10.06.2014 Views

In vitro activity on Cryptosporidium parvum oocyst of ... - ResearchGate

In vitro activity on Cryptosporidium parvum oocyst of ... - ResearchGate

In vitro activity on Cryptosporidium parvum oocyst of ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>In</str<strong>on</strong>g> <str<strong>on</strong>g>vitro</str<strong>on</strong>g> <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>on</strong> <strong>Cryptosporidium</strong> <strong>parvum</strong><br />

<strong>oocyst</strong> <strong>of</strong> different drugs with recognized<br />

anticryptosporidial efficacy<br />

J. A. CASTRO-HERMIDA 1,2 , I. PORS 1 , E. ARES-MAZAS 2 and C. CHARTIER 1<br />

1<br />

AFSSA site de NIORT , Laboratoire d’Etudes et de Recherches Caprines, 60 rue de Pied de F<strong>on</strong>d, B.P. 3081 - 79012 Niort Cedex, France.<br />

2<br />

Laboratorio de Parasitologia, Departamento de Microbiologia y Parasitologia, Facultad de Farmacia, Universidad de Santiago de Compostela, Avda. de Vigo s/n, 15782<br />

Santiago de Compostela, La Coruña, Galicia, España.<br />

Corresp<strong>on</strong>dance : Christophe Chartier E-mail : c.chartier@niort.afssa.fr<br />

Tel. : (33) 5 49 79 61 28 Fax: (33) 5 49 79 42 19<br />

SUMMARY<br />

The in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> different drugs with recognized anticryptosporidial<br />

efficacy was evaluated <strong>on</strong> <strong>Cryptosporidium</strong> <strong>parvum</strong> <strong>oocyst</strong> at the standard<br />

doses used in the treatment <strong>of</strong> human and animals infecti<strong>on</strong>s. The viability<br />

<strong>of</strong> purified <strong>Cryptosporidium</strong> <strong>parvum</strong> <strong>oocyst</strong>s, exposed for 30, 60, 90<br />

and 120 min in 10 mL sterile distilled water to paromomycin (100 mg/kg<br />

body weight), azithromycin (200 mg/kg body weight), hal<strong>of</strong>ugin<strong>on</strong>e lactate<br />

(120 µg/kg body weight), toltrazuril (30 mg/kg body weight), nitazoxanide<br />

(200 mg/kg body weight) and two excipients widely used in pharmaceutical<br />

technology <strong>of</strong> the group <strong>of</strong> the cyclodextrins: α-cyclodextrin (1 g/kg body<br />

weight), β-cyclodextrin (1 g/kg body weight) and [α-cyclodextrin : β-cyclodextrin<br />

(50%)] (1 g/kg body weight), was evaluated in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> by inclusi<strong>on</strong> or<br />

exclusi<strong>on</strong> <strong>of</strong> <strong>on</strong>e fluorogenic vital dye and an excystati<strong>on</strong> technique. Results<br />

showed a significant decrease in the <strong>oocyst</strong> viability related to an increase<br />

in exposure time for α-, β- and α-, β-cyclodextrins whereas no significant<br />

evoluti<strong>on</strong> was seen with the other anticryptosporidial drugs. This effect was<br />

mainly obtained during the first 30 minutes <strong>of</strong> exposure for both cyclodextrins.<br />

KEY-WORDS : <strong>Cryptosporidium</strong> <strong>parvum</strong>, anticryptosporidial<br />

drug, in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> <str<strong>on</strong>g>activity</str<strong>on</strong>g>, <strong>oocyst</strong>, cyclodextrins.<br />

RÉSUMÉ<br />

Evaluati<strong>on</strong> de l’activité in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> sur l’<strong>oocyst</strong>e de C. <strong>parvum</strong> de plusieurs<br />

molécules ayant une efficacité vis-à-vis des cryptosporidies. Par J.-A.<br />

CASTRO-HERMIDA, I. PORS, E. ARES-MAZAS et C. CHARTIER.<br />

L’activité in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> de plusieurs molécules ayant une efficacité anti-cryptosporidienne<br />

avérée a été évaluée sur les <strong>oocyst</strong>es de <strong>Cryptosporidium</strong> <strong>parvum</strong><br />

aux doses standards utilisées dans le traitement de la cryptosporiodiose<br />

humaine ou animale. La viabilité d’<strong>oocyst</strong>es purifiés de C. <strong>parvum</strong> exposés<br />

pendant 30, 60, 90 et 120 mn dans 10 mL d’eau distillée stérile à la paromomycine<br />

(100 mg/kg PV), l’azithromycine (200 mg/kg PV), le lactate<br />

d’hal<strong>of</strong>ugin<strong>on</strong>e (120 µg/kg PV), le toltrazuril (30 mg/kg PV), la nitazoxanide<br />

