23.05.2014 Views

Drude conductivity of Dirac fermions in graphene - APS Link ...

Drude conductivity of Dirac fermions in graphene - APS Link ...

Drude conductivity of Dirac fermions in graphene - APS Link ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHYSICAL REVIEW B 83, 165113 (2011)<br />

<strong>Drude</strong> <strong>conductivity</strong> <strong>of</strong> <strong>Dirac</strong> <strong>fermions</strong> <strong>in</strong> <strong>graphene</strong><br />

Jason Horng, 1 Chi-Fan Chen, 1 Baisong Geng, 1 Caglar Girit, 1 Yuanbo Zhang, 2 Zhao Hao, 3,4 Hans A. Bechtel, 3<br />

Michael Mart<strong>in</strong>, 3 Alex Zettl, 1,5 Michael F. Crommie, 1,5 Y. Ron Shen, 1,5 and Feng Wang 1,5,*<br />

1 Department <strong>of</strong> Physics, University <strong>of</strong> California at Berkeley, Berkeley, California 94720, USA<br />

2 Department <strong>of</strong> Physics, Fudan University, Shanghai 200433, Ch<strong>in</strong>a<br />

3 Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA<br />

4 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA<br />

5 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA<br />

(Received 9 January 2011; published 15 April 2011)<br />

Electrons mov<strong>in</strong>g <strong>in</strong> <strong>graphene</strong> behave as massless <strong>Dirac</strong> <strong>fermions</strong>, and they exhibit fasc<strong>in</strong>at<strong>in</strong>g low-frequency<br />

electrical transport phenomena. Their dynamic response, however, is little known at frequencies above one<br />

terahertz (THz). Such knowledge is important not only for a deeper understand<strong>in</strong>g <strong>of</strong> the <strong>Dirac</strong> electron quantum<br />

transport, but also for <strong>graphene</strong> applications <strong>in</strong> ultrahigh-speed THz electronics and <strong>in</strong>frared (IR) optoelectronics.<br />

In this paper, we report measurements <strong>of</strong> high-frequency <strong>conductivity</strong> <strong>of</strong> <strong>graphene</strong> from THz to mid-IR at different<br />

carrier concentrations. The <strong>conductivity</strong> exhibits <strong>Drude</strong>-like frequency dependence and <strong>in</strong>creases dramatically<br />

at THz frequencies, but its absolute strength is lower than theoretical predictions. This anomalous reduction <strong>of</strong><br />

free-electron oscillator strength is corroborated by correspond<strong>in</strong>g changes <strong>in</strong> <strong>graphene</strong> <strong>in</strong>terband transitions, as<br />

required by the sum rule.<br />

DOI: 10.1103/PhysRevB.83.165113<br />

PACS number(s): 72.80.Vp, 73.50.−h, 78.20.Ci<br />

I. INTRODUCTION<br />

Graphene provides a unique material system to study <strong>Dirac</strong><br />

fermion physics <strong>in</strong> two dimensions. Researchers have demonstrated<br />

<strong>in</strong> <strong>graphene</strong> exotic <strong>Dirac</strong> fermion phenomena rang<strong>in</strong>g<br />

from anomalous quantum Hall effects 1,2 to Kle<strong>in</strong> tunnel<strong>in</strong>g 3 <strong>in</strong><br />

low-frequency (dc) electrical transport. They also observed an<br />

optical conductance def<strong>in</strong>ed by the f<strong>in</strong>e-structure constant 4,5<br />

and gate-tunable <strong>in</strong>frared (IR) absorption <strong>in</strong> <strong>Dirac</strong> fermion<br />

<strong>in</strong>terband transitions. 6,7 Situated between low-frequency electrical<br />

transport and <strong>in</strong>terband optical excitation is the spectral<br />

range dom<strong>in</strong>ated by free-carrier <strong>in</strong>traband transitions. Infrared<br />

spectroscopy study on free-carrier responses <strong>of</strong> epitaxial<br />

<strong>graphene</strong> layers has been performed by several groups and<br />

provides new <strong>in</strong>sight <strong>in</strong>to both <strong>Dirac</strong> fermion transport and<br />

<strong>in</strong>terband transitions. 8,9 This free-carrier dynamics response is<br />

also expected to play a key role <strong>in</strong> the future development <strong>of</strong><br />

ultrahigh-speed electronics at terahertz (THz) frequencies and<br />

THz-to-mid-IR optoelectronic devices. 10,11 However, despite<br />

its importance, an experimental study <strong>of</strong> free-carrier response<br />

