11.06.2014 Views

(Microsoft PowerPoint - 1_HSUPA Concepts RF Measurements ...

(Microsoft PowerPoint - 1_HSUPA Concepts RF Measurements ...

(Microsoft PowerPoint - 1_HSUPA Concepts RF Measurements ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>HSUPA</strong> Market Influence<br />

“HSPA is as fast as 1xEV-DO”<br />

• 15 Mbps forward / 6 Mbps reverse<br />

• 14 Mbps downlink / 5.74 Mbps uplink<br />

1xEV-DO Release B<br />

HSPA<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

What is <strong>HSUPA</strong>? Why important?<br />

Three terms for the same thing:<br />

• <strong>HSUPA</strong> = High Speed Uplink Packet Access (market standard)<br />

• E-DCH = Enhanced Dedicated Channel (3GPP standards documents)<br />

• EUL = Enhanced Uplink<br />

HSPA = HSDPA + <strong>HSUPA</strong><br />

• Although can be used separately, will be used together for many applications<br />

such as VOIP or mobile gaming<br />

Purpose of <strong>HSUPA</strong> is to:<br />

• Increase UL throughput (data rates)<br />

• Increase network capacity<br />

• Reduce delays to improve performance of applications (like mobile gaming, 2-<br />

way VOIP)<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

2


<strong>HSUPA</strong> Overview<br />

Key features and changes<br />

• Allows uplink packet data to 5.74Mbps<br />

– 384 kbps is current practical limit with Rel 99<br />

• Hybrid ARQ similar to HSDPA, except UE sends, node B ACKs/NACKs<br />

• Node B provides fast scheduling, dynamically allocating power among UEs<br />

• New optional 2ms TTI (transmission time interval)<br />

– 10 ms TTI allows only 2 Mbps UL<br />

• 5 new physical channels<br />

– 2 UL, 3 DL<br />

• 1 new UL transport channel<br />

• Not a shared data channel<br />

as in HSDPA<br />

Architecture<br />

MAC<br />

Downlink<br />

IP / TCP / etc.<br />

PDCP<br />

RLC<br />

MAC-d<br />

MAC-es<br />

MAC-e<br />

Uplink<br />

L1<br />

E-DCH<br />

E-AGCH E-RGCH E-HICH E-DPDCH E-DPDCH E-DPCCH<br />

Absolute & Relative<br />

grants<br />

Ack/Nack Data Control<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Agenda<br />

<strong>HSUPA</strong> Overview<br />

Key <strong>HSUPA</strong> <strong>Concepts</strong><br />

Testing <strong>HSUPA</strong> Devices<br />

– New / Important 3GPP TS34.121 Tests<br />

– Functional Test<br />

Summary<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

3


Uplink Channels<br />

Transport channel: E-DCH<br />

(Enhanced Dedicated Channel)<br />

• Carries 1 block of data each TTI: UE to Node<br />

B<br />

Physical channels:<br />

(Enhanced Dedicated Physical Data Channel)<br />

(Enhanced Dedicated Physical Control Channel)<br />

• Channels are IQ multiplexed<br />

– E-DPCCH on I<br />

– E-DPDCH mapping varies<br />

• E-DPCCH (carries control info to allow<br />

decode E-DPDCH<br />

– E-TFCI, RSN (Retransmission Sequence<br />

Number) and Happy Bit<br />

• E-DPDCH (carries user data)<br />

– Variable SF and quantity - 1*SF256 up to 2*SF2<br />

+ 2*SF4<br />

transport<br />

physical<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Downlink Physical Channels<br />

E-HICH (Enhanced HARQ Indicator Channel)<br />

• Transmits ACKs/NACKs: Node B to UE<br />

– similar to HSDPA UL HS-DPCCH, except no<br />

CQI<br />

• Response occurs a fixed time after E-DPDCH<br />

transmission<br />

• Shares same code as E-RGCH<br />

E-AGCH (Enhanced Absolute Grant Channel)<br />

Provides absolute limit of max resources UE can<br />

use max E-DPDCH/DPCCH ratio<br />

• Shared channel CRC masked by UE ID<br />

E-RGCH (Enhanced Relative Grant Channel)<br />

Moves Serving Grant up/down/hold<br />

• Shares same code as E-HICH<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