(200 mg/kg PV) ou 2 excipients du groupe des cyclodextrines largement<br />

utilisés dans la technologie pharmaceutique, l’ α-cyclodextrine (1g/kg PV),<br />

la β-cyclodextrine (1g/kg PV) ou un mélange à partie égale de l’α-cyclodextrine<br />

et de la β-cyclodextrine (1g/kg PV), a été évaluée in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> par l’inclusi<strong>on</strong><br />

ou l’exclusi<strong>on</strong> d’une colorati<strong>on</strong> vitale fluorogénique et par une technique<br />

d’excystati<strong>on</strong>. Les résultats <strong>on</strong>t m<strong>on</strong>tré une diminuti<strong>on</strong> significative<br />

dans la viabilité des <strong>oocyst</strong>es liée à l’augmentati<strong>on</strong> du temps d’expositi<strong>on</strong> à<br />

l’ α-, la β- et l’α β-cyclodextrine tandis qu’aucune évoluti<strong>on</strong> significative<br />

n’a été enregistrée avec les autres molécules à activité anti-cryptosporidienne.<br />

Cette activité a été principalement obtenue durant les 30 premières<br />

minutes d’expositi<strong>on</strong> pour les 2 cyclodextrines.<br />

MOTS-CLÉS : <strong>Cryptosporidium</strong> <strong>parvum</strong>, molécule anticryptosporidienne,<br />

activité in <str<strong>on</strong>g>vitro</str<strong>on</strong>g>, <strong>oocyst</strong>e, cyclodextrines.<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g>troducti<strong>on</strong><br />

<strong>Cryptosporidium</strong> <strong>parvum</strong> is a protozoan parasite highly<br />

infectious to man and animals. C.<strong>parvum</strong> <strong>oocyst</strong>s excreted<br />

with faeces <strong>of</strong> infected animals can be a source <strong>of</strong> infecti<strong>on</strong><br />

for man having great influence <strong>on</strong> public health in immunodeficient<br />

but also immunocompetent host. The disease is<br />

characterized by watery diarrhoea, dehydrati<strong>on</strong> and weight<br />

loss. C. <strong>parvum</strong> has been reported as a comm<strong>on</strong> serious primary<br />

cause <strong>of</strong> outbreaks <strong>of</strong> diarrhoea in ruminant ne<strong>on</strong>ates,<br />

mainly calves, lambs, and goat kids, causing c<strong>on</strong>siderable<br />

direct and indirect ec<strong>on</strong>omic losses [9, 11, 35].<br />

Although many chemotherapic antimicrobial compounds<br />

have been tested for efficacy against cryptosporidiosis in<br />

animals and humans, there is no clearly recognized, widely<br />

accepted, or immediately available compound for prophylaxis<br />

or therapy [10, 30]. Only a few aminoglycoside [7, 13,<br />

22, 33], macrolide [16, 26, 29] and i<strong>on</strong>ophore [3, 27] antibiotics<br />

as well as hal<strong>of</strong>ugin<strong>on</strong>e [8, 18, 23, 24, 32] have<br />

shown detectable anticryptosporidial <str<strong>on</strong>g>activity</str<strong>on</strong>g>. Other results<br />

obtained in chicken cryptosporidiosis [28] as well as field<br />

observati<strong>on</strong>s made by veterinarians could indicate some <str<strong>on</strong>g>activity</str<strong>on</strong>g><br />

with toltrazuril. Lastly, more recent studies have given<br />

encouraging results with nitazoxanide [1, 12, 19] and the<br />

excipients widely used in pharmaceutical industry, α- and β-<br />

cyclodextrin [4, 5, 6].<br />

The aim <strong>of</strong> the present study was to compare the <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong><br />

different drugs with dem<strong>on</strong>strated anticryptosporidial <str<strong>on</strong>g>activity</str<strong>on</strong>g><br />

in human or in animals and two cyclodextrins (α- and β-<br />

cyclodextrin) <strong>on</strong> goat kid C. <strong>parvum</strong> <strong>oocyst</strong>s through in <str<strong>on</strong>g>vitro</str<strong>on</strong>g><br />

techniques.<br />

Materials and methods<br />

PARASITE<br />

C. <strong>parvum</strong> <strong>oocyst</strong>s (4.5-5.0 x 4.5-5.0 µm) were collected<br />

from a naturally infected Alpine ne<strong>on</strong>atal kid. Previously,<br />

faecal smears were examined microscopically and Heine’s<br />

negative stain was used to enable identificati<strong>on</strong> <strong>of</strong> C. <strong>parvum</strong><br />

<strong>oocyst</strong>s. The intensity <strong>of</strong> infecti<strong>on</strong> was estimated semiquantitatively<br />

according to the average number <strong>of</strong> <strong>oocyst</strong>s in 20<br />

randomly selected fields at 1000x magnificati<strong>on</strong>. Finally, the<br />

