26.05.2014 Views

Resistance to Soybean Rust in Dry Beans. - Plant Management ...

Resistance to Soybean Rust in Dry Beans. - Plant Management ...

Resistance to Soybean Rust in Dry Beans. - Plant Management ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Resistance</strong> <strong>to</strong> <strong>Soybean</strong><br />

<strong>Rust</strong> <strong>in</strong> common bean<br />

M. A. Pas<strong>to</strong>r-Corrales<br />

USDA-ARS<br />

<strong>Soybean</strong> Genomics and Improvement<br />

Labora<strong>to</strong>ry<br />

Beltsville Agricultural Research Center<br />

Beltsville, Maryland


Some Salient <strong>Soybean</strong><br />

Attributes <strong>Rust</strong><br />

of<br />

<strong>Soybean</strong> rust<br />

Moves swiftly<br />

A very aggressive plant pathogen<br />

Causes very severe yield losses and<br />

damage <strong>to</strong> soybean<br />

All commercial soybean cultivars<br />

are Susceptible<br />

Broad host range<br />

Potentially an important disease of<br />

other legum<strong>in</strong>ous crops


<strong>Soybean</strong> <strong>Rust</strong> Reports<br />

Japan 1902 Brazil 2002<br />

Australia 1934 Argent<strong>in</strong>a 2002<br />

Hawaii 1994 Bolivia 2003<br />

Uganda 1996 Uruguay 2004<br />

Zimbabwe 1998 USA 2004<br />

Nigeria 1999 Mexico 2005<br />

South Africa 2001 Ghana 2006<br />

Paraguay 2001 D.R. Congo 2007


Some Salient <strong>Soybean</strong><br />

Attributes <strong>Rust</strong><br />

of<br />

<strong>Soybean</strong> rust<br />

Moves swiftly<br />

A very aggressive plant pathogen<br />

Causes very severe yield losses and<br />

damage <strong>to</strong> soybean<br />

All commercial soybean cultivars<br />

are Susceptible<br />

Broad host range<br />

Potentially an important disease of<br />

other legum<strong>in</strong>ous crops


Premature defoliation of soybeans by<br />

<strong>Soybean</strong> <strong>Rust</strong> (Brazil)


Some Salient <strong>Soybean</strong><br />

Attributes <strong>Rust</strong><br />

of<br />

<strong>Soybean</strong> rust<br />

Moves swiftly<br />

A very aggressive plant pathogen<br />

Causes very severe yield losses and<br />

damage <strong>to</strong> soybean<br />

All commercial soybean cultivars<br />

are Susceptible<br />

Broad host range<br />

Potentially an important disease of<br />

other legum<strong>in</strong>ous crops


Hosts of <strong>Soybean</strong> <strong>Rust</strong><br />

LEGUMES (Papilionoideae)<br />

• Cultivated Crops:<br />

Glyc<strong>in</strong>e max (soybeans)<br />

Phaseolus vulgaris (<strong>Dry</strong> and Snap beans; e.i., i.e.., kidney beans)<br />