4


HARQ<br />

Hybrid Automatic Repeat reQuest<br />

<strong>HSUPA</strong> has HARQ processes just like HSDPA, but in opposite<br />

direction - UE sends, Node B ACKs/NACKs<br />

4 HARQ processes for 10 ms TTI, 8 for 2 ms TTI<br />

Stop/wait operation - fixed round trip time (40 ms or 16 ms)<br />

Receiver: Node B<br />

Transmitter: UE<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

MAC-e/es (network)<br />

MAC-es (RNC)<br />

• Reordering queue<br />

• Macro diversity selection<br />

MAC-es<br />

to MAC-d<br />

Reordering<br />

Combining<br />

MAC-d flow<br />

to MAC-d<br />

Reordering<br />

Queue<br />

MAC-d flow<br />

MAC-e (Node-B)<br />

• Scheduler<br />

• De-multiplexer<br />

• HARQ processes<br />

MAC-e<br />

Scheduling<br />

/control<br />

HARQ<br />

process<br />

De-multiplexer<br />

HARQ<br />

process<br />

HARQ<br />

process<br />

E-R/AGCH<br />

E-HICH<br />

E-DCH<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

5


MAC-es/e (UE)<br />

Single sub-layer<br />

E-TFC (transport format combination) selection<br />

from MAC-d<br />

from MAC-d<br />

Multiplexing<br />

HARQ Processes<br />

MAC-e/es<br />

E-TFC<br />

selection<br />

Multiplexer<br />

HARQ<br />

process<br />

HARQ<br />

process<br />

HARQ<br />

process<br />

E-R/AGCH<br />

E-HICH<br />

E-DCH<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Power Control<br />

Used by UE to calculate Serving Grant<br />

<strong>HSUPA</strong> does not change the fundamental way in which UE power<br />

control is managed in WCDMA<br />

• Node B still tries to balance the received power of the DPCCH from each UE in<br />

the cell to be roughly the same<br />

<strong>HSUPA</strong> allows for some UEs to<br />

transmit at higher data rates than<br />

others (and thus higher power levels)<br />

• <strong>HSUPA</strong> changes relative differences<br />

between power on transmitting E-<br />

DPDCHs and power of the DPCCH<br />

• Allows total power transmitted to remain<br />

same, while power on E-DPDCHs is<br />

increased to provide higher <strong>HSUPA</strong> data<br />

rates<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

6


Serving Grant<br />

UE Scheduling:<br />

Node B regulates how much data the UE can send<br />

UE maintains Serving Grant calculation - granted first by Absolute Grant,<br />

changed by Relative Grants<br />

• Updated each TTI<br />

Serving Grant controls the max power the UE can use to transmit data on E-<br />

DPDCH(s)<br />

• Determines max data rate – E-TFC tables give power needed for rates<br />

UE chooses E-TFC each TTI (based on available data to send and available<br />

power it is capable of transmitting). It can choose less than the Serving Grant<br />

allows.<br />

UE Reporting:<br />

UE provides feedback to node B each TTI Happy Bit<br />

Node B resources<br />

• Unhappy: UE cannot empty buffer in “n” ms, using all of Serving Grant, could TX at<br />

higher power otherwise Happy<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

7


<strong>HSUPA</strong> UE Categories<br />

UE categories define the<br />

basic capabilities of the<br />

device<br />

TS25.306 Table 5.1a<br />

TS25.306 Table 5.1g<br />

Yellow highlight<br />

indicates categories<br />

introduced first<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

<strong>HSUPA</strong> RB Test Mode<br />

HSPA loopback – Need to loop back HSDPA DL data onto the<br />

<strong>HSUPA</strong> UL for <strong>RF</strong> testing<br />

HSDPA data rates must be chosen carefully<br />

• Need enough HSDPA DL data so that <strong>HSUPA</strong> UL will transmit when required<br />

(no unexpected DTXs)<br />

• But, not so much data that the UE buffer overflows excessively<br />

HSDPA and <strong>HSUPA</strong> are not symmetrical services<br />

• DL and UL data rates do not match<br />

(HSDPA data rates, block sizes and PDUs<br />

are not equal to those used on the UL for<br />

<strong>HSUPA</strong>)<br />

• Usual situation is to send enough data on<br />

DL to keep the UL continually transmitting<br />

in order to make <strong>RF</strong> measurements<br />

• UE will discard some of the DL data as<br />

defined in 3GPP TS 34.109<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

8


Agenda<br />

<strong>HSUPA</strong> Overview<br />

Key <strong>HSUPA</strong> <strong>Concepts</strong><br />

Testing <strong>HSUPA</strong> Devices<br />

– New / Important 3GPP TS34.121 Tests<br />

– Functional Test<br />

Summary<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Why Test <strong>HSUPA</strong>?<br />

New uplink channels E-DPCCH and E-DPDCH<br />

Power Variations<br />

• Larger crest factor than HSDPA<br />

• Code channel relative power differences very large (up to 45 dB)<br />

• Large power changes at TTI boundaries – i.e., <strong>HSUPA</strong> on/off (up to 27 dB)<br />