Revue Méd. Vét., 2004, 155, 8-9, 453-456


454 CASTRO-HERMIDA (J.-A.) AND COLLABORATORS<br />

selected faecal sample presented a severe intensity <strong>of</strong> infecti<strong>on</strong><br />

(>10 <strong>oocyst</strong>s). Oocysts were c<strong>on</strong>centrated and purified<br />

as previously described by Lorenzo et al. [21]. Briefly, fecal<br />

material was mixed with 0.04 M phosphate-buffered saline<br />

(PBS), pH 7.2 and passed through sieves (mesh size 45 µm).<br />

The resulting fluid was resuspended 2:1 (v/v) with diethyl<br />

ether into 50 ml c<strong>on</strong>ical centrifuge tubes, shaken vigorously<br />

for 30 s and centrifuged at 1000 g for 5 min. The top three<br />

layers were decanted. This step was repeated until the sediment<br />

was free <strong>of</strong> lipids. After several washings the sediment<br />

was resuspended in 1 ml <strong>of</strong> PBS and overlaid <strong>on</strong> a Percoll®<br />

(Sigma Chemical Co., St. Lousis, MO) disc<strong>on</strong>tinuous density<br />

gradient c<strong>on</strong>sisting in four 2.5 ml layers with densities <strong>of</strong><br />

1.13, 1.09, 1.05 and 1.01 g/mL. The gradients were centrifuged<br />

at 650 g for 15 min at 4°C and the <strong>oocyst</strong>s were harvested<br />

as a clearly defined band between 1.05 and 1.09 g/mL<br />

Percoll® layer. The <strong>oocyst</strong>s were washed three times in PBS<br />

and resuspended 1:1 (v/v) in a 5% potassium dichromate<br />

soluti<strong>on</strong> and stored at 4°C until viability assays were performed<br />

(no later than 1 week). Previously to these assays,<br />

<strong>oocyst</strong>s were washed three times at 4°C in PBS in order to<br />

remove the potassium dichromate soluti<strong>on</strong>. The number <strong>of</strong><br />

<strong>oocyst</strong>s present in 1 mL <strong>of</strong> suspensi<strong>on</strong> was counted in a<br />

modified Neubauer hemacytometer after mixing 0.2 ml with<br />

0.8 ml <strong>of</strong> malachite green (malachite green, 0.16 g; distilled<br />

water, 100 mL).<br />

IN VITRO VIABILITY ASSAYS<br />

Purified <strong>oocyst</strong>s were exposed for 30, 60, 90 and 120 min<br />

to paromomycin (100 mg/kg body weight, Sigma Chemical<br />

Co., St. Lousis, MO), azithromycin (200 mg/kg body weight,<br />

Zithromax®, Pfizer), hal<strong>of</strong>ugin<strong>on</strong>e lactate (120 µg/kg body<br />

weight, Halocur®, <str<strong>on</strong>g>In</str<strong>on</strong>g>tervet), toltrazuril (30 mg/kg body<br />

weight, Baycox®, Bayer), nitazoxanide (200 mg/kg body<br />

weight, Nodik®, Pharmanova, divisi<strong>on</strong> Unipharm-<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g>ternati<strong>on</strong>al S.A.), α-cyclodextrin (1g/kg body weight,<br />

Wacker-Chemie GmbH), β-cyclodextrin (1 g/kg body<br />

weight, Roquette-Laisa, Spain) and [α-cyclodextrin : β-<br />

cyclodextrin (50%)] (1 g/kg body weight). Each drug was<br />

tested in 10 mL sterile distilled water at 20°C in a test tube (2<br />

replicates : assay 1 and assay 2) and shaken (70 rpm) ; then,<br />

the <strong>oocyst</strong>s were washed twice and counted as described previously<br />

Lorenzo et al. [21].<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g>clusi<strong>on</strong>/exclusi<strong>on</strong> <strong>of</strong> fluorogenic PI vital dye<br />

This technique is based <strong>on</strong> the inclusi<strong>on</strong> or exclusi<strong>on</strong> <strong>of</strong><br />

propidium iodide (PI) fluorogenic vital dye and described<br />

previously by Campbell et al. [2]. Briefly, approximately<br />

2x10 6 treated and untreated <strong>oocyst</strong>s were resuspended to 100<br />

