23.05.2014 Views

Measuring the Electron Beam Energy in a Magnetic Bunch ... - DESY

Measuring the Electron Beam Energy in a Magnetic Bunch ... - DESY

Measuring the Electron Beam Energy in a Magnetic Bunch ... - DESY

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Bunch</strong> compressors are frequently designed to accommodate a range of energies<br />

and compression schemes which are def<strong>in</strong>ed to first-order by parameters denoted R 56 and<br />

R 16 after <strong>the</strong>ir location <strong>in</strong> a six-dimensional transfer matrix used to calculate <strong>the</strong> beam<br />

transport [12]. In <strong>the</strong> <strong>in</strong>troduction, analytic formulas for <strong>the</strong>se parameters were derived<br />

for a symmetric, s<strong>in</strong>gle chicane. Physically, <strong>the</strong>y relate <strong>the</strong> change <strong>in</strong> position to <strong>the</strong><br />

change <strong>in</strong> energy deviation, δ, accord<strong>in</strong>g to<br />

∂<br />

R = z<br />

56<br />

∂δ<br />

∂<br />

R = x<br />

16<br />

(2.3.2)<br />

∂δ<br />

They are related to one ano<strong>the</strong>r by<br />

R<br />

s<br />

R16<br />

( s')<br />

= ∫ '<br />

(2.3.3)<br />

r(<br />

s')<br />

56<br />

ds<br />

0<br />

where <strong>the</strong> <strong>in</strong>tegral is along <strong>the</strong> reference trajectory, s, and r(s’) is <strong>the</strong> bend<strong>in</strong>g radius of<br />

<strong>the</strong> magnets. From Eq. 2.3.3, we can see that for smaller bend<strong>in</strong>g radii, <strong>the</strong> R 56 <strong>in</strong>creases<br />

and for drift spaces where r is <strong>in</strong>f<strong>in</strong>ite, <strong>the</strong> R 56 vanishes.<br />

It is useful to be able to make a quick estimation of <strong>the</strong> energy chirp of an electron<br />

bunch after an accelerator section and calculate <strong>the</strong> result<strong>in</strong>g bunch length change or x<br />

position spread change. To do this, let us first write down <strong>the</strong> energy of an electron<br />

subject to an accelerat<strong>in</strong>g module with an acceleration voltage of U and a phase of<br />

φ=k rf Δs+φ 0 with k rf =2π/λ rf , <strong>in</strong> terms of <strong>the</strong> wavelength of <strong>the</strong> accelerat<strong>in</strong>g RF, and φ 0<br />

equal to <strong>the</strong> phase for which <strong>the</strong> longitud<strong>in</strong>al position is equal to that of <strong>the</strong> reference<br />

trajectory, Δs=0<br />

δ = E − E eU cosϕ<br />

(2.3.5)<br />

f i<br />

=<br />

where E i is <strong>the</strong> <strong>in</strong>itial energy of <strong>the</strong> particle and E f is <strong>the</strong> energy after <strong>the</strong> accelerat<strong>in</strong>g<br />

module. We can describe <strong>the</strong> energy chirp produced by <strong>the</strong> accelerat<strong>in</strong>g RF by do<strong>in</strong>g a<br />

Taylor expansion of δ about a small longitud<strong>in</strong>al position change, Δs,<br />

1<br />

2<br />

δ () s = δ ( Δs)<br />

+ ( s − Δs)<br />

δ '( Δs)<br />

+ ( s − Δs)<br />

δ ''( Δs)<br />

… (2.3.6)<br />

2<br />

2<br />

= R δ <strong>in</strong>itial<br />

+ R Δs<br />

+ R Δ .<br />

66 65 655<br />

s<br />

The first term describes <strong>the</strong> <strong>in</strong>itial energy spread over <strong>the</strong> position change, <strong>the</strong> second<br />

term describes <strong>the</strong> l<strong>in</strong>ear chirp acquired over <strong>the</strong> position spread and <strong>the</strong> third term<br />

describes <strong>the</strong> quadratic chirp acquired. The <strong>in</strong>dices of <strong>the</strong> R coefficients describe <strong>the</strong><br />

coord<strong>in</strong>ates of <strong>the</strong> values <strong>in</strong> <strong>the</strong> beam transport matrix. The first <strong>in</strong>dex coord<strong>in</strong>ate equal to<br />

six corresponds to energy deviations and <strong>the</strong> second <strong>in</strong>dex coord<strong>in</strong>ate equal to five<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!