<strong>of</strong> <strong>graphene</strong> <strong>in</strong> the the THz-to-mid-IR spectral range is still<br />

lack<strong>in</strong>g.<br />

Quantum theories <strong>of</strong> electron dynamic response <strong>in</strong> <strong>graphene</strong><br />

have been developed by several groups. 12–17 They predict that,<br />

with<strong>in</strong> the framework <strong>of</strong> Boltzmann transport theories, highfrequency<br />

<strong>conductivity</strong> <strong>of</strong> monolayer <strong>graphene</strong> has a <strong>Drude</strong><br />

form, ˜σ (ω) = [iD/π(ω + iƔ)], where ω is the frequency and<br />

Ɣthe scatter<strong>in</strong>g rate. The prefactor D, known as the <strong>Drude</strong><br />

weight, has the value D = (v F e 2 / ¯h) √ π|n| when electronelectron<br />

<strong>in</strong>teractions are neglected, with v F = 1.1 × 10 6 m/s<br />

be<strong>in</strong>g the Fermi velocity 2 and |n| the carrier density. This is dist<strong>in</strong>ctly<br />

different from classical materials where D = πne 2 /m ∗ .<br />

The predictions on <strong>graphene</strong> <strong>Dirac</strong> fermion dynamics have<br />

never been directly tested experimentally. In fact, it was<br />

suggested from measurements <strong>of</strong> <strong>in</strong>terband transitions 6 that<br />

D could deviate from the predicted value. There are also<br />

theoretical studies show<strong>in</strong>g that electron-impurity <strong>in</strong>teractions<br />

could result <strong>in</strong> carrier dynamics <strong>in</strong> <strong>graphene</strong> beyond the<br />

Boltzmann description, 18,19 and that <strong>in</strong>clusion <strong>of</strong> electronelectron<br />

<strong>in</strong>teractions could dramatically reduce the <strong>Drude</strong><br />

weight D. 20<br />

II. EXPERIMENTAL<br />

We report spectroscopic measurements <strong>of</strong> <strong>graphene</strong> <strong>conductivity</strong><br />

from terahertz to mid-IR for different electron and<br />

hole concentrations. We confirm that the <strong>conductivity</strong> from<br />

free-carrier response <strong>in</strong>deed has a <strong>Drude</strong>-like frequency dependence.<br />

In addition, we have been able to determ<strong>in</strong>e the <strong>Drude</strong><br />

weight D and scatter<strong>in</strong>g rate Ɣ <strong>of</strong> doped <strong>graphene</strong> directly<br />

and separately. We observe an electron-hole asymmetry for<br />

D, and we f<strong>in</strong>d that values <strong>of</strong> D are lower than the theoretical<br />

prediction D = (v F e 2 /¯h) √ π|n|. 12–14 This reduction <strong>of</strong> <strong>Drude</strong><br />

weight (aris<strong>in</strong>g from free-carrier <strong>in</strong>traband transitions) is<br />

connected to correspond<strong>in</strong>g changes <strong>in</strong> <strong>in</strong>terband transitions, 6<br />

and we demonstrate that the sum rule requir<strong>in</strong>g the <strong>in</strong>tegrated<br />

<strong>in</strong>traband (<strong>Drude</strong>) <strong>conductivity</strong> and <strong>in</strong>terband <strong>conductivity</strong> to<br />

be a constant is well obeyed.<br />

In our study, we used Fourier-transform <strong>in</strong>frared spectroscopy<br />

(FTIR) to measure the transmission spectra <strong>of</strong><br />

<strong>graphene</strong> samples over the range from 30 to 6000 cm −1<br />

and deduce the frequency-dependent <strong>conductivity</strong> from the<br />

spectra. Previously, <strong>in</strong>frared spectroscopy to probe a <strong>graphene</strong><br />

monolayer was limited to >1000 cm −1 (wavelength < 10 μm)<br />

because <strong>of</strong> the limited size <strong>of</strong> exfoliated <strong>graphene</strong>. 4,6,7,21 For<br />

spectroscopy at a longer wavelength up to ∼300 μm, we need<br />

a large sample size. Here we used large-area <strong>graphene</strong> grown<br />

by chemical vapor deposition (CVD).<br />

Follow<strong>in</strong>g the procedure <strong>in</strong> Ref. 22, we grew <strong>graphene</strong><br />

on copper films us<strong>in</strong>g CH 4 as the feed gas, which was then<br />

transferred with PMMA (Poly(methyl methacrylate)) support<br />

to a Si/SiO 2 wafer after wet-etch<strong>in</strong>g to remove the copper film<br />

by FeCl 3 . After dissolv<strong>in</strong>g the PMMA <strong>in</strong> acetone solution,<br />

