23.05.2014 Views

Solar physics meeting at IIA, Bangalore

Solar physics meeting at IIA, Bangalore

Solar physics meeting at IIA, Bangalore

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A possible explan<strong>at</strong>ion of<br />

Maunder minimum<br />

from a flux transport dynamo model<br />

Bidya Binay Karak<br />

Department of Physics<br />

Indian Institute of Science


Layout of the talk:<br />

‣Observ<strong>at</strong>ional fe<strong>at</strong>ures of Maunder<br />

Minimum.<br />

‣Building a flux transport Babcock-Leighton<br />

model.<br />

‣Find out the source of randomness in solar<br />

cycle.<br />

‣Use this model to explain the origin of<br />

Maunder Minimum.


Maunder minimum:<br />

‣Galileo's s Telescope invention in 1609.<br />

‣Maunder minimum period = 1645 to 1715 (Eddy,<br />

1976; Foukal, 1990; Wilson, 1994)<br />

‣68% of days were observed; sunspots appeared<br />

during 2% of the days (Hoyt & Sch<strong>at</strong>ten 1996)<br />

‣Rel<strong>at</strong>ed to little ice age.<br />

‣Cosmogenic isotopes: Be 10 and C 14


27 grand minima in last 11,000 years<br />

(from C 14 d<strong>at</strong>a by Usoskin et al. 2007)<br />

Do other stars show Maunder Minimum?<br />

Yes (Baliunas et al. 1995).<br />

Characteristics of Maunder Minimum:<br />

period from 1645-1670:<br />

Very few sunspot in two<br />

hemispheres.<br />

period from 1670-1715:<br />

Sunspots mostly on<br />

southern hemisphere<br />

(Ribes & Nesme-Ribes<br />

1993; Sokoloff & Nesme-<br />

Ribes 1994).


Usual 11-year period of<br />

solar activity (Schwab<br />

cycle) was continued.<br />

(Beer et al. 1998,<br />

Miyahara et al. 2004)<br />

1645 1680 1715<br />

years<br />

Sudden initi<strong>at</strong>ion but gradual recovery (Usoskin et al.<br />

2000)


• Induction equ<strong>at</strong>ion:<br />

∂<br />

B<br />

∂<br />

t<br />

= ∇ × ( v × B ) + η ∇ B<br />

2<br />

• Magnetic Reynolds Number:<br />

VB / L<br />

R Rm<br />

= =<br />

ηB/<br />

L<br />

2<br />

VL<br />

η<br />

• In Astrophysical systems, R m usually high, magnetic fields<br />

move with plasma – flux is frozen (Alfven, 1942).<br />

• Magnetoconvection (Chandrasekhar 1952, Weiss 1981) –<br />

convective region gets separ<strong>at</strong>ed into non-magnetic and<br />

magnetic space – the l<strong>at</strong>ter constitutes flux tubes.


Dynamo Model:<br />

Parker (1955)<br />

Axisymmetric magnetic field= toroidal+poloidal<br />

B = B ( r, θ<br />

) e φ<br />

+∇×<br />

[ A ( r, θ<br />

) e<br />

φ<br />

]


Toroidal Field Gener<strong>at</strong>ion (ω Effect)<br />

(Schou et al. 1998;<br />

Observ<strong>at</strong>ionally verified Charbonneau et al. 1999)


Poloidal Field Gener<strong>at</strong>ion:– The Mean Field α-<br />

effect/classical α-effect<br />

• Small scale helical convection – Mean-Field α-effect (Parker 1955)<br />

• Buoyantly yrising toroidal field is twisted by helical turbulent<br />

convection, cre<strong>at</strong>ing loops in the poloidal plane<br />

• The small-scale loops diffuse to gener<strong>at</strong>e a large-scale poloidal field


