23.05.2014 Views

Vector calculus in curvilinear coordinates Goals: Coordinate ...

Vector calculus in curvilinear coordinates Goals: Coordinate ...

Vector calculus in curvilinear coordinates Goals: Coordinate ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Summary<br />

Cyl<strong>in</strong>drical polar coord<strong>in</strong>ates (ρ, ϕ, z)<br />

• Relation to cartesian coord<strong>in</strong>ates (care is required to obta<strong>in</strong> ϕ <strong>in</strong> the correct quadrant)<br />

x = ρ cos(ϕ) , y = ρ s<strong>in</strong>(ϕ) and z = z<br />

ρ = √ x 2 + y 2 , ϕ = arctan(y/x) and z = z<br />

• Basis vectors ê ρ = ∂ ρ r, ρê ϕ = ∂ ϕ r, ê z = ∂ z r<br />

ê ρ = cos(ϕ)ê x + s<strong>in</strong>(ϕ)ê y , ê ϕ = − s<strong>in</strong>(ϕ)ê x + cos(ϕ)ê y and ê z = ê z<br />

ê x = cos(ϕ)ê ρ − s<strong>in</strong>(ϕ)ê ϕ , ê y = s<strong>in</strong>(ϕ)ê ρ + cos(ϕ)ê ϕ and ê z = ê z<br />

• Non-zero derivatives of basis vectors<br />

∂ ϕ ê ρ = ê ϕ ,<br />

∂ ϕ ê ϕ = −ê ρ<br />

• ∇-operator<br />

• Divergence<br />

• Rotation<br />

∇ × F(r) = ê ρ<br />

[<br />

∂ϕ F z<br />

ρ<br />

∇ = ê ρ ∂ ρ + êϕ<br />

ρ ∂ ϕ + ê z ∂ z<br />

∇ · F = ∂ ρ(ρF ρ )<br />

ρ<br />

+ ∂ ϕF ϕ<br />

ρ<br />

+ ∂ z F z<br />

]<br />

[<br />

∂ρ (ρF ϕ )<br />

− ∂ z F ϕ + ê ϕ [−∂ ρ F z + ∂ z F ρ ] + ê z − ∂ ]<br />

ϕF ρ<br />

ρ ρ<br />

• Laplace<br />

∆ = 1 ρ ∂ ρ(ρ∂ ρ ) + 1 ρ 2 ∂2 ϕ + ∂ 2 z<br />

Spherical polar coord<strong>in</strong>ates (r, θ, ϕ)<br />

• Relation to cartesian and cyl<strong>in</strong>drical coord<strong>in</strong>ates (care is required to obta<strong>in</strong> ϕ <strong>in</strong> the correct quadrant)<br />

x = r cos(ϕ) s<strong>in</strong>(θ) , y = r s<strong>in</strong>(ϕ) s<strong>in</strong>(θ) , z = r cos(θ) and ρ = r s<strong>in</strong>(θ)<br />

r = √ x 2 + y 2 + z 2 , ϕ = arctan(y/x) and θ = arccos(z/r) = arctan(ρ/z)<br />

• Basis vectors ê r = ∂ r r, rê θ = ∂ θ r, r s<strong>in</strong>(θ)ê ϕ = ∂ ϕ r<br />

ê r = cos(θ)ê z + s<strong>in</strong>(θ)ê ρ , ê θ = − s<strong>in</strong>(θ)ê z + cos(θ)ê ρ and ê ϕ = ê ϕ<br />

ê z = cos(θ)ê r − s<strong>in</strong>(θ)ê θ , ê ρ = s<strong>in</strong>(θ)ê r + cos(θ)ê θ and ê ϕ = ê ϕ<br />

ê x = s<strong>in</strong>(θ) cos(ϕ)ê r + cos(θ) cos(ϕ)ê θ − s<strong>in</strong>(ϕ)ê ϕ and ê y = s<strong>in</strong>(θ) s<strong>in</strong>(ϕ)ê r + cos(θ) s<strong>in</strong>(ϕ)ê θ + cos(ϕ)ê ϕ<br />

• Non-zero derivatives of basis vectors<br />

∂ θ ê r = ê θ , ∂ θ ê θ = −ê r , ∂ ϕ ê r = s<strong>in</strong>(θ)ê ϕ , ∂ ϕ ê θ = cos(θ)ê ϕ and ∂ ϕ ê ϕ = −ê ρ<br />

• ∇-operator<br />

• Divergence<br />

∇ = ê r ∂ r + êθ<br />

r ∂ θ +<br />

êϕ<br />

r s<strong>in</strong>(θ) ∂ ϕ<br />

∇ · F = ∂ r(r 2 F r )<br />

r 2 + ∂ θ(s<strong>in</strong>(θ)F θ )<br />

+ ∂ ϕF ϕ<br />

r s<strong>in</strong>(θ) r s<strong>in</strong>(θ)<br />

• Rotation<br />

∇ × F =<br />

[<br />

êr<br />

r s<strong>in</strong>(θ) [∂ θ(F ϕ s<strong>in</strong>(θ)) − ∂ ϕ F θ ] + êθ −∂ r (rF ϕ ) + ∂ ]<br />

ϕF r<br />

+ êϕ<br />

r<br />

s<strong>in</strong>(θ) r [∂ r(rF θ ) − ∂ θ F r ]<br />

• Laplace<br />

∆ = 1 r 2 ∂ r(r 2 ∂ r ) +<br />

1<br />

r 2 s<strong>in</strong>(θ) ∂ 1<br />

θ(s<strong>in</strong>(θ)∂ θ ) +<br />

r 2 s<strong>in</strong> 2 (θ) ∂2 ϕ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!