strong>on</strong>s and Auger electr<strong>on</strong>s. In a CMA the electr<strong>on</strong> gun is mounted normal <strong>to</strong> the sample<br />

sur<strong>face</strong> and the detected electr<strong>on</strong>s leave the sample under an angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 42 ◦ . However, in our<br />

case the electr<strong>on</strong> gun is mounted under an angle while the analyzer is orientated vertically.<br />

Rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Li's calculati<strong>on</strong> <strong>with</strong> our geometry showed that this dierence has <strong>on</strong>ly a<br />

minor eect and can be neglected at this point.<br />

Another possible explanati<strong>on</strong> could be that the growth process leaves additi<strong>on</strong>al silic<strong>on</strong> at<br />

the sample, which might sound reas<strong>on</strong>able, as everything is held under high silic<strong>on</strong> pressure.<br />

24


However, this can probably be ruled out as well as a sample which was produced <strong>with</strong>out the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method gave a similar signal.<br />

Even for identical samples, geometry and analyzer mode quantitative AES measurements<br />

are inuenced by a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters like the resoluti<strong>on</strong> or the modulati<strong>on</strong> voltage.<br />

Therefore it is still not clear what causes the dierence <str<strong>on</strong>g>of</str<strong>on</strong>g> the peak ratio in literature and our<br />

results. In order <strong>to</strong> use AES measurements despite this, even now unsolved problem, our own<br />

reference samples have been used. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> two reference samples has been determined<br />

by ARPES measurements (compare chapter 4.5). A sample <strong>with</strong> 1.5 ML <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> showed a<br />

Si:C ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Si : C ≈ 2.4 and a sample <strong>with</strong> approximately 3 layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> had a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Si : C ≈ 1.1. These two samples are sucient <strong>to</strong> give a rough estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness<br />

in the c<strong>on</strong>sidered range.<br />

4.5 ARPES measurements<br />

Due <strong>to</strong> limited experimental time <strong>on</strong>ly few samples have been measured by ARPES although this<br />

gives the best estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers and can at the same time provide informati<strong>on</strong><br />

about the sample quality. The ARPES measurements are nevertheless extremely important as<br />

they have been used as references for LEED and AES. ARPES measurements were c<strong>on</strong>ducted<br />

<strong>with</strong> a SPECS Phoibos 150 analyzer at a pass energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 eV and the low angular dispersi<strong>on</strong><br />

lens mode. The excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pho<strong>to</strong>electr<strong>on</strong>s steams from a Helium lamp, where the HeII<br />

signal was used (E HeII = 40.81 eV). One sample was measured at the Advanced Light Source,<br />

Beamline 10.<br />

Figure 18: ARPES data <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample between m<strong>on</strong>olayer and bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

25


Figure 18 shows the band structure as measured at the K point in ΓK directi<strong>on</strong>. The image<br />

shows two bands but still has intensity at the Dirac point. Moreover the Dirac point is around<br />

−0.3 eV. Comparis<strong>on</strong> <strong>with</strong> gure 11 shows that this is produced by adding the m<strong>on</strong>olayer and<br />

bilayer bands.<br />

The sharpness <str<strong>on</strong>g>of</str<strong>on</strong>g> the band gives informati<strong>on</strong> about the sample quality. Unfortunately the base<br />

pressure for this measurement was quite high, no cooling was used and the measurement has<br />

been performed <strong>with</strong> the Helium lamp <strong>with</strong> a very big spot size. Therefore a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al<br />

broadening originates from these parameters, which makes it hard <strong>to</strong> estimate the quality. It is<br />

encouraging that quite sharp bands have been observed despite this problematic circumstances.<br />