Towards flux transport dynamo<br />

• Induction equ<strong>at</strong>ion:<br />

model<br />

∂ B =∇× ( v × B)<br />

+ η ∇<br />

2<br />

B<br />

∂t<br />

t<br />

Evolution of mean (large scale) field is given by<br />

∂ B = ∇× ( v × B + α<br />

B ) + η<br />

2<br />

T<br />

∇<br />

B<br />

∂t<br />

•Our approach is kinem<strong>at</strong>ics (velocity field is given)


In axisymmetry case<br />

Velocity field= Ω ( r , θ ) r s in θ e + v re r + v e<br />

Toroidal field evolution:<br />

φ θ θ<br />

differential i rot<strong>at</strong>ion meridional circul<strong>at</strong>ion<br />

i<br />

B = Br (, θ) eφ<br />

+∇× [ Ar (, θ) eφ]<br />

∂ B<br />

1 ⎡<br />

∂ ∂<br />

⎤<br />

2<br />

1<br />

+ ( rvr B ) + ( vθ<br />

B ) = ηt ( ∇ − ) B + s ( B<br />

p. ∇Ω<br />

)<br />

2<br />

∂t r⎢<br />

⎣∂r ∂θ<br />

⎥<br />

⎦ s<br />

1 ∂ηt<br />

∂<br />

+ ( rB)<br />

r ∂ r ∂ r<br />

Poloidal field evolution:<br />

2<br />

∂A<br />

A<br />

1 1<br />

+ (. v ∇ )( sA) = η (<br />

2<br />

p ∇ − ) A + S<br />

∂t<br />

s s<br />

2<br />

α


Babcock–Leighton alpha effect: (Babcock 1961; Leighton 1969)<br />

S<br />

α<br />

=<br />

α<br />

B<br />

1 ⎡ r−r1 ⎤⎡ r−r2<br />

⎤<br />

0 θ<br />

1 +<br />

( ) 1 ( ) ith 0<br />

⎢<br />

erf<br />

⎥⎢<br />

erf<br />

⎥ 25 /<br />

1 2<br />

α = α cos θ 1 + ( ) 1 − ( ) with = 25 m/s<br />

4⎣ d ⎦⎣ d ⎦<br />

α


Transport mechanisms: 1) meridional circul<strong>at</strong>ion 2) diffusivity<br />

where,<br />

and<br />

α<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 13<br />

10<br />

12<br />

10 11<br />

η p<br />

, η t<br />

10 10<br />

10 9<br />

0<br />

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 108<br />

r/R<br />

s<br />

S<br />

v ia θ<br />

s<br />

A s<br />

s


Magnetic buoyancy:<br />

y<br />

Inside flux Tube,<br />

P<br />

out<br />

B<br />

2µ<br />

2<br />

= P<br />

in<br />

+ out in<br />

P<br />

≤<br />

P<br />

Usually the inside is under-dense


Ch<strong>at</strong>terjee et al. (2004)


Fluctu<strong>at</strong>ion in polar field:<br />

Joy’s law: Tilts of bipolar<br />

sunspots increase with l<strong>at</strong>itude<br />

Sources of randomness:<br />

Sources of randomness:<br />

1. Fluctu<strong>at</strong>ions in the B–L process<br />

of poloidal field gener<strong>at</strong>ion


2. Fluctu<strong>at</strong>ion in the meridional circul<strong>at</strong>ion:<br />

Direct/Observ<strong>at</strong>ion study: (H<strong>at</strong>haway 1996;<br />

Snodgrass and Dailey 1996; Ulrich et al. 1988; Basu &<br />

Antia 2000; Haber et al. 2002; Gonz´alez-Hern´andez,<br />

et al. 2006; Gizon & Rempel 2008)<br />

Amplitude can vary from 1 m/s to 100 m/s.