µL in Hanks balanced salt soluti<strong>on</strong> (HBSS) and incubated<br />

simultaneously with 10 µL <strong>of</strong> PI working soluti<strong>on</strong> (1 mg/mL<br />

in 0.1 M PBS, pH 7.2) at 37°C for the length <strong>of</strong> time optimal<br />

for producing maximal dye uptake (2 h). Oocysts were<br />

washed twice in HBSS before being observed by fluorescence<br />

microscopy. Proporti<strong>on</strong> <strong>of</strong> PI-positive (PI+: permeable<br />

and dead) and PI-negative (PI-: impermeables and viable at<br />

assay) <strong>oocyst</strong>s were quantified by counting more than 100<br />

<strong>oocyst</strong>s in each sample.<br />

Excystati<strong>on</strong> technique<br />

A technique <strong>of</strong>fering approximately 98% <strong>of</strong> excystati<strong>on</strong> in<br />

untreated <strong>oocyst</strong>s was used [31]. Treated and untreated<br />

<strong>oocyst</strong>s numbering 2x10 6 were resuspended in 10 mL <strong>of</strong><br />

0.9% NaCl and 0.5% (w/v) pepsin (62 units/mg solid) and 70<br />

µL <strong>of</strong> c<strong>on</strong>centrated HCl were added. The reactants were<br />

mixed thoroughly prior to incubati<strong>on</strong> at 37°C for 30 min.<br />

After this preincubati<strong>on</strong> treatment, the mixture was neutralized<br />

with 2.2% HNaCO 3 . Then, 0.022 g <strong>of</strong> sodium taurocholate<br />

and 0.004 g bovine trypsin were added and incubated at<br />

37°C for 120 min and the suspensi<strong>on</strong> was fixed by additi<strong>on</strong><br />

<strong>of</strong> 3% glutaraldehyde. Percentage excystati<strong>on</strong> was calculated<br />

by scanning 10 µL aliquots <strong>of</strong> suspensi<strong>on</strong> under phase<br />

c<strong>on</strong>trast microscopy and counting all the intact and empty<br />

<strong>oocyst</strong>s seen in a successi<strong>on</strong> <strong>of</strong> random fields. Excystati<strong>on</strong><br />

percentage was given by: (number <strong>of</strong> empty <strong>oocyst</strong>s/total<br />

<strong>oocyst</strong>s)x100.<br />

STATISTICAL ANALYSIS<br />

The data were analyzed by a test <strong>of</strong> comparis<strong>on</strong> <strong>of</strong> proporti<strong>on</strong>s<br />

(Statitcf® Ver. 5) and a Analysis <strong>of</strong> Variance ANOVA<br />

(Systat® Ver. 9.01 for Windows®).<br />

Results<br />

The results <strong>of</strong> in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> viability assay for <strong>oocyst</strong>s <strong>of</strong> C. <strong>parvum</strong><br />

treated with different drugs and two excipients <strong>of</strong> the<br />

group <strong>of</strong> the cyclodextrins for different times (30, 60, 90 and<br />

120 min) dem<strong>on</strong>strated a general trend with a decrease in the<br />

percentage <strong>of</strong> excystati<strong>on</strong> and an increase in the percentage<br />

<strong>of</strong> dead <strong>oocyst</strong>s (PI+), which was related to the increase in<br />

exposure time for each <strong>of</strong> the evaluated products (Table I).<br />

Nevertheless, the decrease <strong>of</strong> viability throughout the exposure<br />

time was significant (P < 0.05) <strong>on</strong>ly with α-, β- and αβcyclodextrins.<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g> the c<strong>on</strong>trol assays, the percentage <strong>of</strong> viable<br />

<strong>oocyst</strong>s, at the maximum <strong>of</strong> exposure time, remained 98%<br />

and 99% for the inclusi<strong>on</strong>/exclusi<strong>on</strong> <strong>of</strong> PI fluorogenic vital<br />

dye and excystati<strong>on</strong> techniques respectively. The decrease in<br />

<strong>oocyst</strong> viability with cyclodextrins was observed during the<br />

first 30 minutes <strong>of</strong> exposure (P < 0.05).<br />

Discussi<strong>on</strong><br />

The results obtained in the present study dem<strong>on</strong>strated a<br />

high proporti<strong>on</strong> <strong>of</strong> n<strong>on</strong>viable <strong>oocyst</strong>s ranging from 30 to 40 %<br />

when in c<strong>on</strong>tact with α, β or both cyclodextrins. <str<strong>on</strong>g>In</str<strong>on</strong>g> c<strong>on</strong>trast,<br />

the viability <strong>of</strong> <strong>oocyst</strong>s did not seem significantly affected by<br />

the other anticryptosporidial drugs i.e., paromomycin, azithromycin,<br />

hal<strong>of</strong>ugin<strong>on</strong>e lactate, toltrazuril and nitazoxanide.<br />