The quality is already comparable <strong>to</strong> the reference data <str<strong>on</strong>g>of</str<strong>on</strong>g> gure 11 which has been taken at a<br />

synchrotr<strong>on</strong> <strong>with</strong> a smaller spot size and probably better base pressure. Therefore the quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the band structure might be even sharper if measured under better c<strong>on</strong>diti<strong>on</strong>s. Due <strong>to</strong> the big<br />

spot size it is till now also uncertain if the signal originates from the simultaneous probing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dierent areas which exhibit m<strong>on</strong>olayer and bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> or if the whole sur<strong>face</strong> is covered<br />

by a m<strong>on</strong>o- and bilayer mixture.<br />

26


5 Results and discussi<strong>on</strong><br />

5.1 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness<br />

As explained in previous secti<strong>on</strong>s, LEED, AES and ARPES can be used <strong>to</strong> characterize the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. Although some techniques d<strong>on</strong>'t allow <strong>to</strong> give an exact number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers, it is always possible <strong>to</strong> compare the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the dierent samples relatively<br />

and order these by less, more or equal <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness. Independent analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the three<br />

techniques gave c<strong>on</strong>sistent results for all 8 studied samples. This c<strong>on</strong>rms that the measurements<br />

are performed and analyzed correctly. As <strong>on</strong>ly ARPES can give an exact number, the three<br />

samples which are measured by ARPES are used <strong>to</strong> calibrate the results by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers.<br />

Therefore the qualitative trends are determined by three independent methods whereas the<br />

quantitative number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers is basically xed <strong>on</strong> a few reference samples, which are measured<br />

by ARPES. It is also worth noting that the measurements reproduce the general structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reference data in the literature. Therefore the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method does not change the electr<strong>on</strong>ic<br />

or crystal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> but <strong>on</strong>ly introduces changes in<strong>to</strong> the sur<strong>face</strong> quality.<br />

As well as all methods agree <strong>on</strong> dierent <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness <strong>on</strong> dierent samples, they also<br />

show uniformly a positi<strong>on</strong> dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness <strong>on</strong> <strong>on</strong>e sample. One usually nds more<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> at the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample. The dierence between center and border <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sample can be as big as 2 layers. To nd a possible explanati<strong>on</strong> for this eect <strong>on</strong>e must c<strong>on</strong>sider<br />

a special feature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method. As explained in secti<strong>on</strong> 4.1 the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method<br />

is used <strong>to</strong> increase the partial silic<strong>on</strong> pressure in the proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. At the border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sample the evaporated silic<strong>on</strong> a<strong>to</strong>ms can escape the small gap between the two facing<br />

samples. Therefore it is reas<strong>on</strong>able that in the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the borders <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample a lower silic<strong>on</strong><br />

pressure is present which leads <strong>to</strong> a faster growth <strong>with</strong> more nal layers.<br />

5.2 Temperature dependence<br />

Samples have been grown at many dierent temperatures. Figure 19 gives a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> estimated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth temperature. Since the samples<br />

d<strong>on</strong>'t exhibit a c<strong>on</strong>stant <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness at all positi<strong>on</strong>s, the graphic shows the range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness which has been found <strong>on</strong> the sample. This graphic is <strong>on</strong>ly a best attempt<br />

and not a denitive plot, as it was necessary <strong>to</strong> combine all methods <strong>to</strong> <strong>on</strong>e number and <strong>to</strong><br />

calibrate the thickness axis by few ARPES measurements.<br />

The orange sample has <strong>on</strong>e special feature. As the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method should work the<br />

better the smaller the gap between the two samples is, it seemed logical <strong>to</strong> try <strong>to</strong> grow samples<br />

<strong>with</strong> a nominally d=0 gap. The rst test at 1400 ◦ C worked well as illustrated but for higher<br />

temperatures the sur<strong>face</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample was destroyed and extremely rough. This is probably an<br />

eect where the samples are glued <strong>to</strong>gether at the growth temperature and destroyed if taken<br />

apart afterwards. As it was not possible <strong>to</strong> achieve a high quality sur<strong>face</strong> for a d=0 gap, it has<br />

been given up quite so<strong>on</strong> and returned <strong>to</strong> the Ta-foil as a distance piece.<br />

27


Figure 19: Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> dependent estimated <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness for variable<br />

temperature<br />

The overall trend in gure 19 is clearly visible. At a higher temperature more <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers<br />

are grown during the same period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. This is an expected result as a higher temperature<br />

causes an eectively higher silic<strong>on</strong> evaporati<strong>on</strong> rate which will lead <strong>to</strong> more <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers.<br />

