10.06.2014 Views

synthesis of a new series of thiazolyl- methyl(carbonyl ... - farmacia

synthesis of a new series of thiazolyl- methyl(carbonyl ... - farmacia

synthesis of a new series of thiazolyl- methyl(carbonyl ... - farmacia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

452<br />

FARMACIA, 2009, Vol. 57, 4<br />

SYNTHESIS OF A NEW SERIES OF THIAZOLYL-<br />

METHYL(CARBONYL-METHYL)-OXI-<br />

BENZALDEHYDE DERIVATIVES<br />

CRISTINA MOLDOVAN 1* , OVIDIU ONIGA 1 , BRÎNDUŞA TIPERCIUC 1 ,<br />

PHILLIPPE VERITE 2 , ADRIAN PÎRNĂU 3 , MARIUS BOJIŢĂ 1<br />

1 “Iuliu Haţieganu” University <strong>of</strong> Medicine and Pharmacy, Faculty <strong>of</strong><br />

Pharmacy, 12 Ion Creangă Street, RO-400010 Cluj Napoca, Romania<br />

2 University <strong>of</strong> Medicine and Pharmacy Rouen, Faculty <strong>of</strong> Pharmacy,<br />

Department <strong>of</strong> Analytical Chemistry, 22 Boulevard Gambetta, F-76183<br />

Rouen Cedex, France<br />

3 National Institute for Research and Development <strong>of</strong> Isotopic and<br />

Molecular Technologies, RO-400293 Cluj Napoca, Romania<br />

*corresponding author: cris.moldovan@yahoo.com<br />

Abstract<br />

A <strong>new</strong> <strong>series</strong> <strong>of</strong> <strong>thiazolyl</strong>-<strong>methyl</strong> (<strong>carbonyl</strong>-<strong>methyl</strong>)-oxi-benzaldehydes (5, 8-12)<br />

was prepared by the reaction between a <strong>series</strong> <strong>of</strong> 2-aryl-thiazoles and o, m or p-OH<br />

benzaldehyde. The obtained aldehydes were used as key intermediates for the <strong>synthesis</strong> <strong>of</strong><br />

2-thioxo-1,3-thiazolidin-4-one derivatives (13-16) and <strong>of</strong> pyrimidine-2,4,6-trione<br />

derivatives (17-19). The structures <strong>of</strong> the <strong>new</strong>ly synthesized compounds were confirmed by<br />

TLC, elemental analysis and spectroscopic (MS, IR, 1 H NMR) data.<br />

Rezumat<br />

Au fost obţinute noi serii de tiazolil-metil(carbonil-metil)-oxi-benzaldehide (5, 8-12)<br />

prin reacţia dintre o serie de 2-aril-tiazoli şi o, m sau p-OH benzaldehidă. Aldehidele obţinute au<br />

fost utilizate ca intermediari cheie în sinteza unor derivaţi de 2-tioxo-1,3-tiazolidin-4-onă (13-<br />

16) şi de pirimidin-2,4,6-trionă (17-19). Structurile noilor compuşi sintetizaţi au fost confirmate<br />

prin CSS, analiză elementală şi spectroscopie (SM, IR, 1 H RMN).<br />

Keywords: 2-Aryl-thiazoles; 2-thioxo-1,3-thiazolidin-4-one derivatives;<br />

pyrimidine-2,4,6-trione derivatives<br />

Introduction<br />

Bacteria have been the cause <strong>of</strong> some <strong>of</strong> the most deadly diseases<br />

and widespread epidemics in human civilization. The treatment <strong>of</strong> infectious<br />

diseases still remains an important and challenging problem due to the<br />

combination <strong>of</strong> factors, including emerging infectious diseases and the<br />

increasing number <strong>of</strong> multi-drug resistant microbial pathogens. In spite <strong>of</strong> a<br />

large number <strong>of</strong> antibiotics and chemotherapeutics available today, due to<br />

the widespread use and misuse <strong>of</strong> antibiotics, bacterial resistance has<br />

become a serious public health problem, always demanding <strong>new</strong> classes <strong>of</strong><br />

antibacterial agents. A potential approach to overcome the resistance


FARMACIA, 2009, Vol. 57, 4 453<br />

problem may be represented by the design <strong>of</strong> innovative agents having a<br />

different mechanism <strong>of</strong> action, so that it can’t occur any cross-resistance<br />

with the therapeutic agents in use.<br />

In the family <strong>of</strong> heterocyclic compounds, nitrogen-containing<br />

heterocycles with a sulfur atom represent an important class <strong>of</strong> compounds<br />

in the medicinal chemistry. Thiazoles and their derivatives have attracted<br />

continuing interest over the decades because <strong>of</strong> their varied biological<br />

activities: antibacterial [1-3], antiviral [4], antifungal [5], treatment <strong>of</strong><br />

allergies, pain, hypertension, inflammation, schizophrenia, HIV infections,<br />

hypnotics, fibrinogen receptor antagonists with antithrombotic activity [6].<br />