The mechanisms <strong>of</strong> inhibiti<strong>on</strong> <strong>of</strong> C. <strong>parvum</strong> infecti<strong>on</strong> by<br />

the n<strong>on</strong>absorbable cyclodextrins are still unknown. The<br />

molecular structure <strong>of</strong> cyclodextrins, which approximates a<br />

truncated c<strong>on</strong>e or torus, generates a hydrophilic exterior surface<br />

and a n<strong>on</strong>polar cavity interior. As such, cyclodextrins<br />

can interact with appropriately sized molecules to result in<br />

the formati<strong>on</strong> <strong>of</strong> inclusi<strong>on</strong> complexes. Therefore, it is possible<br />

that cyclodextrins interacted with hydrophobic mole-<br />

Revue Méd. Vét., 2004, 155, 8-9, 453-456


IN VITRO ACTIVITY ON CRYPTOSPORIDIUM PARVUM OOCYST 455<br />

cules at the level <strong>of</strong> the <strong>oocyst</strong> wall. Moreover, the number <strong>of</strong><br />

glucose units in the cyclodextrin determines the size <strong>of</strong> the<br />

hydrophobic pocket and, in turn, which lipids the cyclodextrin<br />

solubilizes [15, 20, 25]. When both cyclodextrins were<br />

mixed in equal proporti<strong>on</strong>, the percentage <strong>of</strong> viable <strong>oocyst</strong>s<br />

at the maximum exposure time, was lower that with each<br />

cyclodextrin separately although the differnce was not statistically<br />

significant. It is thus possible that β-cyclodextrin<br />

interacted with hydrophobic molecules different that β-<br />

cyclodextrin at level <strong>oocyst</strong> wall. The anticryptosporidial<br />

<str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> the β-cyclodextrin has been documented in naturally<br />

infected calves and lambs [4, 5] as well as more<br />

recently for α-cyclodextrin in experimental cryptosporidiosis<br />

in ne<strong>on</strong>atal kids (unpublished data).<br />

The PI vital dye is a valuable indicator <strong>of</strong> membrane integrity<br />

since it cannot cross cell membranes unless compromised.<br />

Once there are gaps in the membrane, PI enters the cell<br />

and bind to nucleic acids [2, 14]. Our results showed that<br />

<strong>oocyst</strong>s wall were permeable to PI after exposure to both<br />

cyclodextrins suggesting an alterati<strong>on</strong> <strong>of</strong> the <strong>oocyst</strong> wall, and<br />

c<strong>on</strong>sequently a decrease in their infectivity. Furthermore, a<br />

good correlati<strong>on</strong> was observed with the excystati<strong>on</strong> technique<br />

where we recorded a decrease in the percentages <strong>of</strong><br />

excystati<strong>on</strong> and therefore lost <strong>of</strong> viability. Similarly,<br />

Campbell et al. [2] c<strong>on</strong>sidered as dead the PI+ <strong>oocyst</strong>s,<br />

which have sporozoites with disrupted or broken membranes<br />

and have established a high correlati<strong>on</strong> between<br />

inclusi<strong>on</strong>/exclusi<strong>on</strong> vital dyes test and in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> excystati<strong>on</strong><br />

technique.<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g> this study, we <strong>on</strong>ly evaluated the in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> the<br />

different drugs at the level <strong>of</strong> the <strong>oocyst</strong> wall. No significant<br />

<str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> paromomycin, azithromycin, hal<strong>of</strong>ugin<strong>on</strong>e lactate,<br />

toltrazuril or nitazoxanide has been dem<strong>on</strong>strated <strong>on</strong> the<br />

<strong>oocyst</strong>. Obviously, the <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> these drugs <strong>on</strong> the other<br />

exogenous or endogenous stages <strong>of</strong> the parasite has to be<br />

reminded and could include the inhibiti<strong>on</strong> <strong>of</strong> DNA or protein<br />

synthesis [10]. This explains the numerous reports <strong>on</strong> the<br />

anticryptosporidial <str<strong>on</strong>g>activity</str<strong>on</strong>g> recorded in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> and in vivo with<br />

paromomycin [7, 13, 22, 33, 34] and in vivo with hal<strong>of</strong>ugin<strong>on</strong>e<br />

lactate [8, 18, 23, 24, 32]. These two drugs have shown<br />

a<br />

PI- : Impermeables and viable at assay<br />

TABLE I : Comparative <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> different drugs with recognized anticryptosporidial <str<strong>on</strong>g>activity</str<strong>on</strong>g> and two cyclodextrins.<br />