Phaseolus lunatus (lima and butter beans)<br />

Vigna unguiculata (cowpeas)<br />

Cajanus cajan (pigeon peas)<br />

Pachyrhizus erosus (yam bean, jicama)<br />

• Ornamental plants:<br />

Hyac<strong>in</strong>th bean, lup<strong>in</strong>e,<br />

royal po<strong>in</strong>ciana<br />

• Wild hosts:<br />

Kudzu, sweet clover


Some <strong>Soybean</strong> Salient Attributes <strong>Rust</strong> of<br />

<strong>Soybean</strong> rust<br />

Orig<strong>in</strong>ated <strong>in</strong> Asia<br />

Caused by Phakopsora pachyrhizi<br />

A very aggressive plant pathogen<br />

Moves swiftly<br />

Causes very severe yield losses and<br />

damage <strong>to</strong> soybean<br />

Broad host range<br />

Potentially an important disease<br />

of other legum<strong>in</strong>ous crops


SBR has been reported<br />

<strong>in</strong>fect<strong>in</strong>g common beans under<br />

field conditions<br />

• South Africa<br />

– <strong>Plant</strong> Disease, February 2005<br />

• United States<br />

– <strong>Plant</strong> Disease, July 2006<br />

• Argent<strong>in</strong>a<br />

– <strong>Plant</strong> Disease, January 2007<br />

• Brazil<br />

– Various reports, 2006, 2007


SBR - Symp<strong>to</strong>ms caused by<br />

Phakopsora pachyrhizi on<br />

Phaseolus vulgaris<br />

Bean rust symp<strong>to</strong>ms caused<br />

by Uromyces appendiculatus<br />

on Phaseolus vulgaris


The common bean<br />

(Phaseolus vulgaris)<br />

The most important legume for direct<br />

human consumption <strong>in</strong> the world<br />

Seed of dry beans<br />

Consumed as<br />

Pods of snap beans


Navy<br />

Dark Red Kidney


Study<strong>in</strong>g the differential<br />

Response of Common Bean <strong>to</strong><br />

SBR Isolates<br />

• Little <strong>in</strong>formation on the <strong>in</strong>teraction<br />

of <strong>in</strong>dividual isolates of P.<br />

pachyrhizi with common bean<br />

germplasm<br />

• 16 common bean cultivars<br />

challenged with six isolates of the<br />

SBR pathogen<br />

• Isolates were from Asia, Africa,<br />

Lat<strong>in</strong> America


Study<strong>in</strong>g the differential<br />

Response of Common Bean <strong>to</strong><br />

SBR Isolates<br />

• Little <strong>in</strong>formation on the <strong>in</strong>teraction<br />

of <strong>in</strong>dividual isolates of P.<br />

pachyrhizi with common bean<br />

germplasm<br />

• 16 common bean cultivars<br />

challenged with six isolates of the<br />

SBR pathogen<br />

• Isolates were from Asia, Africa,<br />

Lat<strong>in</strong> America


Study<strong>in</strong>g the differential<br />

Response of Common Bean <strong>to</strong><br />

SBR Isolates<br />

• Little <strong>in</strong>formation on the <strong>in</strong>teraction<br />

of <strong>in</strong>dividual isolates of P.<br />

pachyrhizi with common bean<br />

germplasm<br />

• 16 common bean cultivars<br />

challenged with six isolates of the<br />

SBR pathogen<br />

• Isolates were from Asia, Africa, Lat<strong>in</strong><br />

America


Differential Response of Common<br />

Bean Cultivars <strong>to</strong> SBR Isolates<br />

• Emphasis on beans with genes for<br />

resistance <strong>to</strong> the common bean<br />

rust Uromyces appendiculatus<br />

• Work was conducted under GH<br />

conditions <strong>in</strong> the USDA-ARS<br />

Foreign Disease-Weed Science<br />

Research Unit BSL-3 Conta<strong>in</strong>ment<br />

greenhouse at Ft. Detrick, MD


Differential Response of Common<br />

Bean Cultivars <strong>to</strong> SBR Isolates<br />

• Emphasis on beans with genes for<br />

resistance <strong>to</strong> the common bean<br />

rust Uromyces appendiculatus<br />

• Work was conducted under GH<br />

conditions <strong>in</strong> the USDA-ARS<br />

Foreign Disease-Weed Science<br />

Research Unit BSL-3 Conta<strong>in</strong>ment<br />

greenhouse at Ft. Detrick, MD


Bean cultivars <strong>in</strong>oculated with six<br />

Phakopsora pachyrhizi isolates<br />

Bean Cultivar Bean Type <strong>Resistance</strong> Gene<br />

P<strong>in</strong><strong>to</strong> 114 <strong>Dry</strong> bean None<br />

Aurora <strong>Dry</strong> bean Ur-3<br />

Early Gallat<strong>in</strong> Snap bean Ur-4<br />

Mexico 309 <strong>Dry</strong> bean Ur-5<br />

Golden White Wax Snap bean Ur-6<br />

PI 181996 <strong>Dry</strong> bean Ur-11<br />

CNC <strong>Dry</strong> bean Ur-C?, Ur-N?<br />

PI 260418 <strong>Dry</strong> bean Ur-P? ,Ur- I?


ARS bean germplasm l<strong>in</strong>es<br />

<strong>in</strong>oculated with six Phakopsora<br />

pachyrhizi isolates<br />

Bean Cultivar Bean Type <strong>Resistance</strong> Gene<br />

BelMiDak-RMR-10 <strong>Dry</strong> bean-ARS/Navy Ur-4, -11<br />

BelNeb-RR-1 <strong>Dry</strong> Bean – ARS/GN Ur-5, -6, -7<br />

BelMiNeb-RMR-5 <strong>Dry</strong> bean-ARS/GN Ur-4, -6, -11<br />

BelMiNeb-RMR-7 <strong>Dry</strong> bean-ARS/GN Ur-3, -4, -11<br />

BelDak-RR-2<br />

<strong>Dry</strong> bean-ARS/P<strong>in</strong><strong>to</strong> Ur-3, -6, CNN<br />