Indirect/Theoretical study: (H<strong>at</strong>haway et al. 2003; Javaraiah &<br />

Ulrich 2006; Wang et al. 1991; Dikp<strong>at</strong>i & Charbonneau 1999;<br />

Nandy 2004, Ye<strong>at</strong>es et al. 2008 Wang et al. 2002)<br />

Amplitu ude of meridi ional circul<strong>at</strong>ion<br />

Period (yrs)


∂B<br />

1⎡<br />

∂ ∂ ⎤<br />

2 1<br />

+ ( rvrB) + ( vθ<br />

B) = η t( ∇ − ) B + s( Bp. ∇)<br />

Ω<br />

2<br />

∂ t r ⎣<br />

⎢<br />

∂ r ∂<br />

θ<br />

⎦<br />

⎥<br />

s<br />

1 ∂η<br />

t ∂<br />

+ ( rB) ⇒ ∆B ∝ s( Bp. ∇)<br />

Ω∆t<br />

r ∂<br />

r ∂<br />

r<br />

Amplitude of M.C. determines<br />

the strength of toroidal and also<br />

poloidal field<br />

Total suns spot numb ber<br />

Amplitude of meridional circul<strong>at</strong>ion


Flux transport dynamo combines three basic<br />

processes:<br />

(i) () strong toroidal field is produced by the stretching of<br />

the poloidal field => involves randomness.<br />

(ii) toroidal field rises due to magnetic buoyancy to<br />

produce sunspots and the decay of tilted bipolar<br />

sunspots produces poloidal field; =>involves<br />

randomness.<br />

(iii) poloidal field diffuses and advects by the<br />

meridional circul<strong>at</strong>ion first to high l<strong>at</strong>itudes and then<br />

down to the tachocline.


How to introduce fluctu<strong>at</strong>ion?<br />

The simplest way of doing is to change polar field<br />

randomly <strong>at</strong> each minima of solar cycle.<br />

To reproduce Maunder minimum:<br />

We propose th<strong>at</strong> the polar field <strong>at</strong> the beginning<br />

of the Maunder minimum fell to a very low value.<br />

1. we stop the code <strong>at</strong> a solar minimum.<br />

i<br />

2. Change the polar field in the following way:<br />

A N = 00A 0.0A N<br />

A S = 0.4A S<br />

3. we run the code for several cycles.<br />

Choudhuri & Karak (2009)


all<br />

Choudhuri & Karak (2009)


all<br />

Choudhuri & Karak (2009)


1.2<br />

Poloidal field in the solar wind<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750<br />

Year<br />

Sunspot eruption takes place only when the<br />

toroidal field reaches a value of 10 5 G.<br />

(Choudhuri 1998; D’Silva & Choudhuri 1993;<br />

Fan et al. 1993)<br />

During M.M., Babcock Leighton α effect will<br />

not work but Parker’s traditional mean field α<br />

effect will work.<br />

Choudhuri & Karak (2009)


Dynamo growth r<strong>at</strong>e is<br />

determined by the<br />

dynamo number,<br />

N<br />

D<br />

∝<br />

η<br />

α<br />

2<br />

P<br />

If the dur<strong>at</strong>ion of the M.M.<br />

is really an indic<strong>at</strong>or of the<br />

dynamo growth time, then<br />

it puts constraints on the<br />

parameters of the model.<br />

Choudhuri & Karak (2009)


Are we entering another grand<br />

minimum right now?<br />

Public<strong>at</strong>ion d<strong>at</strong>e of our paper:<br />

August, 2009<br />

Choudhuri & Karak (2009)


Are we entering another grand<br />

minimum right now?<br />

No!<br />

The polar field diminution factor γ <strong>at</strong> the<br />

end of 23 th cycle is 0.6 (Svalgaard,<br />

Cliver & Kamide 2000; Choudhuri,<br />

Ch<strong>at</strong>terjee & Jiang 2007) which is not<br />

sufficient to trigger a Maunder minimum.<br />

Choudhuri & Karak (2009)


Thank You


P<strong>at</strong>h between D to A can be advection domin<strong>at</strong>ed or<br />

diffusion domin<strong>at</strong>ed (Ye<strong>at</strong>es, Nandy & Mackey 2008)<br />

or can be turbulent pumping p domin<strong>at</strong>ed.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!