Revue Méd. Vét., 2004, 155, 8-9, 453-456


456 CASTRO-HERMIDA (J.-A.) AND COLLABORATORS<br />

a greater prophylactic than therapeutic <str<strong>on</strong>g>activity</str<strong>on</strong>g> suggesting an<br />

effect <strong>on</strong> the early stages <strong>of</strong> the life cycle. On the other hand,<br />

nitazoxanide, a nitrothiazolyl-salicylamide derivative, is<br />

metabolised into its active metabolite, tizoxanide (desacetylnitazoxanide)<br />

after oral administrati<strong>on</strong> [10] and its efficacy<br />

against C. <strong>parvum</strong> was dem<strong>on</strong>strated in cell culture -inhibiting<br />

the growth <strong>of</strong> sporozoites and <strong>oocyst</strong>s <strong>of</strong> C. <strong>parvum</strong>-, in<br />

animals and in human cryptosporidiosis [1, 12, 19].<br />

The chemotherapy <strong>of</strong> the cryptosporidiosis remains a<br />

major challenge. The main goal <strong>of</strong> modern antiparasitic chemotherapy<br />

must be to bring the drug as directly to the target<br />

pathogen as possible and to minimise potential side effects.<br />

Drug chemistry al<strong>on</strong>e can <strong>on</strong>ly provide partial answers.<br />

Nevertheless, biochemical and pathophysiological aspects<br />

am<strong>on</strong>g others will be a further key factor that must be carefully<br />

scrutinised [10, 17].<br />

Acknowledgements<br />

We gratefully acknowledge to Wacker-Chemie GmbH and<br />

Roquette-Laisa, Spain for freely providing us the α- and β-<br />

cyclodextrin respectively.<br />

This work was supported by Xunta de Galicia by means <strong>of</strong><br />

the C<strong>on</strong>selleria de Politica Agroalimentaria e<br />

Desenvolvemento Rural (PGIDIT02RAG20301 PR) and<br />

Post-Doctoral fellowship <strong>of</strong> the C<strong>on</strong>selleria de Presidencia e<br />

Administraci<strong>on</strong> Publica (PR409A2002/7-0).<br />

References<br />

1. — AMADI B., MWIYA M., MUSUKU J., WATUKA A., SIANONGO<br />

S., AYOUB A., KELLY P.: Effect <strong>of</strong> nitazoxanide <strong>on</strong> morbidity and<br />

mortality in Zambian children with cryptosporidiosis: a randomised<br />

c<strong>on</strong>trolled trial. Lancet, 2002, 360, 1375-1380.<br />

2. — CAMPBELL A.T., ROBERTSON L.J., SMITH H.V. : Viability <strong>of</strong><br />

<strong>Cryptosporidium</strong> <strong>parvum</strong> <strong>oocyst</strong>s: correlati<strong>on</strong> <strong>of</strong> in <str<strong>on</strong>g>vitro</str<strong>on</strong>g> excystati<strong>on</strong><br />

with inclusi<strong>on</strong> or exclusi<strong>on</strong> <strong>of</strong> fluorogenic vital dyes. Appl. Envir<strong>on</strong>.<br />

Microbiol., 1992, 58, 3488-3493.<br />

3. — CASTRO-HERMIDA J.A., FREIRE-SANTOS F., OTEIZA-LOPEZ<br />

A.M., VERGARA-CASTIBLANCO C.A., ARES-MAZAS M.E. :<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g> <str<strong>on</strong>g>vitro</str<strong>on</strong>g> and in vivo efficacy <strong>of</strong> lasalocid for treatment <strong>of</strong> experimental<br />

cryptosporidiosis. Vet. Parasitol., 2000, 90, 265-270.<br />

4. — CASTRO-HERMIDA J.A., GONZALEZ-LOSADA Y., FREIRE-<br />

SANTOS F., MEZO-MENENDEZ M., ARES-MAZAS M.E. :<br />

Evaluati<strong>on</strong> <strong>of</strong> β-cyclodextrin against natural infecti<strong>on</strong>s <strong>of</strong> cryptosporidiosis<br />

in calves. Vet. Parasitol., 2001, 101, 85-89<br />

5. — CASTRO-HERMIDA J.A., QUILEZ-CINCA J., LOPEZ-BERNAD<br />

F., SANCHEZ-ACEDO C., FREIRE-SANTOS F., ARES-MAZAS<br />

M.E. : Treatment with β-cyclodextrin <strong>of</strong> natural <strong>Cryptosporidium</strong><br />

<strong>parvum</strong> infecti<strong>on</strong>s in lambs under field c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>In</str<strong>on</strong>g>t. J. Parasitol.,<br />

2001, 31,1134-1137.<br />

6. — CASTRO-HERMIDA J.A., ARES-MAZAS M.E. : <str<strong>on</strong>g>In</str<strong>on</strong>g> <str<strong>on</strong>g>vitro</str<strong>on</strong>g> and in<br />

vivo efficacy <strong>of</strong> α-cyclodextrin for treatment <strong>of</strong> experimental cryptosporidiosis.<br />