Uplink configuration very dynamic. Each TTI, the following can change:<br />

• Number of E-DPDCH(s) transmitted<br />

• Spread factor of E-DPDCH(s)<br />

• Power of E-DPDCH(s)<br />

These changes adversely affect modulator performance and transmitter<br />

distortion more out-of-channel interference and poorer modulation quality<br />

• Examine modulation accuracy at code level vs. composite signal to ensure code channels are<br />

modulated correctly [5.2D and 5.13.2B]<br />

• Check for out-of-channel interference due to increased spectral splatter [5.9B and 5.10B]<br />

• Ensure max power is reached but not exceeded to ensure adequate coverage without interfering<br />

with other channels or systems [5.2B]<br />

• Look at phase discontinuities due to large changes in total power [3GPP test coming]<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

9


3GPP TS34.121 Evolution<br />

Test<br />

Rel 99<br />

HSDPA<br />

<strong>HSUPA</strong><br />

Max Power<br />

5.2<br />

5.2A<br />

5.2AA<br />

5.2B<br />

RCDPA<br />

5.2C<br />

5.2D<br />

HS-DPCCH<br />

5.7A<br />

SEM<br />

5.9<br />

5.9A<br />

5.9B<br />

ACLR<br />

5.10<br />

5.10A<br />

5.10B<br />

EVM/Phase Disc<br />

5.13.1, 5.13.3<br />

5.13.1A<br />

5.13.1AA<br />

Coming soon<br />

Code Domain<br />

5.13.2<br />

5.13.2A<br />

5.13.2B<br />

Max Input Level<br />

6.3<br />

6.3A<br />

N/A<br />

Green shading indicates areas where testing may be streamlined – e.g. don’t need to<br />

test both 5.2 and 5.2B, just 5.2B is sufficient<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Overview<br />

<strong>RF</strong> Power, Beta Values, UE Setup for Sub-Tests<br />

HSDPA standards include table of sub-tests used to define specific conditions for <strong>RF</strong> tests<br />

<strong>HSUPA</strong> has a similar table: 3GPP TS 34.121 Table C.11.1.3 that defines:<br />

• Beta values, spreading factors, number of E-DPDCHs, absolute grant indices, E-TFCI values<br />

• CM (cubic metric) and MPR (maximum power reduction)<br />

• Sub-tests to cover various total power and code channel power conditions important to test<br />

For calculation of <strong>RF</strong> power, important value is gain factor, A (defined relative to βc)<br />

• Ahs = βhs / βc, Aec = βec / βc, Aed = βed / βc<br />

• Also called quantized amplitude ratios in 3GPP TS 25.213<br />

• Linear power is just the gain factor, A, squared<br />

Total power in dB is 10 times the log 10 of the sum of linear powers of each active channel<br />

Sub-Test<br />

1<br />

2<br />

3<br />

4<br />

5<br />

βc<br />

βd<br />

βhs<br />

Ahs<br />

6/15 15/15 12/15 30/15<br />

15/15 9/15 30/15 30/15<br />

2/15 15/15 4/15 30/15<br />

15/15 15/15 30/15 30/15<br />

βec<br />

12/15<br />

30/15<br />

2/15<br />

24/15<br />

Aec<br />

11/15 15/15 22/15 30/15 209/225 19/15 1309/225 119/15<br />

30/15<br />

30/15<br />

15/15<br />

24/15<br />

βed<br />

94/75<br />

1: 47/15<br />

2: 47/15<br />

56/75<br />

134/15<br />

Aed<br />

47/15<br />

1: 47/15<br />

2: 47/15<br />

84/15<br />

134/15<br />

Setting up UE to match <strong>HSUPA</strong> sub-test<br />

conditions in Table C.11.1.3 is not easy<br />

• βc, βd can be set directly<br />

• βec set with signaled values found in 3GPP TS<br />

25.213 Table 1B (also called E-DPCCH/ DPCCH<br />

power offset)<br />

• βhs set using ΔACK, ΔNACK, ΔCQI signaled<br />

values as found in 3GPP TS 25.213 Table 1A (all<br />

are assumed to be 30/15 for all sub-tests)<br />

• βed cannot be set directly!<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