BelDakMi-RMR-14 <strong>Dry</strong> bean-ARS/P<strong>in</strong><strong>to</strong> Ur-3, -4, -11<br />

BelMiNeb-RMR-8 <strong>Dry</strong> bean-ARS/GN Ur-3, -4, -6, -11<br />

BelDakMi-RMR-18 <strong>Dry</strong> bean-ARS/P<strong>in</strong><strong>to</strong> Ur-3, -4, -6, -11


<strong>Soybean</strong> cultivars - Checks<br />

<strong>Soybean</strong><br />

Accession<br />

<strong>Resistance</strong><br />

genes<br />

PI 200492 (Komata) Rpp1<br />

PI 230970<br />

Rpp2<br />

Ina<br />

None; Mod. Susc.<br />

PI 459025B (B<strong>in</strong>g-Nan) Rpp4


Six Isolates of Phakopsora<br />

Pachyrhizi used <strong>in</strong> this<br />

study<br />

• TW72-1 Taiwan<br />

• TW80-2 Taiwan<br />

• TH01-1 Thailand<br />

• ZM01-1 Zimbabwe<br />

• BZ01-1 Brazil<br />

• PG01-2 Paraguay


<strong>Soybean</strong> <strong>Rust</strong>-<strong>Soybean</strong> Interactions<br />

Red Brown<br />

HR<br />

Necrotic spot<br />

Tan<br />

Susceptible


<strong>Soybean</strong> <strong>Rust</strong> Severity Scale<br />

1-5 Scale<br />

• 1 = No visible lesions<br />

• 2 = Few Scattered lesions present<br />

• 3 = Moderate number of lesions on<br />

at least part of the leaf<br />

• 4 = Abundant number of lesions on<br />

at least part of the leaf<br />

• 5 = Prolific lesion development over<br />

most of the leaf


<strong>Soybean</strong> <strong>Rust</strong> Sporulation Scale<br />

1-5 Scale<br />

• 1 = No sporulation<br />

• 2 = Present on but less than 25% of<br />

a fully sporulat<strong>in</strong>g lesion<br />

• 3 = Sporulation equal <strong>to</strong> 26 t0 50% of<br />

a fully sporulat<strong>in</strong>g lesion<br />

• 4 = Sporulation equal <strong>to</strong> 51 t0 75% of<br />

a fully sporulat<strong>in</strong>g lesion<br />

• 5 = Sporulation equal <strong>to</strong> a fully<br />

sporulat<strong>in</strong>g lesion


Differential Response of common<br />

bean <strong>to</strong> Phakopsora pachyrhizi<br />

• As a group, common cultivars<br />

appeared <strong>to</strong> have resistance <strong>to</strong><br />

SBR<br />

• None were immune<br />

• When compared with <strong>Soybean</strong><br />

cv. Ina, were similar <strong>in</strong> severity<br />

but had less sporulation


Differential Response of common<br />

bean <strong>to</strong> Phakopsora pachyrhizi<br />

• As a group, common cultivars<br />

appeared <strong>to</strong> have resistance <strong>to</strong><br />

SBR<br />

• None were immune<br />

• When compared with <strong>Soybean</strong><br />

cv. Ina, common bean cultivars<br />

were similar <strong>in</strong> severity but had<br />

less sporulation


Mean <strong>Soybean</strong> <strong>Rust</strong> severity and Sporulation of 16 common<br />

Bean Cultivars <strong>in</strong>oculated with six isolates of SBR pathogen<br />

_<br />

X=2.9<br />

_<br />

X=3.1<br />

_<br />

X=2.8<br />

_<br />

X=4.2


5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Common bean cultivars Aurora,<br />

CNC, and PI 181996 had lower<br />

SBR severities than soybean Ina<br />

<strong>Soybean</strong> <strong>Rust</strong> Severity<br />

2.7 3.3<br />

2.9<br />

2.9 3.0 3.0 2.9 3.2 2.8 2.4 2.9 3.2 3.4 2.7 2.8 2.8<br />

3.1 3.1<br />

3.0<br />

3.5<br />

Aurora<br />

BDM-RMR-14<br />

BDM-RMR-18<br />

BelDak-RR-2<br />

BMD-RMR-10<br />

BMN-RMR-5<br />

BMN-RMR-7<br />

BMN-RMR-8<br />

BelNeb-RR-1<br />

CNC<br />

Early Gallat<strong>in</strong><br />

Golden W.W.<br />

Mexico 309<br />

PI 181996<br />

PI 260418<br />

P<strong>in</strong><strong>to</strong> 114<br />

Ina<br />

PI 200492<br />

PI 230970<br />

PI 459025B<br />

Common beans and <strong>Soybean</strong>s<br />

Mean severity


Common bean cultivars Aurora, CNC, PI<br />

181996, and P<strong>in</strong><strong>to</strong> 114 had significantly<br />

lower SBR sporulation than soybean Ina<br />

<strong>Soybean</strong> rust sporulation<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