Vet. Parasitol., 2003, 114, 237-245.<br />

7. — CHARTIER C., MALLEREAU M.P., NACIRI M. : Prophylaxis<br />

using paromomycin <strong>of</strong> natural cryptosporidial infecti<strong>on</strong> in ne<strong>on</strong>atal<br />

kids. Prev. Vet. Med., 1996, 25, 357-361.<br />

8. — CHARTIER C., MALLEREAU M.P., LENFANT D. : Efficacité du<br />

lactate d’hal<strong>of</strong>ugin<strong>on</strong>e dans la préventi<strong>on</strong> de la cryptosporidiose<br />

chez le chevreau nouveau-né. Rev. Méd. Vét., 1999, 150, 341-346.<br />

9. — CHEN X.M., KEITHLY J.S., PAYA C.V., LARUSSO N.F. :<br />

Cryptosporidiosis. N. Engl. J. Med., 2002, 346, 1723-1731.<br />

10. — COOMBS G.H., MULLER S. : Recent advances in the search for<br />

new anti-coccidial drugs. <str<strong>on</strong>g>In</str<strong>on</strong>g>t. J. Parasitol., 2002, 32, 497-508.<br />

11. —DE GRAAF D.C., VANOPDENBOSCH E., ORTEGA-MORA<br />

L.M., ABBASSI H., PEETERS J.E. : A review <strong>of</strong> the importance <strong>of</strong><br />

cryptosporidiosis in farm animals. <str<strong>on</strong>g>In</str<strong>on</strong>g>t. J. Parasitol., 1999, 29, 1269-<br />

1287.<br />

12. — GILLES H.M., HOFFMAN P.S. : Treatment <strong>of</strong> intestinal parasitic<br />

infecti<strong>on</strong>s: a review <strong>of</strong> nitazoxanide. Trends Parasitol., 2002, 18, 95-<br />

97.<br />

13. — GRINBERG A., MARKOVICS A., GALINDEZ J., LOPEZ-VIL-<br />

LALOBOS N., KOSAK A., TRANQUILLO V.M. : C<strong>on</strong>trolling the<br />

<strong>on</strong>set <strong>of</strong> natural cryptosporidiosis in calves with paromomycin sulphate.<br />

Vet. Rec., 2002, 151, 606-608.<br />

14. — HORAN P.K., KAPPLER J.W. : Automated fluorescence analysis<br />

for cytotoxicity assays. J. Immunol., 1977, 18, 309-316.<br />

15. — IRIE T., UEKAMA K. : Cyclodextrins in peptide and protein delivery.<br />

Adv. Drug Deliv. Rev., 1999, 36, 101-123.<br />

16. — KADAPPU K.K., NAGARAJA M.V., RAO P.V., SHASTRY B.A. :<br />

Azithromycin as treatment for cryptosporidiosis in human immunodeficiency<br />

virus disease. J. Postgrad. Med., 2002, 48, 179-181.<br />

17. — KAYSER O., KIDERLEN A.F. : Delivery strategies for antiparasitics.<br />

Expert. Opin. <str<strong>on</strong>g>In</str<strong>on</strong>g>vestig. Drugs, 2003, 12, 1-11.<br />

18. — LEFAY D., NACIRI M., POIRIER P., CHERMETTE R. : Efficacy <strong>of</strong><br />

hal<strong>of</strong>ugin<strong>on</strong>e lactate in the preventi<strong>on</strong> <strong>of</strong> cryptosporidiosis in suckling<br />

calves. Vet. Rec., 2001, 148, 108-112.<br />

19. — LI X., BRASSEUR P., AGNAMEY P., LEMETEIL D., FAVENNEC<br />

L., BALLET J.J., ROSSIGNOL J.F. : L<strong>on</strong>g-lasting anticryptosporidial<br />

<str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> nitazoxanide in an immunosuppressed rat model.<br />

Folia Parasitol., 2003, 50, 19-22.<br />

20. — LOFTSSON T., BREWSTER M.E. : Pharmaceutical applicati<strong>on</strong>s <strong>of</strong><br />

cyclodextrins. 1. Drug solubilizati<strong>on</strong> and stabilizati<strong>on</strong>. J. Pharm.<br />

Sci., 1996, 85, 1017-1025.<br />

21. — LORENZO M.J., ARES-MAZAS M.E., VILLACORTA I., DURAN<br />

D. : Effect <strong>of</strong> ultraviolet disinfecti<strong>on</strong> <strong>of</strong> drinking water <strong>on</strong> the viability<br />

<strong>of</strong> <strong>Cryptosporidium</strong> <strong>parvum</strong> <strong>oocyst</strong>s. J. Parasitol., 1993, 79, 67-<br />