Apart from these, thiazolidin-4-ones show an antitumor [7,8],<br />

antituberculosis, anticonvulsant [9] activity. Data from literature report that<br />

the entrance <strong>of</strong> arylidene moieties at different positions <strong>of</strong> the 1,3-<br />

thiazolidine ring enhanced the antimicrobial activity [10,11].<br />

Pyrimidine 2,4,6–trione derivatives exert important action on the<br />

central nervous system, and recently have been found totally <strong>new</strong> biomedicinal<br />

applications in fields such as cancer (possess a marked inhibitory activity<br />

against the matrix metalloproteinases and showed antimetastatic and antitumor<br />

activity [12]) and AIDS therapy, and protease inhibitors [13].<br />

As part <strong>of</strong> our ongoing studies in developing <strong>new</strong> active<br />

antimicrobials [14-20], we report the <strong>synthesis</strong> <strong>of</strong> 3 <strong>new</strong> <strong>series</strong> <strong>of</strong><br />

structurally novel 2-aryl-thiazoles, various substituted in the 4 or 5 position<br />

with different voluminous fragments incorporating 2-thioxo-1,3-<br />

thiazolidine-4-one or pyrimidine 2,4,6–trione moieties.<br />

Materials and methods<br />

General Procedures. All reagents and solvents were obtained<br />

from commercial sources. According to literature protocols there were<br />

prepared: 4-<strong>methyl</strong>-2-phenyl-5-bromoacetyl-thiazole [21] and 2-aryl-4-<br />

iodo<strong>methyl</strong>-thiazole [22]. Analytical thin layer chromatography (TLC) was<br />

carried out on precoated Silica Gel 60F 254 sheets using UV absorption for<br />

visualization. The melting points were taken with two melting point meters,<br />

Electrothermal and MPM-H1 Schorpp and were uncorrected. FT-IR spectra<br />

were recorded on a Nicolet 210 FT-IR spectrometer with a MCT detector<br />

and an Omnic 4.1b s<strong>of</strong>t system, using potassium bromide. The 1 HNMR<br />

spectra were recorded at room temperature on a Bruker Avance NMR<br />

spectrometer operating at 500 MHz. Chemical shift values were reported<br />

relative to tetra<strong>methyl</strong>silane (TMS) as internal standard. The samples were<br />

prepared by dissolving the synthesized powder <strong>of</strong> the compounds in DMSOd6<br />

(δ H = 2.51ppm) as solvent and the spectra were recorded using a single


454<br />

FARMACIA, 2009, Vol. 57, 4<br />

excitation pulse <strong>of</strong> 12 µs. GC-MS analyses were performed with an Agilent<br />

gas chromatograph 6890 equipped with an apolar Macherey Nagel<br />

Permabond SE 52 capillary column. Elemental analysis was registered with<br />

a Vario El CHNS instrument.<br />

4-[2-(4-Methyl-2-phenyl-thiazole-5-yl)-2-oxo-ethoxy]-benzaldehyde (5).<br />

To a mixture <strong>of</strong> p-OH-benzaldehyde (0.488 g, 4 mmol) and K 2 CO 3 anhydrous<br />

(1.65 g, 12 mmol) in dry acetone (20mL) was added the 4-<strong>methyl</strong>-2-phenyl-5-<br />

bromoacetyl-thiazole 4 (1.18 g, 4 mmol). The mixture was heated on a water<br />

bath, in anhydrous conditions, for 5 h. The reaction mixture was afterwards<br />

poured on water with ice. The precipitate was filtered <strong>of</strong>f and washed with<br />

water (50 mL) to obtain the aldehyde 5 (0.852 g, 63.2%). Brown solid. Mp =<br />

132-135 o C. 1 H NMR (500 MHz, DMSO-d6): δ ppm = 2.7 (s, 3H, CH 3 ), 5.4 (s,<br />

2H, CH 2 ), 7.1 (d, 2H, 2H a’ -arom), 7.53-7.64 (m, 3H, 2H a -arom, H-paraC 6 H 5 -<br />

), 8.00 (d, 2H, 2H b -arom), 8.2 (d, 2H, H b’ -arom), 10 (s, 1H, CHO). IR (KBr):<br />

ν= 3060 (CH arom ), 2918 and 2850 (CH aliph ), 1698 (C=O), 1652 (C=O, CHO),<br />

1643 (C=N), 1590 (C=C) cm -1 . Anal.Calcd.(%) for C 19 H 15 NO 3 S (Molec.<br />

Mass: 337.39, Exact Mass: 337.077): C67.64, H4.48, N4.15, S9.5. Found:<br />

C67.45, H4.47, N4.14, S9.53. MS (EI, 70eV): m/z (%) 337 (28), 202 (100),<br />

174 (15), 121 (5), 104 (5), 71 (12).<br />

2-[2-(4-Bromo-phenyl)-thiazol-4-ylmethoxy]-benzaldehyde (8). To a<br />

mixture <strong>of</strong> o-OH-benzaldehyde (0.366 g, 3 mmol) and K 2 CO 3 anhydrous<br />

(1.242 g, 9 mmol) in dry acetone (15 mL) was added the 2-(4-Bromophenyl)-4-iodo<strong>methyl</strong>-thiazole<br />

6 (1.13 g, 3 mmol). The mixture was heated<br />

on a water bath, in anhydrous conditions, for 3 h. The reaction mixture was<br />

afterwards cooled; the precipitate was filtered <strong>of</strong>f to obtain the aldehyde 8<br />

(0.87g, 77.54%). White solid. Mp = 148-150 o C. 1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 5.3 (s, 2H, CH 2 ), 7.1 (t, 1H, H-paraC 6 H 5 -), 7.26 (d, 1H,<br />

H a ’-arom), 7.38 (d, 2H, H b -arom), 7.51 (t, 1H, H b’ -arom), 7.6 (s, 1H,<br />

Hthiazole ), 7.85 (d, 2H, H a -arom), 7.9 (d, 1H, H a’’ -arom), 10.45 (s, 1H,<br />