2.3 4.2 3.6 2.4 3.4 3.7 2.8 3.7 2.7 3.3 4.8 4.8<br />

1. 6<br />

3.2 2.1 2.6 2.0 2.0<br />

3.0 3.5<br />

Aurora<br />

BDM-RMR-14<br />

BDM-RMR-18<br />

BelDak-RR-2<br />

BMD-RMR-10<br />

BMN-RMR-5<br />

BMN-RMR-7<br />

BMN-RMR-8<br />

BelNeb-RR-1<br />

CNC<br />

Early Gallat<strong>in</strong><br />

Golden W.W.<br />

Mexico 309<br />

PI 181996<br />

PI 260418<br />

P<strong>in</strong><strong>to</strong> 114<br />

Ina<br />

PI 200492<br />

PI 230970<br />

PI 459025B<br />

Common beans and soybeans<br />

Mean sporualation


Differential Response of Common<br />

Bean Cultivars <strong>to</strong> SBR Isolates<br />

• Cultivar-Isolate <strong>in</strong>teraction was<br />

significant<br />

• All common bean cultivars did not<br />

respond similarly <strong>to</strong> each SBR isolate<br />

for both, severity and sporualtion


Bean Cultivar - SBR Isolate<br />

Interaction<br />

Severity


Bean Cultivar - SBR Isolate Interaction<br />

Severity


Bean Cultivar - SBR<br />

Isolate Interaction<br />

Sporulation


Bean Cultivar - SBR Isolate Interaction<br />

Sporulation


Differential Response of<br />

Common Bean <strong>to</strong> SBR Isolates<br />

Summary<br />

• Bean cultivars CNC, PI<br />

181996, Aurora and P<strong>in</strong><strong>to</strong><br />

114 were the most resistant<br />

<strong>to</strong> all six isolates of SBR<br />

pathogen<br />

• These cultivars had lower<br />

severity, less sporulation,<br />

and consistent RB (resistant)<br />

lesions


Differential Response of<br />

Common Bean <strong>to</strong> SBR Isolates<br />

Summary<br />

• A differential response was observed<br />

among bean cultivars with a cultivarisolate<br />

<strong>in</strong>teraction for severity and<br />

sporulation<br />

• <strong>Resistance</strong> <strong>to</strong> SBR <strong>in</strong> common bean<br />

was <strong>in</strong>dependent of the resistance <strong>to</strong><br />

Uromyces appendiculatus<br />

• P<strong>in</strong><strong>to</strong> 114, universally susceptible <strong>to</strong><br />

U. appendiculatus – Resistant <strong>to</strong> SBR<br />

• BDM-RMR-18 with four genes for<br />

resistance <strong>to</strong> U. p. –one of the most<br />

susceptible <strong>to</strong> SBR


Inheritance of <strong>Resistance</strong> <strong>to</strong><br />

<strong>Soybean</strong> <strong>Rust</strong> <strong>in</strong> common bean<br />

Severity reaction <strong>to</strong><br />

Phakopsora pachyrhizi<br />

isolates<br />

BZ01-1 PG01-1 TH01-1 TW72-1 TW80-2 ZM01-1<br />

CNC 2.1 2.3 2.5 2.6 2.4 2.6<br />

Mex.<br />

309 3.7 3.7 3.0 3.4 3.4 3.4


4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

CNC<br />

Mexico 309<br />

1.0<br />

0.5<br />

0.0<br />

BZ01-1 PG01-1 TH01-1 TW72-1 TW80-2 ZM01-1<br />

Reaction <strong>to</strong> Phakopsora pachyrhizi isolates<br />

<strong>Soybean</strong> <strong>Rust</strong> Severity Rat<strong>in</strong>g


Inheritance of <strong>Resistance</strong> <strong>to</strong><br />

<strong>Soybean</strong> <strong>Rust</strong> <strong>in</strong> common bean<br />