70.<br />

22. — MANCASSOLA R., REPERANT J.M., NACIRI M., CHARTIER C.<br />

: Chemoprophylaxis <strong>of</strong> <strong>Cryptosporidium</strong> <strong>parvum</strong> infecti<strong>on</strong> with<br />

paromomycin in kids and immunological study. Antimicrob. Agents<br />

Chemother., 1995, 39, 75-78 .<br />

23. — NACIRI M., YVORE P. : Efficacité du lactate d’hal<strong>of</strong>ugin<strong>on</strong>e dans<br />

le traitement de la cryptosporidiose chez l’agneau. Rec. Méd. Vét.,<br />

1989, 165, 823-826 .<br />

24. — NACIRI M., MANCASSOLA R., YVORE P., PEETERS J.E. : The<br />

effect <strong>of</strong> hal<strong>of</strong>ugin<strong>on</strong>e lactate <strong>on</strong> experimental <strong>Cryptosporidium</strong> <strong>parvum</strong><br />

infecti<strong>on</strong>s in calves. Vet. Parasitol., 1993, 45, 199-207.<br />

25. — RAJEWSKI R.A., STELLA V.J. : Pharmaceutical applicati<strong>on</strong> <strong>of</strong><br />

cyclodextrins. 2. <str<strong>on</strong>g>In</str<strong>on</strong>g> vivo drug delivery. J. Pharm. Sci., 1996, 85,<br />

1142-1169.<br />

26. — REHG J.E. : Activity <strong>of</strong> azithromycin against cryptosporidia in<br />

immunosupprised rats. J. <str<strong>on</strong>g>In</str<strong>on</strong>g>fect. Dis., 1991, 163, 1293-1296.<br />

27. — REHG J.E. : Anticryptosporidial <str<strong>on</strong>g>activity</str<strong>on</strong>g> <strong>of</strong> lasalocid and other i<strong>on</strong>ophorous<br />

antibiotics in immunosuppressed rats. J. <str<strong>on</strong>g>In</str<strong>on</strong>g>fect. Dis., 1993,<br />

168, 1566-1569.<br />

28. — SRETER T., SZELL Z., VARGA I. : Attempted chemoprophylaxis<br />

<strong>of</strong> cryptosporidiosis in chickens, using diclazuril, toltrazuril or<br />

Garlic extract. J. Parasitol., 1999, 85, 989-991.<br />

29. — TRAD O., JUMAA P., UDUMAN S., NAWAZ A. : Eradicati<strong>on</strong> <strong>of</strong><br />

<strong>Cryptosporidium</strong> in four children with acute lymphoblastic leukaemia.<br />

J. Trop. Pediatr., 2003, 49, 128-130.<br />

30. — TZIPORI S. : Cryptosporidiosis : laboratory investigati<strong>on</strong>s and chemotherapy.<br />

<str<strong>on</strong>g>In</str<strong>on</strong>g> : BAKER J.R., MULLER R., ROLLINSON D. (éd.) :<br />

Advances in Parasitology, Opportunistic Protizoan in Humans,<br />

L<strong>on</strong>d<strong>on</strong>, 1998, pp 188-212.<br />

31. — VERGARA CASTIBLANCO C.A. : Estudio inmunologico de la<br />

cryptosporidiosis humana en Colombia. Thesis, Universidad de<br />

Santiago de Compostela, Spain, 1999.<br />

32. — VILLACORTA I., PEETERS J.E., VANOPDENBOSH E., ARES-<br />

MAZAS M.E., THEYS H. : Efficacy <strong>of</strong> hal<strong>of</strong>ugin<strong>on</strong>e lactate against<br />

<strong>Cryptosporidium</strong> <strong>parvum</strong> in calves. Antimicrob. Agents Chemother.,<br />

1991, 35, 283-287.<br />

33. — VIU M., QUILEZ J., SANCHEZ-ACEDO C., DEL CACHO E.,<br />

LOPEZ-BERNARD F. : Field trial <strong>on</strong> the therapeutic efficacy <strong>of</strong><br />

paromomycin <strong>on</strong> natural <strong>Cryptosporidium</strong> <strong>parvum</strong> infecti<strong>on</strong>s in<br />

lambs. Vet. Parasitol., 2000, 90, 163-170.<br />

34. — WOODS K.M., NESTERENKO M.V., UPTON S.J. : Efficacy <strong>of</strong> 101<br />

antimicrobials and other agents <strong>on</strong> the development <strong>of</strong><br />

<strong>Cryptosporidium</strong> <strong>parvum</strong> in <str<strong>on</strong>g>vitro</str<strong>on</strong>g>. Ann. Trop. Med. Parasitol., 1996,<br />

90, 603-615.<br />

35. — XIAO L., MORGAN U.M., FAYER R., THOMPSON R.C.A., LAL<br />

A.A. : <strong>Cryptosporidium</strong> systematics and implicati<strong>on</strong>s for public<br />

health. Parasitol. Today, 2002, 26, 287-29<br />

Revue Méd. Vét., 2004, 155, 8-9, 453-456

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!