CHO). IR (KBr): ν= 3063 (CH arom ), 2919 (CH aliph ), 1670 (C=O, CHO),<br />

1640 (C=N), 1593 (C=C), 1071 (C-Br) cm -1 . Anal.Calcd.(%) for<br />

C 17 H 12 BrNO 2 S (Molec. Mass: 374.25, Exact Mass: 372.977): C54.56,<br />

H3.23, N3.74, S8.57. Found: C54.44, H3.2, N3.73, S8.59. MS (EI, 70 eV):<br />

m/z (%) 375 (9), 373 (9), 252 (100), 254 (100), 182 (9), 180 (9), 71 (38).<br />

3-[2-(4-Bromo-phenyl)-thiazol-4-ylmethoxy]-benzaldehyde (9). To a<br />

mixture <strong>of</strong> m-OH-benzaldehyde (0.366 g, 3 mmol) and K 2 CO 3 anhydrous<br />

(1.242 g, 9 mmol) in dry acetone (15 mL) was added the 2-(4-Bromophenyl)-4-iodo<strong>methyl</strong>-thiazole<br />

6 (1.14 g, 3 mmol). The mixture was heated<br />

on a water bath, in anhydrous conditions, for 3 h. The reaction mixture was<br />

afterwards cooled; the precipitate was filtered <strong>of</strong>f to obtain the aldehyde 9


FARMACIA, 2009, Vol. 57, 4 455<br />

(0.922g, 82.17%). Yellow solid. Mp = 135-137 o C. 1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 5.1 (s, 2H, CH 2 ), 6.657 (d, 1H, H a’’ -arom), 6.78 (d, 1H,<br />

H’-paraC 6 H 5 -), 7.105 (t, 1H, H b’ -arom), 7.624 (s, 1H, H a’ -arom ), 7.798 (s,<br />

1H, Hthiazole), 7.871 (d, 2H, 2H b -arom), 7.92 (d, 2H, 2H a -arom), 10.2 (s,<br />

1H, CHO). IR (KBr): ν= 3061 (CH arom ), 2926 (CH aliph ), 1698 (C=O, CHO),<br />

1638 (C=N), 1600 (C=C), 1070 (C-Br) cm -1 . Anal.Calcd.(%) for<br />

C 17 H 12 BrNO 2 S (Molec. Mass: 374.25, Exact Mass: 372.97): C54.56, H3.23,<br />

N3.74, S8.57. Found: C54.39, H3.215, N3.73, S8.54. MS (EI, 70 eV): m/z<br />

(%) 375 (9), 373 (9), 252 (100), 254 (100), 182 (9), 180 (9), 71 (38).<br />

4-[2-(4-Bromo-phenyl)-thiazol-4-ylmethoxy]-benzaldehyde (10). To a<br />

mixture <strong>of</strong> p-OH-benzaldehyde (0.366 g, 3 mmol) and K 2 CO 3 anhydrous<br />

(1.242 g, 9 mmol) in dry acetone (15 mL) was added the 2-(4-Bromophenyl)-4-iodo<strong>methyl</strong>-thiazole<br />

6 (1.13 g, 3 mmol). The mixture was heated<br />

on a water bath, in anhydrous conditions, for 3 h. The reaction mixture was<br />

afterwards cooled; the precipitate was filtered <strong>of</strong>f to obtain the aldehyde 10<br />

(0.91g, 81.10%). Brown solid. Mp = 137-139 o C. 1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 5.3 (s, 2H, CH 2 ), 7.272 (d, 2H, 2H a’ -arom), 7.52 (d, 2H,<br />

2H b -arom), 7.61 (d, 2H, 2H a -arom), 7.834 (s, 1H, Hthiazole), 7.968 (d, 2H,<br />

H b’ -arom), 10 (s, 1H, CHO). IR (KBr): ν= 3058 (CH arom ), 2921 (CH aliph ),<br />

1697 (C=O, CHO), 1635 (C=N), 1589 (C=C), 1071 (C-Br) cm -1 .<br />

Anal.Calcd.(%) for C 17 H 12 BrNO 2 S (Molec. Mass: 374.25, Exact Mass:<br />

372.97): C54.56, H3.23, N3.74, S8.57. Found: C54.41, H3.22, N3.73,<br />

S8.565. MS (EI, 70 eV): m/z (%) 375 (9), 373 (9), 252 (100), 254 (100),<br />

182 (9), 180 (9), 71 (38).<br />

3-(2-Phenyl-thiazol-4-ylmethoxy)-benzaldehyde (11). To a mixture <strong>of</strong> m-<br />

OH-benzaldehyde (0.244 g, 2 mmol) and K 2 CO 3 anhydrous (0.828 g, 6<br />

mmol) in dry acetone (10 mL) was added the 2-phenyl-4-iodo<strong>methyl</strong>thiazole<br />

7 (0.6 g, 2 mmol). The mixture was heated on a water bath, in<br />

anhydrous conditions, for 3 h. The reaction mixture was afterwards cooled<br />

and poured on water. The obtained precipitate was filtered <strong>of</strong>f to obtain 11<br />

(0.53 g, 71.23%). Yellow solid. Mp = 67-70 o C.<br />

1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 5.25 (s, 2H, CH 2 ), 7.62 (s, 1H, H a’ -arom), 7.82 (s, 1H,<br />

Hthiazole ), 7.96 (d, 2H, H b -arom), 10.00 (s, 1H, CHO). IR (KBr): ν= 3043<br />