The overall temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth (≈1500 ◦ C) is c<strong>on</strong>siderably higher for<br />

the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method as compared <strong>to</strong> the growth in UHV envir<strong>on</strong>ment (≈1200 ◦ C). This is<br />

also in good agreement <strong>with</strong> the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>face</strong>-<strong>to</strong>-<strong>face</strong> growth, which predicts a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

growth speed compared <strong>to</strong> the UHV growth. To reinforce the growth it is therefore necessary <strong>to</strong><br />

apply higher temperatures. One should also note that the growth process is very temperature<br />

sensitive. Whereas at 1500 ◦ C <strong>on</strong>e layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> grows in 20 minutes, at 1550 ◦ C three<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> develop in the same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Therefore the evaporati<strong>on</strong> rate triples<br />

while <strong>on</strong>ly increasing the temperature by 50 ◦ C. Thus it is very important <strong>to</strong> achieve a close<br />

temperature c<strong>on</strong>trol in order <strong>to</strong> obtain a close c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness.<br />

As this graphic shows even samples which are grown at the nominally same parameters can<br />

exhibit a dierent amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>, as it is most striking if <strong>on</strong>e compares the blue and the<br />

dark green sample. These are samples <str<strong>on</strong>g>of</str<strong>on</strong>g> dierent sets which are grown at the nominally same<br />

temperature. The reas<strong>on</strong> for this eect is still under discussi<strong>on</strong>. There could be diculties <strong>with</strong><br />

the temperature measurement as the pyrometer is not very accurate and it is questi<strong>on</strong>able if<br />

the nominal dierence <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 ◦ C between the purple (1525 ◦ C) and dark green/blue (1535 ◦ C) is<br />

28


c<strong>on</strong>trollable <strong>with</strong> this technique. Moreover instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the power supply could be resp<strong>on</strong>sible<br />

for dierences between dierent growing procedures as the power supply has been used above<br />

the ocial range. Finally the mechanical problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the wrap and the c<strong>on</strong>tact between the<br />

Ta-foil and the substrate need <strong>to</strong> be taken in<strong>to</strong> account. As explained in secti<strong>on</strong> 4.2 this could<br />

cause dierences between the two samples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e set. In the same way this could also introduce<br />

a dierence between dierent sets as perhaps it is <strong>on</strong>ce tighter or looser than the other time.<br />

Therefore overall resistance and overall current could dier or the dierence between the two<br />

partners could be smaller or bigger. More research is necessary at this point which would include<br />

measuring both samples <str<strong>on</strong>g>of</str<strong>on</strong>g> a set.<br />

At the same time, eort should be put in<strong>to</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanical implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method. One design <strong>with</strong> several molybdenum plates, which are held <strong>to</strong>gether<br />

by rods and nuts, failed due <strong>to</strong> the additi<strong>on</strong>al heating <str<strong>on</strong>g>of</str<strong>on</strong>g> the molybdenum material. Moreover<br />

technical problems showed up <strong>with</strong> the handling <str<strong>on</strong>g>of</str<strong>on</strong>g> many small pieces and an overall higher resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sample sandwich. Nevertheless further improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> this design or development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a new <strong>on</strong>e is necessary <strong>to</strong> gain reproducible results.<br />

5.3 Orientati<strong>on</strong> dependence<br />

The reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sur<strong>face</strong>s and the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> big macro terraces at high temperatures<br />

is called step bunching as the single layer steps, due <strong>to</strong> the vicinal miscut, bunch <strong>to</strong>gether <strong>to</strong><br />

form macro steps [11]. If resistive heating is performed this can be induced by electromigrati<strong>on</strong><br />

[37]. Electromigrati<strong>on</strong> is the eect <str<strong>on</strong>g>of</str<strong>on</strong>g> a force <strong>on</strong> the diusing ada<strong>to</strong>ms <strong>on</strong> the sur<strong>face</strong> by the<br />

c<strong>on</strong>ducting electr<strong>on</strong>s. The step bunching <strong>on</strong>ly occurs in a special orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the current<br />

relative <strong>to</strong> the steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the vicinal miscut, which are normally described as step-up and stepdown.<br />

Sometimes the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the current which is necessary for step bunching even changes<br />

for dierent temperature ranges [37].<br />

To this date no literature can be found if electromigrati<strong>on</strong> induced step bunching occurs during<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth as most <str<strong>on</strong>g>of</str<strong>on</strong>g> the heating is performed by e-beam heating. In this work samples<br />

have been grown in c<strong>on</strong>trolled orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the original step directi<strong>on</strong>, as induced by the miscut,<br />

and the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrical current. Three samples have been grown in dierent directi<strong>on</strong>s<br />

