23.05.2014 Views

Towards a covariant formulation of electromagnetic wave polarization

Towards a covariant formulation of electromagnetic wave polarization

Towards a covariant formulation of electromagnetic wave polarization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.2. GENERALIZED STOKES PARAMETERS 13<br />

2.2.3 Three-dimensional <strong>polarization</strong> parameters<br />

We want to obtain a more general form <strong>of</strong> Equation (2.53) applicable to an<br />

arbitrary <strong>wave</strong> in three dimensions (to use Stokes parameters it is necessary to<br />

know the direction <strong>of</strong> propagation). To achieve this we expand the full spectral<br />

density matrix, S d , using the unit matrix, I 3 , and the generators <strong>of</strong> the SU(3)<br />

symmetry group, λ i , (i = 1, . . . , 8), as given by Gell-Mann and Ne’eman [17]<br />

(see Appendix A Equation (A.2)). The spectral density matrix is then formed<br />

as a linear combination <strong>of</strong> these matrices in the following way<br />

S d = 1 3 Λ 0I 3 + 1 8∑<br />

Λ i λ i =<br />

2<br />

i=1<br />

⎛<br />

1<br />

3<br />

⎜<br />

Λ 0 + 1 2 Λ 3 + 1<br />

1<br />

⎝ 2 Λ 1 + i 2 Λ 2<br />

1<br />

2 Λ 4 + i 2 Λ 5<br />

2 √ 3 Λ 8<br />

1<br />

2 Λ 1 − i 2 Λ 2<br />

1<br />

3 Λ 0 − 1 2 Λ 3 + 1<br />

1<br />

2 Λ 6 + i 2 Λ 7<br />

2 √ 3 Λ 8<br />

1<br />

2 Λ 4 − i 2 Λ ⎞<br />

5<br />

1<br />

2 Λ 6 − i 2 Λ ⎟<br />

7 ⎠ , (2.58)<br />

1<br />

3 Λ 0 − √ 1<br />

3<br />

Λ 8<br />

where Λ i , i = 0, 1, . . . 8, are the generalized Stokes parameters. The trace <strong>of</strong><br />

this matrix, S d , is Λ 0 which is the energy density <strong>of</strong> the field. For the two<br />

dimensional case this is the Stokes parameter I. The Λ i are found by comparing<br />

Equation (2.48) with Equation (2.58), the explicit expressions for the Λ i are<br />

found in Appendix A. In the case <strong>of</strong> a transverse <strong>wave</strong> propagating in the z-<br />

direction, i.e. F z = 0, the spectral density matrix, Equation (2.58), reduces to<br />

two-dimensional form<br />

⎛<br />

⎞<br />

S d = 1 Λ 0 + Λ 3 Λ 1 − iΛ 2 0<br />

⎝Λ 1 + iΛ 2 Λ 0 − Λ 3 0⎠ , (2.59)<br />

2<br />

0 0 0<br />

where the Λ i have reduced to the Stokes parameters as in Equation (2.53). This<br />

is just a rotation <strong>of</strong> the coordinate system into the one <strong>of</strong> the <strong>wave</strong> with the<br />

z-axis being the direction <strong>of</strong> propagation.<br />

There are different normalizations <strong>of</strong> the generalized <strong>polarization</strong> parameters.<br />

Brosseau [5] uses 1 3 instead <strong>of</strong> 1 2<br />

, which we have used, in front <strong>of</strong> the SU(3)<br />

generators in Equation (2.58). If one uses 1 2<br />

, Equation (2.59) (transverse <strong>wave</strong><br />

propagating in the z-direction) reduces to Stokes parameters, Equation (2.55),<br />

which is not the case if one uses 1 3 .<br />

2.2.4 Interpretation <strong>of</strong> the 3D <strong>polarization</strong> parameters<br />

Every tensor can be decomposed into its symmetric and anti-symmetric parts,<br />

Arfken & Weber [10]. Thus, Equation (2.58) can be written<br />

S d = S S d + S A d = 1 2(<br />

Sd + S T d<br />

) 1( + Sd − S T )<br />

d . (2.60)<br />

2<br />

The superscript T denotes a transposed tensor. From Equation (2.58) it is easily<br />

seen that the symmetric part, Sd S, and anti-symmetric part, SA d<br />

, are given by<br />

⎛<br />

1<br />

3<br />

Sd S ⎜<br />

Λ 0 + 1 2 Λ 3 + 1<br />

2 √ Λ 1<br />

3<br />

8<br />

2 Λ 1<br />

1<br />

2 Λ ⎞<br />

4<br />

1<br />

= ⎝<br />

2 Λ 1<br />

1<br />

3 Λ 0 − 1 2 Λ 3 + 1<br />

2 √ Λ 1<br />

3<br />

8 2 Λ ⎟<br />

6 ⎠ (2.61)<br />

1<br />

2 Λ 1<br />

4<br />

2 Λ 1<br />

6<br />

3 Λ 0 − √ 1<br />

3<br />

Λ 8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!