(CH arom ), 2922 (CH aliph ), 1682 (C=O, CHO), 1609 (C=N), 1593 (C=C) cm -1 .<br />

Anal.Calcd.(%) for C 17 H 13 NO 2 S (Molec. Mass: 295.35, Exact Mass:<br />

295.066): C69.13, H4.44, N4.74, S10.85. Found: C68.87, H4.43, N4.73,<br />

S10.83. MS (EI, 70 eV): m/z (%) 295 (18), 174 (100), 121 (14), 71 (17).<br />

4-(2-Phenyl-thiazol-4-ylmethoxy)-benzaldehyde (12). To a mixture <strong>of</strong> p-<br />

OH-benzaldehyde (1.22 g, 10 mmol) and K 2 CO 3 anhydrous (4.14 g, 30<br />

mmol) in dry acetone (50 mL) was added the 2-phenyl-4-iodo<strong>methyl</strong>-


456<br />

FARMACIA, 2009, Vol. 57, 4<br />

thiazole 7 (3 g, 10 mmol). The mixture was heated on a water bath, in<br />

anhydrous conditions, for 5 h. The reaction mixture was afterwards cooled<br />

and poured on water. The obtained precipitate was filtered <strong>of</strong>f to obtain 12<br />

(2.91g, 78.22%). White solid. Mp = 82-84 o C. 1 H NMR (500 MHz, DMSOd6):<br />

δ ppm = 5.3 (s, 2H, CH 2 ), 7.1 (d, 2H, H a’ -arom), 7.51-7.52 (m, 3H, 2H a -<br />

arom, H-paraC 6 H 5 -), 7.59 (d, 2H, H b’ -arom), 7.83 (s, 1H, Hthiazole), 10.00<br />

(s, 1H, CHO). IR (KBr): ν= 3047 (CH arom ), 2922 (CH aliph ), 1682 (C=O,<br />

CHO), 1615 (C=N), 1593 (C=C) cm -1 . Anal.Calcd.(%) for C 17 H 13 NO 2 S<br />

(Molec. Mass: 295.35, Exact Mass: 295.066): C69.13, H4.44, N4.74,<br />

S10.85. Found: C68.92, H4.43, N4.75, S10.812. MS (EI, 70 eV): m/z (%)<br />

295 (18), 174 (100), 121 (14), 71 (17).<br />

5-{4-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethoxy]-benzylidene}-2-<br />

thioxo-thiazolidin-4-one (13). To a mixture <strong>of</strong> 2-thioxo-1,3-thiazolidin-4-<br />

one (0.133 g, 1 mmol) and anhydrous sodium acetate (0.246 g, 3 mmol) in<br />

glacial acetic acid (5 mL) was added the compound 5 (0.337 g, 1 mmol).<br />

The mixture was heated for 6 h, afterwards cooled and the obtained<br />

precipitate was filtered <strong>of</strong>f and washed with water (100mL) to obtain 13<br />

(0.275 g, 60.84%). Yellow solid. Mp = 232-238 o C. 1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 2.77 (s, 3H, CH 3 ), 5.47 (s, 2H, CH 2 ), 7.18 (d, 2H, H a ’-<br />

arom), 7.56 (s, 1H, CH), 7.57 (d, 2H, H b ’-arom), 7.59 (t, 1H, H-paraC 6 H 5 -),<br />

7.82 (t, 2H, H a -arom), 8.04 (d, 2H, H b -arom) 13-14.5 (brs, 1H, NH). IR<br />

(KBr): ν= 3432 (NH), 3058 (CH arom ), 2918 and 2851 (CH aliph ), 1692 (C=O),<br />

1652 (C=O, -NHCO-), 1643 (C=N), 1589 (C=C), 1237 (C=S), 1054 (S-CS-<br />

N), 641 (C-S) cm -1 . Anal.Calcd.(%) for C 22 H 16 N 2 O 3 S 3 (Molec. Mass:<br />

452.56, Exact Mass: 452.032): C58.39, H3.56, N6.19, S21.25. Found:<br />

C58.51, H3.567, N6.17, S21.18. MS (EI, 70eV): m/z (%) 452 (28), 202<br />

(100), 188 (8), 174 (15), 133 (6), 121 (5), 104 (3), 71 (12).<br />

5-{2-[2-(4-Bromo-phenyl)-thiazol-4-ylmethoxy]-benzylidene}-2-thioxothiazolidin-4-one<br />

(14). To a mixture <strong>of</strong> 2-thioxo-1,3-thiazolidin-4-one<br />

(0.133 g, 1 mmol) and anhydrous sodium acetate (0.246 g, 3 mmol) in<br />

glacial acetic acid (5 mL) was added the compound 8 (0.374 g, 1 mmol).<br />

The mixture was heated for 4 h, afterwards cooled. The obtained precipitate<br />

was filtered <strong>of</strong>f, washed with water (100 mL) and recrystallized from<br />

ethanol, to obtain the compound 14 (0.32 g, 65.44%). Yellow solid. Mp =<br />

271-273 o C. 1 H NMR (500 MHz, DMSO-d6): δ ppm = 5.4 (s, 2H, CH 2 ), 7.382<br />

(d, 1H, H a’ -arom), 7.429 (d, 1H, H b’ -arom), 7.521 (t, 1H, H’-paraC 6 H 5 -),<br />

7.703-7.733 (m, 2H, Hthiazole, H b’’ -arom), 7.868 (d, 2H, H b -arom), 7.912<br />

