23.05.2014 Views

Vector calculus in curvilinear coordinates Goals: Coordinate ...

Vector calculus in curvilinear coordinates Goals: Coordinate ...

Vector calculus in curvilinear coordinates Goals: Coordinate ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Gradient<br />

The gradient of a scalar field U <strong>in</strong> cyl<strong>in</strong>drical polar coord<strong>in</strong>ates is now given by<br />

⎛<br />

gradU = ∇U = ⎝<br />

∂U<br />

∂ρ<br />

1 ∂U<br />

ρ ∂ϕ<br />

∂U<br />

∂z<br />

⎞<br />

⎠<br />

p<br />

= ê ρ ∂ ρ U + êϕ<br />

ρ ∂ ϕU + ê z ∂ z U .<br />

The expression for the ∇-operator <strong>in</strong> cyl<strong>in</strong>drical polar components is thus <strong>in</strong>directly given on the data-sheet 3 .<br />

There you will f<strong>in</strong>d an expression for ∇U and the del-operator is found by simply leav<strong>in</strong>g out U <strong>in</strong> this expression.<br />

Divergence<br />

When work<strong>in</strong>g out the divergence we need to properly take <strong>in</strong>to account that the basis vectors are not constant<br />

<strong>in</strong> general curvil<strong>in</strong>ear coord<strong>in</strong>ates. For cyl<strong>in</strong>drical polar coord<strong>in</strong>ates we have two nonzero derivatives<br />

∂ ϕ ê ϕ = − cos(ϕ)ê x − s<strong>in</strong>(ϕ)ê y = −ê ρ and ∂ ϕ ê ρ = − s<strong>in</strong>(ϕ)ê x + cos(ϕ)ê y = ê ϕ .<br />

The divergence will thus <strong>in</strong> general not be given by ∇ · F(r) = ∑ i ∂ iF i (r) which is only true for an orthogonal<br />

coord<strong>in</strong>ate system whose basis vectors are constant <strong>in</strong> space. Us<strong>in</strong>g the product rule we f<strong>in</strong>d<br />

∇ · F = [ê ρ ∂ ρ + êϕ<br />

ρ ∂ ϕ + ê z ∂ z ] · [F ρ ê ρ + F ϕ ê ϕ + F z ê z ] = ∂ ρ F ρ + êϕ<br />

ρ · [∂ ϕ(F ρ ê ρ ) + ∂ ϕ (F ϕ ê ϕ )] + ∂ z F z<br />

Rotation<br />

= ∂ ρ F ρ + êϕ<br />

ρ · [ê ρ∂ ϕ F ρ + F ρ ê ϕ + ê ϕ ∂ ϕ F ϕ − ê ρ F ϕ ] + ∂ z F z = ∂ ρ(ρF ρ )<br />

+ ∂ ϕF ϕ<br />

+ ∂ z F z .<br />

ρ ρ<br />

The calculation is similar to work<strong>in</strong>g out the divergence<br />

∇ × F = [ê ρ ∂ ρ + êϕ<br />

ρ ∂ ϕ + ê z ∂ z ] × [F ρ ê ρ + F ϕ ê ϕ + F z ê z ] = ê ρ × [ê ϕ ∂ ρ F ϕ + ê z ∂ ρ F z ] +<br />

ê ϕ<br />

ρ × [ê ρ∂ ϕ F ρ − ê ρ F ϕ + ê z ∂ ϕ F z ] + ê z × [ê ρ ∂ z F ρ + ê ϕ ∂ z F ϕ ]<br />

= ê ρ<br />

[<br />

∂ϕ F z<br />

ρ<br />

]<br />

[<br />

∂ρ (ρF ϕ )<br />

− ∂ z F ϕ + ê ϕ [−∂ ρ F z + ∂ z F ρ ] + ê z − ∂ ]<br />

ϕF ρ<br />

.<br />

ρ ρ<br />

Laplace operator<br />

We obta<strong>in</strong> the Laplace operator by replac<strong>in</strong>g F → ∇ <strong>in</strong> the expression for the divergence<br />

∆ = ∇ · ∇ = 1 ρ ∂ ρ(ρ∂ ρ ) + 1 ρ 2 ∂2 ϕ + ∂ 2 z .<br />

Example<br />

A velocity field describ<strong>in</strong>g a vortex is given by u = Aê ϕ /ρ with A a constant. Its divergence and rotation are<br />

given by<br />

[<br />

]<br />

∇ · u = ê ρ ∂ ρ + êϕ<br />

ρ ∂ ϕ + ê z ∂ z · Aê [<br />

]<br />

ϕ<br />

= 0 , ∇ × u = ê ρ ∂ ρ + êϕ<br />

ρ<br />

ρ ∂ ϕ + ê z ∂ z × Aê ϕ<br />

= A ρ ρ 2 (ê z − ê z ) = 0 .<br />

The acceleration of a parcel of fluid is given by (this term appears <strong>in</strong> the Navier Stokes equation)<br />

(u · ∇)u = A ρ 2 ∂ Aê ϕ<br />

ϕ = − A ρ ρ 3 êρ .<br />

Work out these expressions us<strong>in</strong>g cartesian components.<br />

3 Also spherical polar coord<strong>in</strong>ates can be found on the data sheet.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!