1098-0121/2011/83(16)/165113(5) 165113-1<br />

©2011 American Physical Society


JASON HORNG et al. PHYSICAL REVIEW B 83, 165113 (2011)<br />

at V = 0 and a hole mobility around 2700 cm 2 /Vs.As<br />

-50 0<br />

(a)<br />

(b)<br />

5%. The sample had an <strong>in</strong>itial hole dop<strong>in</strong>g <strong>of</strong> 1.05 × 10 12 cm −2 electron dop<strong>in</strong>g. This electron-hole concentration dependence<br />

40<br />

g<br />

seen from Fig. 1(b), the dc <strong>conductivity</strong> for hole dop<strong>in</strong>g is<br />

30<br />

reasonably l<strong>in</strong>ear with |n|, and there is a large asymmetry<br />

between electron and hole <strong>conductivity</strong> at the same |n|. In<br />

20<br />

previous studies, conclusions have frequently been made on<br />

10<br />

carrier scatter<strong>in</strong>g from such dc <strong>conductivity</strong> data based on<br />

σ dc = D/πƔ and the assumption that D = (v F e 2 / ¯h) √ π|n|<br />

0<br />

holds exactly as theory predicts. 23–25 However, the validity <strong>of</strong><br />

50<br />

V g<br />

(V)<br />

100<br />

this approach has never been tested.<br />

5<br />

2E has two characteristic features: a large absorption <strong>in</strong>crease at<br />

F<br />

0<br />

lower wave numbers, which reaches over 15% at terahertz<br />

0 1500 3000 4500 6000<br />

frequencies for a <strong>graphene</strong> monolayer, and an absorption<br />

ω(cm -1 )<br />

reduction over a broad range <strong>of</strong> higher wave numbers. These<br />

(c)<br />

20<br />

(d)<br />

An <strong>in</strong>dependent determ<strong>in</strong>ation <strong>of</strong> D and Ɣ can be achieved<br />

through ac <strong>conductivity</strong> measurements us<strong>in</strong>g IR spectroscopy.<br />

15<br />

Figure 1(c) shows a difference IR absorption spectrum <strong>of</strong><br />

10<br />

hole-doped <strong>graphene</strong> (V g =−70 V) <strong>in</strong> reference to absorption<br />

at the CNP (V g = 14 V). This difference absorption spectrum<br />

features can be understood qualitatively from the gate-<strong>in</strong>duced<br />

FIG. 1. (Color onl<strong>in</strong>e) Properties <strong>of</strong> CVD-grown <strong>graphene</strong><br />

changes <strong>in</strong> <strong>in</strong>traband and <strong>in</strong>terband electronic transitions <strong>in</strong><br />

device. (a) Optical microscope image <strong>of</strong> CVD-grown <strong>graphene</strong><br />

<strong>graphene</strong> due to carrier dop<strong>in</strong>g [Fig. 1(d)]. Free-carrier <strong>conductivity</strong><br />

(from <strong>in</strong>traband transitions) <strong>in</strong>creases dramatically<br />

transferred to a SiO 2 /Si substrate. (b) Graphene dc <strong>conductivity</strong><br />

as a function <strong>of</strong> gate voltage. The <strong>conductivity</strong> m<strong>in</strong>imum at V g =<br />

with the hole dop<strong>in</strong>g. It peaks at zero frequency and gives rise<br />

14 V def<strong>in</strong>es the charge neutral po<strong>in</strong>t (CNP). (c) Gate-<strong>in</strong>duced change<br />

to a substantial absorption <strong>in</strong>crease at low wave numbers. At<br />

<strong>of</strong> ir transmittance T/T through <strong>graphene</strong> at V g =−70 V (hole<br />

doped) compared to transmittance at the CNP. The spectrum shows<br />

the same time, however, the <strong>in</strong>terband transitions up to energy<br />

an <strong>in</strong>crease <strong>of</strong> free-carrier absorption at low wave numbers and a 2E F [arrows <strong>in</strong> Fig. 1(d)] become forbidden due to empty<br />

reduction <strong>of</strong> <strong>in</strong>terband absorption at higher wave numbers. (d) An <strong>in</strong>itial states, lead<strong>in</strong>g to a reduction <strong>of</strong> absorption <strong>in</strong> the broad<br />

illustration <strong>of</strong> <strong>in</strong>traband (i.e., free-carrier absorption, dashed arrow) spectral range below 2E F [dashed l<strong>in</strong>e <strong>in</strong> Fig. 1(c)].<br />

and <strong>in</strong>terband (solid arrow) transitions <strong>in</strong> hole-doped <strong>graphene</strong>. The gate-<strong>in</strong>duced change <strong>of</strong> ac <strong>conductivity</strong> (referred to as<br />