(d, 2H, H b -arom), 7.944 (s, 1H, -CH=), 13.8 (brs, 1H, NH). IR (KBr): ν=<br />

3446 (NH), 3043 (CH arom ), 2919 and 2849 (CH aliph ), 1698 (C=O), 1640<br />

(C=N), 1593 (C=C), 1232 (C=S), 1070 (C-Br), 1051 (S-CS-N), 649 (C-S)


FARMACIA, 2009, Vol. 57, 4 457<br />

cm -1 . Anal.Calcd.(%) for C 20 H 13 BrN 2 O 2 S 3 (Molec. Mass: 489.41, Exact<br />

Mass: 487.932): C49.08, H2.68, N5.72, S19.65. Found: C49.24, H2.689,<br />

N5.7, S19.59. MS (EI, 70eV): m/z (%) 489 (28), 487 (28), 254 (100), 252<br />

(100), 182 (9), 180 (9), 133 (6), 71 (38).<br />

5-[3-(2-Phenyl-thiazol-4-ylmethoxy)-benzylidene]-2-thioxo-thiazolidin-<br />

4-one (15). To a mixture <strong>of</strong> 2-thioxo-1,3-thiazolidin-4-one (0.12 g, 0.9<br />

mmol) and anhydrous sodium acetate (0.184 g, 2.25 mmol) in glacial acetic<br />

acid (6 mL) was added the compound 11 (0.265 g, 0.9 mmol). The mixture<br />

was heated for 4 h, afterwards cooled. The obtained precipitate was filtered<br />

<strong>of</strong>f, washed with water (100 mL) to obtain the compound 15 (0.25g,<br />

67.75%). Yellow solid. Mp = 205-208 o C. 1 H NMR (500 MHz, DMSO-d6):<br />

δ ppm = 5.3 (s, 2H, CH 2 ), 7.201-7.246 (m, 2H, H a’’ -arom, H’-paraC 6 H 5 -),<br />

7.313 (s, 1H, CH), 7.483-7.533 (m, 4H, H b’ -arom, 2H a -arom, H-paraC 6 H 5 -<br />

), 7.635 (s, 1H, H a’ -arom), 7.844 (s, 1H, Hthiazole), 7.968 (d, 2H, H b -<br />

arom), 13.8-13.9 (brs, 1H, NH). IR (KBr): ν= 3430 (NH), 3060 (CH arom ),<br />

2919 and 2850 (CH aliph ), 1699 (C=O), 1639 (C=N), 1589 (C=C), 1237<br />

(C=S), 1050 (S-CS-N), 647 (C-S) cm -1 . Anal.Calcd.(%) for C 20 H 14 N 2 O 2 S 3<br />

(Molec. Mass: 410.52, Exact Mass: 410.021): C58.52, H3.44, N6.82,<br />

S23.43. Found: C58.7, H3.429, N6.8, S23.37. MS (EI, 70 eV): m/z (%) 410<br />

(28), 174 (100), 133 (6), 104 (14), 71 (17).<br />

5-[4-(2-Phenyl-thiazol-4-ylmethoxy)-benzylidene]-2-thioxo-thiazolidin-<br />

4-one (16). To a mixture <strong>of</strong> 2-thioxo-1,3-thiazolidin-4-one (0.08 g, 0.6<br />

mmol) and anhydrous sodium acetate (0.105 g, 1.5 mmol) in glacial acetic<br />

acid (4 mL) was added the compound 12 (0.177 g, 0.6 mmol). The reaction<br />

mixture was heated for 4 h, afterwards cooled; the obtained precipitate was<br />

filtered <strong>of</strong>f, to obtain the compound 16 (0.17g, 69.10%). Yellow solid. Mp =<br />

223-5 o C. 1 H NMR (500 MHz, DMSO-d6): δ ppm = 5.32 (s, 2H, CH 2 ), 7.27<br />

(d, 2H, H a’ -arom), 7.513-7.527 (m, 3H, 2H a -arom, H-paraC 6 H 5 -), 7.609 (d,<br />

2H, H b’ -arom), 7.641 (s, 1H, -CH=), 7.851 (s, 1H, Hthiazole), 7.963 (d, 2H,<br />

H b -arom), 13.7 (s, 1H, NH). IR (KBr): ν= 3432 (NH), 3059 (CH arom ), 2918<br />

and 2851 (CH aliph ), 1698 (C=O), 1615 (C=N), 1590 (C=C), 1232 (C=S),<br />

1051 (S-CS-N), 640 (C-S) cm -1 . Anal.Calcd.(%) for C 20 H 14 N 2 O 2 S 3 (Molec.<br />

Mass: 410.52, Exact Mass: 410.021): C58.52, H3.44, N6.82, S23.43. Found:<br />

C58.7, H3.448, N6.807, S23.35. MS (EI, 70 eV): m/z (%) 410 (28), 174<br />

(100), 133 (6), 104 (14), 71 (17).<br />

5-{4-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethoxy]-benzylidene}-<br />

pyrimidine-2,4,6-trione (17). To a mixture <strong>of</strong> pyrimidine-2,4,6-trione<br />

(0.128 g, 1 mmol) and anhydrous sodium acetate (0.246 g, 3 mmol) in<br />

glacial acetic acid (10 mL) was added the compound 5 (0.337 g, 1 mmol).<br />

The mixture was heated for 6 h, afterwards cooled and the obtained


458<br />

FARMACIA, 2009, Vol. 57, 4<br />

precipitate was filtered <strong>of</strong>f and washed with water (100mL) to obtain 17<br />