(step-up, step-down and al<strong>on</strong>g the original steps) at similar temperatures. No extremely striking<br />

dierences <str<strong>on</strong>g>of</str<strong>on</strong>g> the sur<strong>face</strong> morphology have been observed in the AFM images. As explained in<br />

secti<strong>on</strong> 3.1 the sur<strong>face</strong> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> a given sample varies signicantly <strong>with</strong> positi<strong>on</strong>. Due <strong>to</strong><br />

the small number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples which are tested under c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this aspect and this big<br />

variance <strong>with</strong>in <strong>on</strong>e sample it hasn't been possible <strong>to</strong> attribute any signicant change <strong>to</strong> the<br />

dierent orientati<strong>on</strong>. Nevertheless <strong>on</strong>e can not denitely exclude that electromigrati<strong>on</strong> might<br />

have an eect based <strong>on</strong> this results.<br />

One interesting point should be noted about the sample, where the current is running al<strong>on</strong>g the<br />

original steps. The nal steps are orientated perpendicular <strong>to</strong> the current. Therefore the terraces<br />

have completely reorganized and are mainly inuenced by the electrical current rather than the<br />

vicinal miscut. Moreover, although the results are not statistically good enough <strong>to</strong> give a denite<br />

29


answer about the best orientati<strong>on</strong>, this sample seemed <strong>to</strong> have a slightly improved sur<strong>face</strong>. More<br />

work will be necessary <strong>to</strong> understand the mechanism behind this eect and perhaps utilize it for<br />

the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality samples.<br />

5.4 Sur<strong>face</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

As the goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this project was <strong>to</strong> grow m<strong>on</strong>o- and bilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>with</strong> a high sur<strong>face</strong> order, <strong>on</strong>e<br />

nally needs <strong>to</strong> combine the thickness data <strong>with</strong> the sur<strong>face</strong> morphology. This is quite challenging<br />

and can't be d<strong>on</strong>e <strong>with</strong> perfect accuracy. On the <strong>on</strong>e hand the spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> the probing sources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LEED, AES and ARPES is around 1mm whereas the AFM shows images <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 µm x 10 µm.<br />

Therefore the thickness from spectroscopic estimates is averaged over quite a large area while<br />

the sur<strong>face</strong> morphology can <strong>on</strong>ly be identied for small places. Moreover the experimental setup<br />

does not allow <strong>to</strong> identify the spot <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement very accurate. Nevertheless it is possible<br />

<strong>to</strong> clearly discriminate between the middle and the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples.<br />

Broad, uniform terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> up <strong>to</strong> 2 µm width as in gure 15c can <strong>on</strong>ly be observed <strong>on</strong> the<br />

middle <str<strong>on</strong>g>of</str<strong>on</strong>g> samples <strong>with</strong> very low <str<strong>on</strong>g>graphene</str<strong>on</strong>g> thickness. The border <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples as well as<br />

samples which show a c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> (at least <strong>on</strong>e m<strong>on</strong>olayer) in the middle<br />

usually look worse. The terraces are smaller and not l<strong>on</strong>ger at, but exhibit pits and holes as<br />

dem<strong>on</strong>strated in gure 20. The terraces can be up <strong>to</strong> 1 µm wide but they are littered <strong>with</strong> pits.<br />

Figure 20: AFM image <str<strong>on</strong>g>of</str<strong>on</strong>g> a place <strong>with</strong> approximately 2ML <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

The assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> well ordered sur<strong>face</strong>s at low temperatures and roughened sur<strong>face</strong>s at higher<br />

temperatures or the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples can be veried for all studied samples. Therefore<br />

<strong>on</strong>e is forced <strong>to</strong> believe that the big terraces d<strong>on</strong>'t carry <str<strong>on</strong>g>graphene</str<strong>on</strong>g> but are still <strong>SiC</strong> or at most<br />

the rec<strong>on</strong>structi<strong>on</strong> layer. The trend <str<strong>on</strong>g>of</str<strong>on</strong>g> an increasing terrace width at increasing temperatures in<br />

gure 15 is <strong>on</strong>ly true for the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200 − 1400 ◦ C. At temperatures above 1500 ◦ C, which<br />

is identical <strong>with</strong> the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth, the trend turns around and the sur<strong>face</strong> becomes<br />