Intraband absorption <strong>in</strong>creases with carrier dop<strong>in</strong>g, while <strong>in</strong>terband the CNP value), ˜σ = ˜σ − ˜σ CNP , can be obta<strong>in</strong>ed readily from<br />

transitions up to 2E F become forbidden due to empty <strong>in</strong>itial states, the difference IR absorption spectra (see auxiliary material).<br />

as observed <strong>in</strong> (c).<br />

Figures 2(a) and 2(b) show the real part <strong>of</strong> the ac <strong>conductivity</strong><br />

change σ ′ <strong>in</strong> the low-wave-number range (


DRUDE CONDUCTIVITY OF DIRAC FERMIONS IN GRAPHENE PHYSICAL REVIEW B 83, 165113 (2011)<br />

(a)<br />

Δσ' (e 2 /h)<br />

(c)<br />

Γ(cm -1 )<br />

(e)<br />

σ DC<br />

(e 2 /h)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 150 300 450<br />

ω(cm -1 )<br />

180<br />

150<br />

120<br />

90<br />

60<br />

Hole<br />

Electron<br />

30 regime regime<br />

0<br />

-100 -50 0 50<br />

V g<br />

-V cnp<br />

(V)<br />

40<br />

30<br />

20<br />

10<br />

Hole<br />

regime<br />

D/πΓ<br />

σ DC<br />

0<br />

-100 -50 0<br />

V g<br />

-V cnp<br />

(V)<br />

50<br />

V g<br />

-V cnp<br />

-80V<br />

-50V<br />

-20V<br />

0V<br />

(b)<br />

Δσ' (e 2 /h)<br />

(d)<br />

D (e 2 /h*1000cm -1 )<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 150 300 450<br />

ω(cm -1 )<br />

15<br />

12<br />

9<br />

6<br />

3<br />

Hole<br />

regime<br />

Electron<br />

regime<br />

Theory<br />

Experiment<br />

Electron<br />

regime<br />

0<br />

-100 -50 0<br />

V g<br />

-V cnp<br />

(V)<br />

50<br />

V g<br />

-V cnp<br />

50V<br />

20V<br />

0V<br />

FIG. 2. (Color onl<strong>in</strong>e) Free-carrier responses <strong>in</strong> <strong>graphene</strong>. (a),(b)<br />

Gate-<strong>in</strong>duced change <strong>of</strong> ac <strong>conductivity</strong> σ ′ <strong>in</strong> hole- and electrondoped<br />

<strong>graphene</strong>, respectively, for 30


JASON HORNG et al. PHYSICAL REVIEW B 83, 165113 (2011)<br />

<strong>in</strong>terband absorption has also been observed previously for<br />

mechanically exfoliated <strong>graphene</strong>. 6 Based on the sum rule that<br />

we established experimentally, it <strong>in</strong>dicates that the anomalous<br />

<strong>Drude</strong> weight reduction is general for both exfoliated and CVD<br />

samples.<br />

This reduction <strong>of</strong> <strong>Drude</strong> weight cannot be easily understood.<br />

One theoretical study showed that electron-electron<br />

<strong>in</strong>teractions <strong>in</strong> <strong>graphene</strong> could lead to a reduced <strong>Drude</strong><br />

weight. 18 However, this theory predicted a much larger<br />

reduction <strong>of</strong> the <strong>Drude</strong> weight (over 80%) for <strong>graphene</strong><br />

on SiO 2 than what we have observed. It is also possible<br />

that a reduction <strong>of</strong> D is a consequence <strong>of</strong> defect-<strong>in</strong>duced<br />

electron or hole localization, which decreases the effective<br />

“free” electron or hole concentration. In addition, the electronimpurity<br />

<strong>in</strong>teractions may play a role and contribute to the<br />

observed electron-hole asymmetry. 19 Further experiments with<br />

higher-quality <strong>graphene</strong> will be required to p<strong>in</strong> down the<br />

underly<strong>in</strong>g mechanism for the <strong>Drude</strong> weight reduction.<br />