(0.315g, 70.47%). Yellow solid. Mp = 269-271 o C. 1 H NMR (500 MHz,<br />

DMSO-d6): δ ppm = 2.8 (s, 3H, CH 3 ), 5.51 (s, 2H, CH 2 ), 7.143 (d, 2H, 2H a ’-<br />

arom), 7.54-7.61 (m, 3H, H a -arom, H-paraC 6 H 5 -), 8.054 (d, 2H, H b’ -arom),<br />

8.264 (s, 1H, -CH=), 8.359 (d, 2H, H b -arom), 11.2 (s, 1H, NH), 11.32 (s,<br />

1H, NH). IR (KBr): ν= 3431 (NH), 3063 (CH arom ), 2919 and 2851 (CH aliph ),<br />

1731 (C=O, -NH-CO-NH-), 1672 (C=O), 1655 (C=O) cm -1 . Anal.Calcd.(%)<br />

for C 23 H 17 N 3 O 5 S (Molec. Mass: 447.46, Exact Mass: 447.088): C61.74,<br />

H3.83, N9.39, S7.16. Found: C61.53, H3.89, N9.37, S7.178. MS (EI,<br />

70eV): m/z (%) 447 (6), 202 (100), 174 (15), 128 (9), 104 (8), 71 (15).<br />

5-[3-(2-Phenyl-thiazol-4-ylmethoxy)-benzylidene]-pyrimidine-2,4,6-<br />

trione (18). To a mixture <strong>of</strong> pyrimidine-2,4,6-trione (0.096 g, 0.75 mmol)<br />

and anhydrous sodium acetate (0.184 g, 2.25 mmol) in glacial acetic acid (8<br />

mL) was added the compound 11 (0.221 g, 0.75 mmol). The mixture was<br />

heated for 4 h, afterwards cooled. The obtained precipitate was filtered <strong>of</strong>f,<br />

washed with water (100 mL) to obtain the compound 18 (0.21g, 69.3%).<br />

Brown solid. Mp >300 o C. 1 H NMR (500 MHz, DMSO-d6): δ ppm = 5.1 (s,<br />

2H, CH 2 ), 6.65-6.681 (m, 2H, H a’ -arom, H a’’ -arom), 6.774 (d, 1H, H’-<br />

paraC 6 H 5 -), 7.091 (t, 1H, H b’ -arom), 7.502-7.515 (m, 3H, H a -arom,<br />

Hthiazole), 7.759 (s, 1H, -CH=), 7.957 (t, 1H, H’-paraC 6 H 5 -), 7.97 (d, 2H,<br />

H b -arom), 11.12 (s, 1H, NH), 11.42 (s, 1H, NH). IR (KBr): ν= 3432 (NH),<br />

3063 (CH arom ), 2920 and 2852 (CH aliph ), 1732 (C=O, -NH-CO-NH-), 1672<br />

(C=O), 1658 (C=O) cm -1 . Anal.Calcd.(%) for C 21 H 15 N 3 O 4 S (Molec. Mass:<br />

405.42, Exact Mass: 405.078): C62.21, H3.73, N10.36, S7.91. Found:<br />

C61.99, H3.74, N10.33, S7.89. MS (EI, 70eV): m/z (%) 405 (28), 174<br />

(100), 128 (9), 104 (8), 71 (15).<br />

5-[4-(2-Phenyl-thiazol-4-ylmethoxy)-benzylidene]-pyrimidine-2,4,6-trione<br />

(19). To a mixture <strong>of</strong> pyrimidine-2,4,6-trione (0.064 g, 0.5 mmol) and<br />

anhydrous sodium acetate (0.105 g, 1.5 mmol) in glacial acetic acid (4 mL)<br />

was added the compound 12 (0.148 g, 0.5 mmol). The reaction mixture was<br />

heated for 4 h, afterwards cooled; the obtained precipitate was filtered <strong>of</strong>f, to<br />

obtain the compound 19 (0.14g, 69.3%). Yellow solid. Mp = 270 o C. 1 H NMR<br />

(500 MHz, DMSO-d6): δ ppm = 5.3 (s, 2H, CH 2 ), 7.13 (d, 2H, H a’ -arom), 7.5-<br />

7.6 (m, 3H, H a -arom, H-paraC 6 H 5 -), 7.8 (s, 1H, Hthiazole), 8.00 (d, 2H, H b’ -<br />

arom), 8.2 (s, 1H, -CH=), 8.41 (d, 2H, H b’ -arom), 11.15 (s, 1H, NH), 11.3 (s,<br />

1H, NH). IR (KBr): ν= 3431 (NH), 3064 (CH arom ), 2918 and 2851 (CH aliph ),<br />

1731 (C=O, -NH-CO-NH-), 1673 (C=O), 1656 (C=O) cm -1 . Anal.Calcd.(%)<br />

for C 21 H 15 N 3 O 4 S (Molec. Mass: 405.42, Exact Mass: 405.078): C62.21,<br />

H3.73, N10.36, S7.91. Found: C62.43, H3.74, N10.33, S7.93. MS (EI, 70eV):<br />

m/z (%) 405 (28), 174 (100), 128 (9), 104 (8), 71 (15).