30


less ordered. Therefore the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method proves itself by giving rise <strong>to</strong> a well ordered <strong>SiC</strong><br />

sur<strong>face</strong> but can't prevent the sur<strong>face</strong> roughening during the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth.<br />

Comparis<strong>on</strong> <strong>with</strong> the literature data nevertheless shows an improvement. The UHV grown<br />

sample (compare secti<strong>on</strong> 3.1, gure 6) has an even worse sur<strong>face</strong> quality. Therefore the <strong>face</strong><strong>to</strong>-<strong>face</strong><br />

method is an improvement although it is disappointing that the roughening during the<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g> growth still shows up even if the eect is less important than for UHV growth. On the<br />

other hand <strong>on</strong>e must note that a recent trial <strong>to</strong> improve the sur<strong>face</strong> quality by growing <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

under an arg<strong>on</strong> atmosphere lead <strong>to</strong> an even higher sur<strong>face</strong> quality [11]. This group succeeded in<br />

growing uniform terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> up <strong>to</strong> 3 µm. Future investigati<strong>on</strong>s will show if a improved <strong>face</strong>-<strong>to</strong>-<strong>face</strong><br />

method can be used <strong>to</strong> achieve this quality.<br />

31


6 C<strong>on</strong>clusi<strong>on</strong><br />

In this work a new method for the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> has been presented. The <strong>face</strong>-t<str<strong>on</strong>g>of</str<strong>on</strong>g>ace<br />

method is dened by a special geometric design which increases the silic<strong>on</strong> pressure during<br />

the growth process. Due <strong>to</strong> the higher silic<strong>on</strong> pressure a higher growth temperature can be used<br />

which is supposed <strong>to</strong> give rise <strong>to</strong> better sur<strong>face</strong> ordering. 14 samples have been grown by this<br />

technique at dierent temperatures and substrate orientati<strong>on</strong>s. Extensive characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

samples has been c<strong>on</strong>ducted by AFM <strong>to</strong> study the sur<strong>face</strong> morphology and terrace sizes. ARPES,<br />

LEED and AES have been used <strong>to</strong> identify the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers.<br />

All measurement techniques gave c<strong>on</strong>sistent results in comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the data <strong>with</strong> each other<br />

as well as <strong>with</strong> the literature. Similar <strong>to</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> in UHV the thickness can<br />

be c<strong>on</strong>trolled by the temperature <strong>with</strong> increasing thickness at higher temperatures. However<br />

the overall temperature is higher for the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method. Several samples in the range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>olayer <strong>to</strong> trilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> have been grown at temperatures between 1500 ◦ C − 1550 ◦ C.<br />

Graphene samples exhibit terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> up <strong>to</strong> 1 µm width <strong>with</strong> some small pits. Although the<br />

small pits indicate that sur<strong>face</strong> roughening is still present, the overall sur<strong>face</strong> quality is better<br />

than for UHV growth as this leads <strong>to</strong> average terraces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 50 nm. This is further supported<br />

by the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quite a sharp band structure. The results d<strong>on</strong>'t indicate a dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sur<strong>face</strong> quality from relative orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical current <strong>to</strong> the initial step directi<strong>on</strong>.<br />

Till now the method is not perfectly c<strong>on</strong>trolled, which can sometimes result in quite big<br />

dierences between samples <strong>with</strong> nominally similar parameters. Further work <strong>with</strong> special eort<br />

in<strong>to</strong> the improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the technical implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the method is necessary. It would also<br />

be a promising route <strong>to</strong> change the annealing time which has been kept c<strong>on</strong>stant for all samples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this project.<br />