10


3GPP TS 34.121 Sub-Tests<br />

HSDPA<br />

<strong>HSUPA</strong><br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

<strong>RF</strong> Powers for <strong>HSUPA</strong> Sub-Tests<br />

Sub-Test<br />

Units<br />

DPCCH<br />

DPDCH<br />

HS-DPCCH<br />

E-DPCCH<br />

E-DPDCH1 E-DPDCH2<br />

Total<br />

Power<br />

1<br />

dBm<br />

-2.7<br />

0<br />

3.3<br />

-0.7<br />

15.3<br />

OFF<br />

15.8<br />

Large E-DPDCH, other<br />

code CH avg<br />

dB<br />

-18.5<br />

-15.8<br />

-12.5<br />

-16.5<br />

-0.5<br />

OFF<br />

0<br />

2<br />

dBm<br />

-8.0<br />

0<br />

-1.9<br />

-1.9<br />

2.0<br />

OFF<br />

6.0<br />

All code CH small<br />

relative level change<br />

dB<br />

-14.0<br />

-6.0<br />

-8.0<br />

-8.0<br />

-4.1<br />

OFF<br />

0<br />

3<br />

dBm<br />

0<br />

-4.4<br />

6.0<br />

6.0<br />

9.9<br />

9.9<br />

14.6<br />

Multiple E-DPDCHs<br />

dB<br />

-14.6<br />

-19.1<br />

-8.6<br />

-8.6<br />

-4.7<br />

-4.7<br />

0<br />

4<br />

dBm<br />

-17.5<br />

0<br />

-11.5<br />

-17.5<br />

-2.5<br />

OFF<br />

2.2<br />

Min CCH, min total<br />

power, max DCH<br />

dB<br />

-19.7<br />

-2.2<br />

-13.7<br />

-19.7<br />

-4.7<br />

OFF<br />

0<br />

5 dBm 0 0 6.0 4.1 19.0 OFF 19.5<br />

Max total power, max E-<br />

DPDCH dB -19.5 -19.5 -13.5 -15.4 -0.4 OFF 0<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

11


Maximum Power<br />

Maximum Output Power with HS-DPCCH and E-DCH - 3GPP TS 34.121 section 5.2B<br />

“The maximum output power with HS-DPCCH and<br />

E-DCH is a measure of the maximum power the<br />

UE can transmit when HS-DPCCH and E-DCH are<br />

fully or partially transmitted during a DPCCH<br />

timeslot. The measurement period shall be at least<br />

one timeslot.”<br />

Importance: battery life, heat, radiated power,<br />

interference, checks for power control algorithm<br />

errors<br />

Measurement specified for all E-DCH Sub-Tests in<br />

Table C.11.1.3<br />

5.2A/5.2AA (HSDPA Max Power) has 1 worse test<br />

case than 5.2B (sub-test 4)<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Achieving Maximum Power with <strong>HSUPA</strong><br />

• Maximum power can’t be set by just sending all up bits like in Rel 99/HSDPA<br />

• Currently defined procedure shown above takes ~6 seconds!! VERY LONG<br />

• Will likely change in future 3GPP standards revisions to make simpler/faster<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

12


Relative Code Domain Power Accuracy<br />

UE Relative Code Domain Power Accuracy - 3GPP TS 34.121 section 5.2D (<strong>HSUPA</strong>)<br />

“The UE Relative code domain power accuracy is a<br />

measure of the ability of the UE to correctly set the<br />

level of individual code powers relative to the total<br />

power of all active codes.”<br />

Relative Code Domain Power Accuracy is<br />

• Independent of variations in the actual total<br />

power of the signal<br />

• Independent of noise in the signal that falls on<br />

inactive codes<br />

Importance: more code channels in uplink now with<br />

<strong>HSUPA</strong>, must check that UE is properly distributing<br />

power among them<br />

Performed at max power<br />

20 ms repeating pattern with 10 ms TTI (supported<br />

by all UEs), measured over 1 full slot<br />

Measurement specified for E-DCH Sub-Tests 1-4 in<br />

Table C.11.1.3<br />

Time-intensive and detailed test not likely to be<br />

done in manufacturing<br />

Still need 5.2C (HSDPA version of the test), setups<br />

are quite different<br />

HSDPA test signal with four<br />

measurement points and<br />

12 ms repeating pattern<br />

<strong>HSUPA</strong> test signal with<br />

three measurement points<br />

and 20 ms repeating<br />

pattern<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Code Domain Error<br />

Relative Code Domain Error with HS-DPCCH and E-DCH - TS 34.121 section 5.13.2B<br />

Ratio of the mean power of the projection of<br />

the error vector onto that code channel to the<br />

mean power of the same code channel in the<br />

composite reference waveform<br />

Measures UE EVM with many code channels<br />

• Composite EVM including the EVM of all<br />

active codes, is no longer the best<br />

measure with so many code channels<br />

• Instead, look at the code domain error of<br />

each active code<br />

• Very similar to RCDPA, but here we are<br />

measuring the code domain error including<br />

phase and amplitude, not just relative<br />

power levels<br />

Importance: checks phase errors & coding<br />

errors<br />

Performed at max power and at -18 dBm total<br />

power<br />

Measurement specified for all E-DCH Sub-<br />

Tests in Table C.11.1.3<br />

Likely to be performed in mfg<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