FARMACIA, 2009, Vol. 57, 4 459<br />

Results and discussion<br />

The synthetic strategies adopted to obtain the target compounds are<br />

presented in Figures 1-3. The key intermediates noted as 5, 8-12 were<br />

prepared in good yields by etherification <strong>of</strong> 2-phenyl-4-<strong>methyl</strong>-5-<br />

bromoacetyl-thiazole 4, respectively 2-phenyl-4-iodo<strong>methyl</strong>-thiazole 7 and<br />

his 4-bromoderivative 6 with o, m or p-hydroxybenzaldehyde 1, 2, 3, in<br />

refluxing dry acetone, in the presence <strong>of</strong> anhydrous K 2 CO 3 (Figure 1).<br />

Figure 1<br />

Synthesis <strong>of</strong> some <strong>thiazolyl</strong>-<strong>carbonyl</strong>-<strong>methyl</strong>-oxi and<br />

<strong>thiazolyl</strong>-<strong>methyl</strong>-oxi-benzaldehyde derivatives<br />

The aldehydes 5, 8, 11 and 12 were allowed to condense with 2-<br />

thioxo-1,3-thiazolidin-4-one, in refluxing glacial acetic acid in the presence<br />

<strong>of</strong> anhydrous sodium acetate for 4-6 h to afford, in good yields, 5-<br />

aryl<strong>methyl</strong>ene-2-thioxo-1,3-thiazolidin-4-one 13-16 (Figure 2).<br />

In order to obtain, in good yields, <strong>new</strong> 5-aryl<strong>methyl</strong>ene-pyrimidine-<br />

2,4,6-trione derivatives, the aldehydes 5, 11 and 12 were treated with<br />

pyrimidine-2,4,6-trione, in the same conditions as mentioned previously<br />

(Figure 3).<br />

The structures <strong>of</strong> compounds 13-16 were confirmed by<br />

microanalytical and spectral data. Thus, the 1 HNMR spectra showed signals<br />

corresponding to <strong>methyl</strong> (compound 13), <strong>methyl</strong>ene, olefinic, aromatic and<br />

NH protons. Further, the infrared spectra showed absorptions characteristic


460<br />

FARMACIA, 2009, Vol. 57, 4<br />

for NH, C=O and C=S groups, in addition to other absorptions correlated to<br />

the assigned structures. Also, MS showed correct molecular ion peaks<br />

beside some <strong>of</strong> the abundant fragments.<br />

The structures <strong>of</strong> compounds 17-19 were confirmed by<br />

microanalytical and spectral data. Thus, the 1 HNMR spectra showed signals<br />

corresponding to <strong>methyl</strong> (compound 17), <strong>methyl</strong>ene, olefinic, aromatic and<br />

NH protons. Further, the infrared spectra showed absorptions characteristic<br />

for NH, C=O groups, in addition to other absorptions correlated to the<br />

assigned structures. Also, MS showed correct molecular ion peaks beside<br />

some <strong>of</strong> the abundant fragments.<br />

Figure 2<br />

Condensation <strong>of</strong> 2-thioxo-1,3-thiazolidin-4-one with the <strong>thiazolyl</strong>-<strong>carbonyl</strong>-<strong>methyl</strong>-oxi and<br />

<strong>thiazolyl</strong>-<strong>methyl</strong>-oxi-benzaldehyde derivatives<br />

Figure 3<br />

Condensation <strong>of</strong> pyrimidine 2, 4, 6-trione with the <strong>thiazolyl</strong>-<strong>carbonyl</strong>-<strong>methyl</strong>-oxi and<br />

<strong>thiazolyl</strong>-<strong>methyl</strong>-oxi-benzaldehyde derivatives


FARMACIA, 2009, Vol. 57, 4 461<br />

Conclusions<br />

A number <strong>of</strong> 6 <strong>new</strong> <strong>thiazolyl</strong>-<strong>methyl</strong> (<strong>carbonyl</strong>-<strong>methyl</strong>)-oxibenzaldehydes,<br />

4 <strong>new</strong> 5-aryl<strong>methyl</strong>ene-2-thioxo-1,3-thiazolidin-4-one<br />

derivatives and 3 <strong>new</strong> 5-aryl<strong>methyl</strong>ene-pyrimidine-2,4,6-trione derivatives<br />

was synthesized, as potential <strong>new</strong> therapeutical agents. Their structures were<br />

confirmed by TLC, elemental analysis and spectroscopic (MS, IR, 1 H NMR)<br />

data.<br />

References<br />

1. Sader HS, Johnson DM, Jones RN. In Vitro Activities <strong>of</strong> the Novel Cephalosporin<br />

LB 11058 against Multidrug-Resistant Staphylococci and Streptococci.<br />

Antimicrob. Agents and Chemother. 2004; 48 (1): 53-62.<br />

2. Kurazono M, Takashi I, Yamada K, Hirai Y, Takahisa M et al. In Vitro Activities <strong>of</strong><br />

ME1036 (CP5609), a Novel Parenteral Carbapenem, against Methicillin-Resistant<br />

Staphylococci. Antimicrob. Agents and Chemother. 2004; 48 (8): 2831-7.<br />

3. Pucci MJ, Bronson JJ, Barrett JF, DenBleyker KL, Discotto LF, Fung-Tomc JC<br />

et al. Antimicrobial Evaluation <strong>of</strong> Nocathiacins, a Thiazole Peptide Class <strong>of</strong><br />

Antibiotics. Antimicrob. Agents and Chemother. 2004; 48 (10): 3697-3701.<br />

4. Spector FC, Liang L, Giordano H, Sivaraja M, Peterson MG. Inhibition <strong>of</strong> Herpes<br />

Simplex Virus Replication by a 2-Amino Thiazole via Interactions with the<br />

Helicase Component <strong>of</strong> the UL5-UL8-UL52 Complex. J. <strong>of</strong> Virology. 1998; 72<br />