Further studies should additi<strong>on</strong>ally c<strong>on</strong>sider the use <str<strong>on</strong>g>of</str<strong>on</strong>g> other characterizati<strong>on</strong> methods. Due <strong>to</strong><br />

the reduced scattering an improved sur<strong>face</strong> quality is expected <strong>to</strong> give rise <strong>to</strong> improved transport<br />

properties as for example a higher carrier mobility. Transport measurements would be a route <strong>to</strong><br />

c<strong>on</strong>rm this and <strong>to</strong> estimate the domain size. As <str<strong>on</strong>g>graphene</str<strong>on</strong>g> sheets can grow uninterrupted over<br />

substrate steps this domain size can be signicantly bigger than the terrace size. On the other<br />

hand STM measurements can show if this uninterrupted growth is also possible over the big<br />

steps which come al<strong>on</strong>g <strong>with</strong> the big terrace size. LEEM measurements can be used <strong>to</strong> image the<br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> the sample. This would allow <strong>to</strong> determine the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the thickness<br />

c<strong>on</strong>trol. Finally Raman measurements could be interesting due <strong>to</strong> the small spot size which<br />

allows <strong>to</strong> probe single terraces independently.<br />

In this project it was shown that the principle idea behind the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method is working<br />

and that <str<strong>on</strong>g>graphene</str<strong>on</strong>g> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> promising quality can be grown. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> four dierent techniques<br />

allowed broad characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples and showed that the method gives rise <strong>to</strong> an<br />

improved sur<strong>face</strong> quality while the <str<strong>on</strong>g>graphene</str<strong>on</strong>g> properties remain unaltered. With some further<br />

work the <strong>face</strong>-<strong>to</strong>-<strong>face</strong> method will hopefully become a way <strong>to</strong> grow high quality samples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>.<br />

32


References<br />

[1] A. K. Geim and K. S. Novoselov. The rise <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Nat Mater, 6(3):183191, March<br />

2007.<br />

[2] J. Hass, De W. A. Heer, and E. H. C<strong>on</strong>rad. The growth and morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g><br />

multilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong>: C<strong>on</strong>densed Matter, 20(32):323202+, 2008.<br />

[3] Th Seyller, A. Bostwick, K. V. Emtsev, K. Horn, L. Ley, J. L. Mcchesney, T. Ohta, J. D.<br />

Riley, E. Rotenberg, and F. Speck. Epitaxial <str<strong>on</strong>g>graphene</str<strong>on</strong>g>: a new material. Physica status<br />

solidi (b), 245(7):14361446, 2008.<br />

[4] Eduardo Fradkin. Critical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> disordered degenerate semic<strong>on</strong>duc<strong>to</strong>rs. II. Spectrum<br />

and transport properties in mean-eld theory. Phys. Rev. B, 33(5):32633268, Mar 1986.<br />

[5] L. D. Landau. Zur Theorie der Phasenumwandlungen II. Phys. Z. Sowjetuni<strong>on</strong>, 11:2635,<br />

1937.<br />

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dub<strong>on</strong>os, I. V.<br />

Grigorieva, and A. A. Firsov. Electric Field Eect in A<strong>to</strong>mically Thin Carb<strong>on</strong> Films. Science,<br />

306(5696):666669, 2004.<br />

[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnels<strong>on</strong>, I. V. Grigorieva,<br />

S. V. Dub<strong>on</strong>os, and A. A. Firsov. Two-dimensi<strong>on</strong>al gas <str<strong>on</strong>g>of</str<strong>on</strong>g> massless dirac fermi<strong>on</strong>s in<br />

<str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Nature, 438(7065):197200.<br />

[8] Claire Berger, Zhimin S<strong>on</strong>g, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting<br />

Dai, Alexei N. Marchenkov, Edward H. C<strong>on</strong>rad, Phillip N. First, and Walt A. de Heer.<br />

Ultrathin <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> graphite: 2d electr<strong>on</strong> gas properties and a route <strong>to</strong>ward <str<strong>on</strong>g>graphene</str<strong>on</strong>g>-based<br />

nanoelectr<strong>on</strong>ics. J.Phys.Chem., 108:19912, 2004.<br />

[9] Taisuke Ohta, Aar<strong>on</strong> Bostwick, J. L. Mcchesney, Thomas Seyller, Karsten Horn, and Eli<br />

Rotenberg. Interlayer interacti<strong>on</strong> and electr<strong>on</strong>ic screening in multilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> investigated<br />

<strong>with</strong> angle-resolved pho<strong>to</strong>emissi<strong>on</strong> spectroscopy. Physical Review Letters, 98(20),<br />

2007.<br />

[10] Walt A. de Heer, Claire Berger, Xiaos<strong>on</strong>g Wu, Phillip N. First, Edward H. C<strong>on</strong>rad, Xuebin<br />