IV. SUMMARY<br />

Our <strong>in</strong>frared spectroscopy shows that the frequencydependent<br />

response <strong>of</strong> a <strong>Dirac</strong> fermion <strong>in</strong> <strong>graphene</strong> can be<br />

described by the <strong>Drude</strong> form, which becomes very strong<br />

at longer wavelengths. In the THz range (λ ∼ 300 μm),<br />

a gated <strong>graphene</strong> monolayer can absorb over 15% <strong>of</strong> the<br />

<strong>in</strong>cident radiation, suggest<strong>in</strong>g that <strong>graphene</strong> can potentially<br />

be a useful new THz material. More importantly, the <strong>in</strong>dependent<br />

determ<strong>in</strong>ation <strong>of</strong> <strong>Drude</strong> weight and scatter<strong>in</strong>g rate<br />

for the free carriers <strong>in</strong> <strong>graphene</strong> has allowed us to discover<br />

that the free-carrier <strong>Drude</strong> weight is significantly smaller than<br />

the predictions from Boltzmann transport theory, but the sum<br />

rule for <strong>in</strong>tegrated <strong>in</strong>traband and <strong>in</strong>terband oscillator strength<br />

is strictly obeyed.<br />

ACKNOWLEDGMENTS<br />

This work was supported by the US Department <strong>of</strong> Energy,<br />

Laboratory Directed Research and Development Program <strong>of</strong><br />

Lawrence Berkeley National Laboratory under Contract No.<br />

DE-AC02-05CH11231, the Office <strong>of</strong> Basic Energy Sciences<br />

under Contract No. DE-AC03-76SF0098 (Materials Science<br />

Division) and Contract No. DE-AC02-05CH11231 (Advanced<br />

Light Source), and ONR MURI Award No. N00014-09-1-<br />

1066.<br />

APPENDIX: CALCULATING THE AC CONDUCTIVITY<br />

The frequency-dependent <strong>conductivity</strong> change <strong>of</strong> <strong>graphene</strong><br />

˜σ at different gate voltages is obta<strong>in</strong>ed from the measured<br />

transmission spectra us<strong>in</strong>g a perturbation treatment, because<br />

a monolayer <strong>graphene</strong> only absorbs a small fraction <strong>of</strong> the<br />

light. With<strong>in</strong> this approximation, the complex ac <strong>conductivity</strong><br />

change is related to the difference transmission spectra by<br />

−T<br />

(ω) = 4π Re( ˜σ × L),<br />

T c (A1)<br />

where −T /T is the normalized transmission difference, L is<br />

the local field factor, and ˜σ is the gate-<strong>in</strong>duced <strong>conductivity</strong><br />

change <strong>in</strong> <strong>graphene</strong>.<br />

For suspended <strong>graphene</strong>, the local field factor is 1, and we<br />

obta<strong>in</strong> the well-known form <strong>of</strong> (−T /T )(ω) = (4π/c)σ ′ . 5<br />

In our device, the <strong>graphene</strong> is sitt<strong>in</strong>g on a SiO 2 /Si substrate<br />

and the local field factor L is uniquely def<strong>in</strong>ed by the refractive<br />

<strong>in</strong>dex <strong>of</strong> Si and SiO 2 , as well as the thickness <strong>of</strong> SiO 2 , and it can<br />

be determ<strong>in</strong>ed accurately without any adjust<strong>in</strong>g parameters.<br />

Specifically, L has the form<br />

e 2ikn gd<br />

L = 1 + r ag + t ag r gs t ga<br />

1 − e 2ikngd , (A2)<br />

r gs r ga<br />

where r ag ,r gs , and r ga are the Fresnel reflection coefficients<br />

at air-silica, silica-silicon, and silica-air <strong>in</strong>terferences, t ag and<br />

t ga are the correspond<strong>in</strong>g transmission coefficients, n g and d<br />

are the complex reflective <strong>in</strong>dex and thickness <strong>of</strong> the SiO 2<br />

layer, respectively, and k is the wave vector <strong>of</strong> the <strong>in</strong>cident<br />

light.<br />

The real and imag<strong>in</strong>ary parts <strong>of</strong> ac <strong>conductivity</strong>, σ ′ andσ ′′ ,<br />

are connected by the Kramers-Kronig (KK) relation<br />

σ ′′ (ω) = −2ω<br />

π<br />

∫ ∞<br />

0<br />

σ ′ (¯ω)d ¯ω<br />

¯ω 2 − ω 2 .<br />

(A3)<br />

Because the KK relation holds true for all the gate voltages,<br />

the gate-<strong>in</strong>duced <strong>conductivity</strong> change σ = σ ′ + iσ ′′ also<br />

satisfies the same KK relation. Mak<strong>in</strong>g use <strong>of</strong> Eq. (A1) and<br />

the KK relation, we obta<strong>in</strong> both the real and imag<strong>in</strong>ary parts<br />