(9): 6979-87.<br />

5. De Logu A, Saddi M, Cardia MC, Borgna R, Sanna C et al. In vitro activity <strong>of</strong> 2-<br />

cyclohexylidenhydrazo-4-phenyl-thiazole compared with those <strong>of</strong> amphotericin B<br />

and fluconazole against clinical isolates <strong>of</strong> Candida spp. and fluconazole-resistant<br />

Candida albicans. J. Of Antimicrob. Chemother. 2005; 55: 692-8.<br />

6. Bondock S, Khalifa W, Fadda AA. Synthesis and antimicrobial evaluation <strong>of</strong><br />

some <strong>new</strong> thiazole, thiazolidinone and thiazoline derivatives starting from 1-<br />

chloro-3,4-dihydronaphthalene-2-carboxaldehyde. .Eur. J. Med. Chem. 2007; 42:<br />

948-954.<br />

7. Gududuru V, Hurh E, Dalton JT, Miller DD. Synthesis and antiproliferative<br />

activity <strong>of</strong> 2-aryl-4-oxo-thiazolidin-3-yl-amides for prostate cancer. Bioorg. Med.<br />

Chem. Letters. 2004; 14: 5289-5293.<br />

8. Rostom SAF. Synthesis and in vitro antitumor evaluation <strong>of</strong> some indeno[1,2-c]-<br />

pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea)<br />

pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem.<br />

2006; 14: 6475-6485.<br />

9. Balzarini J, Orzeszko B, Maurin JK, Orzeszko A. Synthesis and anti-HIV studies<br />

<strong>of</strong> 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem. 2007; 42: 993-<br />

1003.<br />

10. DeLima, M.C.A.; Costa, D. L. B.; Goes, J. A. S.; Galdino, S. L.; Pitta, I. R.; Luu-<br />

Duc, C. Pharmazie 1992, 47, 182.<br />

11. Labouta, I. M.; Salama, H. M.; Eshba, N.H.; Kader, O.; El-Chrbini, E. Eur. J.<br />

Med. Chem. 1987, 22, 485.


462<br />

FARMACIA, 2009, Vol. 57, 4<br />

12. Oliva, A.; De Cillis, G.; Grams, F.; Livi, V.; Zimmermann, G.; Menta, E. ; Krell,<br />

H.W. WO/1998/058925. Roche diagnostics GMBH ; Patent Dept.D-68298<br />

Mannheim (DE).<br />

13. Moussier, N.; Bruche, L.; Viani, F.; Zanda, M. Current Org. Chem. 2003, 7 (11),<br />

1071-1080.<br />

14. Oniga O, Moldovan C, Muntean A, Verite P, Ionescu M, Tiperciuc B. Synthesis<br />

and antibacterial activity <strong>of</strong> some 5-aryliden-2-thioxo-thiazolydin-4-one. Revista<br />

de Medicină şi Farmacie a Universităţii de Medicină şi farmacie din Târgu-<br />

Mureş. 2004; 50 (II): 183-186.<br />

15. Ionescu M, Rădulescu AZ, Moldovan C, Banciu HL, Ghiran D. Efectul inhibitor al<br />

unor 5-ariliden-tiazolidin-4-ceto-2-tione asupra adenilat kinazei din Escherichia<br />

Coli. Clujul Medical. Clujul Medical. 2005; LXXVIII (3): 638-641.<br />

16. Palage M, Tiperciuc B, Oniga O, Muresan A. Relaţii structură chimică- activitate<br />

antiinfecţioasă în seria derivaţilor de 2-(N-acetil-p-R-anilino)-4-metil-tiazol.<br />

Farmacia. 1999; XLVII (5): 69-75.<br />

17. Oniga S, Oniga O, Tiperciuc B, Palage M, Mureşan A, Ghiran D. Synthesis and<br />

antimicrobial activity <strong>of</strong> some <strong>new</strong> 5-di<strong>thiazolyl</strong>-2-R-1,3,44-oxadiazoline<br />

derivatives. Farmacia. 2000; XLVIII (3): 65-73<br />

18. Preda L, Oniga O, Tiperciuc B, Verite P, Crişan O, Ghiran D. The <strong>synthesis</strong> <strong>of</strong><br />

<strong>new</strong> 2’Aril-2-Phenil-4R-5,4’ dithiazole derivatives. Farmacia. 2003; LI (2): 65-71<br />

19. Oniga O, Tătaru A , Costea L, Tiperciuc B, Crişan O, Oniga S. Obţinerea unor noi<br />

tiazolil-cetoxime. Farmacia. 2003; LI (6): 75-81<br />

20. Oniga O, Brad V, Oniga S, Tiperciuc B. Obţinerea unor noi 2 metil(fenil)-5,4’<br />

ditiazoli. Farmacia. 2004; LII (2): 36-42<br />

21. Costea L, Oniga O, Ionescu M, Tiperciuc B, Ghiran D. Sinteza şi activitatea<br />

antimicrobiană a unor compuşi 2’-arilidenamino-5,4’-ditiazolici şi 2’-<br />

arilidenhidrazino-5,4’-ditiazolici. Farmacia 2005; LIII, 2: 67.<br />

22. Silberg A, Simiti I, Mantsch H. Chem. Ber. 1961; 11: 2887-2894.<br />

_____________________<br />

Manuscript received: 02.03.2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!