Li, Tianbo Li, Michael Sprinkle, Joanna Hass, Marcin L. Sadowski, Marek Potemski, and<br />

Gérard Martinez. Epitaxial <str<strong>on</strong>g>graphene</str<strong>on</strong>g>. Solid State Communicati<strong>on</strong>s, 143(1-2):92100, July<br />

2007.<br />

[11] K<strong>on</strong>stantin V. Emtsev, Aar<strong>on</strong> Bostwick, Karsten Horn, Johannes Jobst, Gary L. Kellogg,<br />

Lothar Ley, Jessica L. McChesney, Taisuke Ohta, Sergey A. Reshanov, Eli Rotenberg, Andreas<br />

K. Schmid, Daniel Waldmann, Heiko B. Weber, and Thomas Seyller. Atmospheric<br />

pressure graphitizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong>(<strong>0001</strong>) - A route <strong>to</strong>wards wafer-size <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers. ArXiv<br />

e-prints, 2008.<br />

33


[12] M. Hupalo, E. C<strong>on</strong>rad, and M. C. Tringides. <str<strong>on</strong>g>Growth</str<strong>on</strong>g> mechanism for <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong><br />

vicinal <strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>) sur<strong>face</strong>s. ArXiv e-prints, September 2008.<br />

[13] Pauling L. Kukesh J. S. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphite structure. American Mineralogist,<br />

35:125125, 1950.<br />

[14] http://www.magnet.fsu.edu/inhouseresearch/c<strong>on</strong>densedmatter/electr<strong>on</strong>interacti<strong>on</strong>.html<br />

accessed <strong>on</strong> 01/19/09.<br />

[15] D<strong>on</strong>g S. Lee, Christian Riedl, Benjamin Krauss, Klaus v<strong>on</strong> Klitzing, Ulrich Starke, and<br />

Jurgen H. Smet. Raman spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>SiC</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g><br />

transferred <strong>to</strong> SiO 2 . Nano Lett., November 2008.<br />

[16] Nicola Ferralis, Roya Maboudian, and Carlo Carraro. Evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> structural strain in<br />

<str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> layers <strong>on</strong> <strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>). Physical Review Letters, 101(15):156801, 2008.<br />

[17] A. van Bommel. LEED and Auger electr<strong>on</strong> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>SiC</strong>(<strong>0001</strong>) sur<strong>face</strong>. Sur<strong>face</strong><br />

Science, 48:463472, March 1975.<br />

[18] I. Forbeaux, J.-M. Themlin, and J.-M. Debever. Hetero<str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> graphite <strong>on</strong> <strong>6H</strong>-<br />

<strong>SiC</strong>(<strong>0001</strong>): Inter<strong>face</strong> formati<strong>on</strong> through c<strong>on</strong>ducti<strong>on</strong>-band electr<strong>on</strong>ic structure. Phys. Rev.<br />

B, 58(24):1639616406, Dec 1998.<br />

[19] Tianbo Li. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite lms <strong>on</strong> silic<strong>on</strong>- and carb<strong>on</strong>-terminated <strong>face</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong><br />

carbide. Doc<strong>to</strong>ral thesis, 2006.<br />

[20] Walter A. de Heer. Epitaxial <str<strong>on</strong>g>graphene</str<strong>on</strong>g>: A new platform for nanoelectr<strong>on</strong>ics. Seminar talk,<br />

2008.<br />

[21] K. V. Emtsev, Th Seyller, F. Speck, L. Ley, P. S<strong>to</strong>janov, J. D. Riley, and R. G. C. Leckey.<br />

Initial stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the graphite-<strong>SiC</strong>(<strong>0001</strong>) inter<strong>face</strong> formati<strong>on</strong> studied by pho<strong>to</strong>electr<strong>on</strong> spectroscopy.<br />

Mater. Sci. Forum, 556-557:525, 2007.<br />

[22] K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley. Interacti<strong>on</strong>, growth, and ordering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>epitaxial</str<strong>on</strong>g> <str<strong>on</strong>g>graphene</str<strong>on</strong>g> <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>) sur<strong>face</strong>s: A comparative pho<strong>to</strong>electr<strong>on</strong> spectroscopy<br />

study. Physical Review B (C<strong>on</strong>densed Matter and Materials <strong>Physics</strong>), 77(15):155303, 2008.<br />