<strong>of</strong> the gate-<strong>in</strong>duced ac <strong>conductivity</strong> from <strong>in</strong>frared transmission<br />

spectra.<br />

The gate-<strong>in</strong>duced <strong>in</strong>frared absorption from the p-doped Si<br />

substrate is negligible. The real part <strong>of</strong> hole ac <strong>conductivity</strong><br />

<strong>in</strong> silicon is described by σ ′ = (ne 2 /m h )[Ɣ/(Ɣ 2 + ω 2 )]. For<br />

the same carrier density, it is more than one order <strong>of</strong> magnitude<br />

smaller than <strong>graphene</strong> <strong>conductivity</strong> across the experimental<br />

spectral range (30


DRUDE CONDUCTIVITY OF DIRAC FERMIONS IN GRAPHENE PHYSICAL REVIEW B 83, 165113 (2011)<br />

8 J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and<br />

M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008).<br />

9 H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Mart<strong>in</strong>,<br />

A. Lanzara, and R. A. Ka<strong>in</strong>dl, Appl. Phys. Lett. 94, 172102 (2009).<br />

10 V. Ryzhii, A. Satou, and T. Otsuji, J. Appl. Phys. 101, 024509<br />

(2007).<br />

11 F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).<br />

12 T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).<br />

13 E. H. Hwang, S. Adam, and S. Das Sarma, Phys.Rev.Lett.98,<br />

186806 (2007).<br />

14 K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602<br />

(2007).<br />

15 N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, Phys. Rev.<br />

B 76, 073412 (2007).<br />

16 T. Stauber, N. M. R. Peres, and F. Gu<strong>in</strong>ea, Phys. Rev. B 76, 205423<br />

(2007).<br />

17 A. H. Castro Neto, F. Gu<strong>in</strong>ea, N. M. R. Peres, K. S. Novoselov, and<br />

A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).<br />

18 M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, Phys.Rev.B<br />

76, 233402 (2007).<br />

19 A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys. Rev. Lett.<br />

99, 246802 (2007).<br />

20 M. Pol<strong>in</strong>i, A. H. MacDonald, and G. Vignale, e-pr<strong>in</strong>t<br />

arXiv:0901.4528.<br />

21 Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Mart<strong>in</strong>, A. Zettl,<br />

M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459,<br />

820 (2009).<br />

22 X.S.Li,W.W.Cai,J.H.An,S.Y.Kim,J.Nah,D.X.Yang,<br />

R. P<strong>in</strong>er, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee,<br />

L. Colombo, and R. S. Ru<strong>of</strong>f, Science 324, 1312 (2009).<br />

23 Y. W. Tan, Y. Zhang, K. Bolot<strong>in</strong>, Y. Zhao, S. Adam, E. H. Hwang,<br />

S. Das Sarma, H. L. Stormer, and P. Kim, Phys.Rev.Lett.99,<br />

246803 (2007).<br />

24 J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and<br />

M. Ishigami, Nat. Phys. 4, 377 (2008).<br />

25 X. Hong, K. Zou, and J. Zhu, Phys.Rev.B80, 241415 (2009).<br />

26 N. M. R. Peres, T. Stauber, and A. H. C. Neto, Europhys. Lett. 86,<br />

38002 (2009).<br />

27 S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc.<br />

Natl. Acad. Sci. USA 104, 18392 (2007).<br />

28 T. Ando, Y. S. Zheng, and H. Suzuura, J. Phys. Soc. Jpn. 71, 1318<br />

(2002).<br />

29 N. M. R. Peres, F. Gu<strong>in</strong>ea, and A. H. C. Neto, Phys. Rev. B 73,<br />

125411 (2006).<br />

30 V. P. Gusyn<strong>in</strong> and S. G. Sharapov, Phys. Rev. B 73, 245411<br />

(2006).<br />

31 M. Vanexter and D. Grischkowsky, Phys. Rev. B 41, 12140<br />

(1990).<br />

165113-5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!