<strong>Soybean</strong> <strong>Rust</strong> Sporulation<br />

Sporulation <strong>to</strong> Phakopsora<br />

pachyrhizi isolates<br />

BZ01-<br />

1<br />

PG01-<br />

2<br />

TH01-<br />

1<br />

TW72-<br />

1<br />

TW80-<br />

1<br />

ZM01-<br />

1<br />

CNC 1.5 1.5 2.1 1.3 1.3 1.8<br />

Mex. 309 3.4 2.5 2.5 1.8 3.1 2.6


3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

CNC<br />

Mexico 309<br />

1.0<br />

0.5<br />

0.0<br />

BZ01-1 PG01-2 TH01-1 TW72-1 TW80-1 ZM01-1<br />

Reaction <strong>to</strong> Phakopsora pachyrhizi isolates


3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

CNC<br />

Mexico 309<br />

1.0<br />

0.5<br />

0.0<br />

BZ01-1 PG01-2 TH01-1 TW72-1 TW80-1 ZM01-1<br />

Reaction <strong>to</strong> Phakopsora pachyrhizi isolates


Inheritance of SBR resistance<br />

<strong>in</strong> common bean CNC<br />

• Cross: Mexico 309 (S) x CNC (R)<br />

• Two F 2 populations<br />

– P1: 117 F 2 plants<br />

– P2: 124 F 2 plants<br />

• All F 2 plants, R and S parents and<br />

soybean check <strong>in</strong>oculated with<br />

Brazilian isolate (BZ-1-1)


Total 117 124 241<br />

F 2<br />

Mexico 309 x CNC Phenotype based on Severity<br />

First batch Second batch Both Batches<br />

Grade # # #<br />

2 6 10 16<br />

3 63 61 124<br />

4 37 45 82<br />

5 11 8 19


Segregation for <strong>Resistance</strong> <strong>in</strong> CNC <strong>to</strong><br />

Phakopsora pachyrhizi (BZ01-1)<br />

Observed<br />

R S<br />

Expected<br />

Ratio χ P<br />

F 2<br />

140 101 9R:7S 0.01 0.9<br />

F 2<br />

140 101 3R:1S 13.6<br />

F 2<br />

140 101 13R:3S 45.3


<strong>Resistance</strong> <strong>in</strong> CNC <strong>to</strong> SBR<br />

• Results suggest that resistance <strong>in</strong> CNC is<br />

controlled by the <strong>in</strong>teraction of two genes<br />

• Complete dom<strong>in</strong>ance at both gene pairs<br />

• Either recessive homozygote is epistatic<br />

<strong>to</strong> the effects of the other gene<br />

• A_B_ = 9 Resistant<br />

• A_bb = 3 Susceptible<br />

• aaB_ = 3 Susceptible<br />

• Aabb = 1 Susceptible


<strong>Resistance</strong> <strong>in</strong> CNC <strong>to</strong> SBR<br />

• Results suggest that resistance <strong>in</strong> CNC is<br />

controlled by the <strong>in</strong>teraction of two genes<br />

• Complete dom<strong>in</strong>ance at both gene pairs<br />

• Either recessive homozygote is epistatic<br />

<strong>to</strong> the effects of the other gene<br />

• A_B_ = 9 Resistant<br />

• A_bb = 3 Susceptible<br />

• aaB_ = 3 Susceptible<br />

• Aabb = 1 Susceptible


Summary<br />

• Common beans appear <strong>to</strong> be much less<br />

susceptible <strong>to</strong> ASR than <strong>Soybean</strong>s<br />

• <strong>Resistance</strong> <strong>in</strong> common bean offers a number<br />

of opportunities for further studies with<br />

potential of lead<strong>in</strong>g <strong>to</strong> new genetic options<br />

for the control of the ASR pathogen<br />

• Further studies are needed <strong>to</strong> understand<br />

and characterize the resistance genes <strong>in</strong><br />

common bean <strong>to</strong> the ASR pathogen<br />

• Research should benefit dry and snap beans<br />

and possibly soybeans


Present and Future SRB Work<br />

• Search for molecular markers l<strong>in</strong>ked <strong>to</strong><br />

SBR resistance genes <strong>in</strong> CNC<br />

• Evaluate common bean core collection<br />

with selected isolates of SBR, <strong>in</strong>clude<br />

snap beans and commercial dry beans<br />

• Search for additional SBR resistance<br />

genes & possible vulnerabilities<br />

• If SBR resistance genes <strong>in</strong> common<br />

bean could be cloned - they could be<br />

used <strong>to</strong> genetically eng<strong>in</strong>eer soybeans<br />

with resistance <strong>to</strong> ASR


Glen<br />

Hartman<br />

Monte<br />

Miles<br />

Reid<br />

Frederick<br />

Morris<br />

Bonde

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!