[23] Scanning probe microscopy training notebook. Digital instruments Veeco Metrodgy Group,<br />

2000.<br />

[24] M.A. Van Hove, W.H. Weinberg, and C.-M. Chan. Low Energy Electr<strong>on</strong> Diracti<strong>on</strong>.<br />

Springer-Verlag, Berlin, XVII editi<strong>on</strong>, 1986.<br />

[25] Michael P. Marder. C<strong>on</strong>densed Matter <strong>Physics</strong>. Wiley-Interscience, January 2000.<br />

[26] Wolfgang Demtröder. Experimentalphysik 3: A<strong>to</strong>me, Moleküle und Festkörper. Springer,<br />

Berlin, 2005.<br />

34


[27] M. P. Seah D. Briggs. Practical Sur<strong>face</strong> Analysis: By Auger and X-ray Pho<strong>to</strong>-electr<strong>on</strong><br />

Spectroscopy. Wiley, 3rd editi<strong>on</strong>, 1983.<br />

[28] Lawrence E. Davis. Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Auger Electr<strong>on</strong> Spectroscopy: A Reference Book <str<strong>on</strong>g>of</str<strong>on</strong>g> Standard<br />

Data for Identicati<strong>on</strong> and Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Auger Electr<strong>on</strong> Spectroscopy Data. Physical<br />

Electr<strong>on</strong>ics Industries, 2 editi<strong>on</strong>, 1976.<br />

[29] St. Hüfner. Pho<strong>to</strong>electr<strong>on</strong> Spectroscopy. Springer, Berlin, Heidelberg, 2nd editi<strong>on</strong>, 1996.<br />

[30] Andrea Damascelli. Probing the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> complex systems by arpes. Physica<br />

Scripta, T109:6174, 2004.<br />

[31] J. B. Hann<strong>on</strong> and R. M. Tromp. Pit formati<strong>on</strong> during <str<strong>on</strong>g>graphene</str<strong>on</strong>g> synthesis <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>):<br />

In situ electr<strong>on</strong> microscopy. Physical Review B (C<strong>on</strong>densed Matter and Materials <strong>Physics</strong>),<br />

77(24):241404, 2008.<br />

[32] Th. Seyller, K.V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J.D. Riley,<br />

R.C.G. Leckey, O. Rader, A. Varykhalov, and A.M. Shikin. Structural and electr<strong>on</strong>ic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite layers grown <strong>on</strong> <strong>SiC</strong>(<strong>0001</strong>). Sur<strong>face</strong> Science, 600(18):3906 3911,<br />

2006.<br />

[33] E. Rollings, G.-H. Gwe<strong>on</strong>, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov,<br />

P.N. First, W.A. de Heer, and A. Lanzara. Synthesis and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<strong>to</strong>mically<br />

thin graphite lms <strong>on</strong> a silic<strong>on</strong> carbide substrate. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Physics</strong> and Chemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Solids, 67(9-10):2172 2177, 2006.<br />

[34] Taisuke Ohta, Aar<strong>on</strong> Bostwick, J. L. Mcchesney, Thomas Seyller, Karsten Horn, and Eli<br />

Rotenberg. Interlayer interacti<strong>on</strong> and electr<strong>on</strong>ic screening in multilayer <str<strong>on</strong>g>graphene</str<strong>on</strong>g> investigated<br />

<strong>with</strong> angle-resolved pho<strong>to</strong>emissi<strong>on</strong> spectroscopy. Physical Review Letters, 98(20),<br />

2007.<br />

[35] David A. Siegel. Pers<strong>on</strong>al communicati<strong>on</strong>, 2008.<br />

[36] Manual for Hemispherical Energy Analyzer Series, Phoibos 150. SPECS, 2.08 editi<strong>on</strong>, 2006.<br />

[37] B.J. Gibb<strong>on</strong>s, S. Schaepe, and J.P. Pelz. Evidence for diusi<strong>on</strong>-limited kinetics during<br />

electromigrati<strong>on</strong>-induced step bunching <strong>on</strong> Si(111). Sur<strong>face</strong> Science, 600(12):2417 2424,<br />

2006.<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!