13


HS-DPCCH (High-Speed Dedicated Physical Control Channel)<br />

HS-DPCCH Power Control - 3GPP TS 34.121 section 5.7A<br />

Looks at relative power changes<br />

for total output power<br />

Importance:<br />

Not replaced by 5.2C RCDPA<br />

•Still need this (HSDPA) test to<br />

ensure UE responds properly to<br />

power control during HSDPA<br />

operation<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Error Vector Magnitude (EVM) and<br />

Phase Discontinuity<br />

5.13.1AA for now for HSDPA, but <strong>HSUPA</strong> Phase Discontinuity should<br />

be coming soon…<br />

EVM


Spectrum Emission Mask<br />

Spectrum Emission Mask with E-DCH - TS 34.121 section 5.9B<br />

Table 5.9B.1: Spectrum Emission Mask Requirement<br />

“To verify that the power of UE emission does<br />

not exceed the prescribed limits even in the<br />

presence of the E-DCH.”<br />

Measurement of spectral emissions at 2.5 to<br />

12.5 MHz offsets from carrier frequency<br />

• Performed at UE maximum output power<br />

• Measurement specified for all E-DCH Sub-<br />

Tests in Table C.11.1.3<br />

Importance: Potentially more important for E-<br />

DCH than W-CDMA due to:<br />

• Large instantaneous power changes<br />

possible with E-DCH<br />

• Larger crest factor<br />

– Can generate spectral splatter<br />

Need to ensure UE is not interfering in other<br />

channels<br />

Likely to be performed in mfg<br />

∆f in MHz<br />

Minimum requirement (Note 2)<br />

Additional<br />

(Note 1)<br />

requirements Band<br />

Absolute II, IV, V, X (Note 3)<br />

Relative requirement<br />

requirement<br />

⎧ ⎛ ∆f<br />

⎞⎫<br />

⎨− 35 −15<br />

⋅ ⎜ − 2. 5⎟⎬<br />

⎩ ⎝ MHz ⎠⎭<br />

-71.1 dBm -15 dBm<br />

2.5 to 3.5 dBc<br />

⎧ ⎛ ∆f<br />

⎞⎫<br />

⎨− 35 −1⋅⎜<br />

− 3. 5⎟⎬<br />

⎩ ⎝ MHz ⎠⎭<br />

-55.8 dBm -13 dBm<br />

3.5 to 7.5 dBc<br />

⎧ ⎛ ∆f<br />

⎞⎫<br />

⎨− 39 −10<br />

⋅⎜<br />

− 7. 5⎟⎬<br />

⎩ ⎝ MHz ⎠⎭<br />

-55.8 dBm -13 dBm<br />

7.5 to 8.5 dBc<br />

to 12.5 MHz 8.5 -49 dBc -55.8 dBm -13 dBm<br />

Measurement<br />

bandwidth<br />

(Note 6)<br />

30 kHz<br />

(Note 4)<br />

1 MHz<br />

(Note 5)<br />

1 MHz<br />

(Note 5)<br />

1 MHz<br />

(Note 5)<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Adjacent Channel Leakage Power Ratio (ACLR) ACLR with<br />

E-DCH - TS 34.121 section 5.10B<br />

“To verify UE ACLR does not exceed<br />

prescribed limits for all specified values of Bc,<br />

Bd, Bhs, Bec, and Bed”<br />

Measurement of adjacent channel spectrum at<br />

5 and 10 MHz offsets from carrier frequency<br />

• Performed at UE maximum output power<br />

Importance: Potentially more important for E-<br />

DCH than W-CDMA due to:<br />

• Large instantaneous power changes<br />

possible with E-DCH<br />

• Larger crest factor<br />

– Can generate spectral splatter<br />

Need to ensure UE is not interfering in other<br />

channels<br />

Likely to be performed in mfg<br />

Table 5.10B.2: UE ACLR<br />

Power Class UE channel ACLR limit<br />

3 +5 MHz or −5 MHz 32.2 dB<br />

3 +10 MHz or −10 MHz 42.2 dB<br />

4 +5 MHz or −5 MHz 32.2 dB<br />

4 +10 MHz or −10 MHz 42.2 dB<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

15


3GPP TS34.121 Section 10<br />

<strong>HSUPA</strong> Performance Tests<br />

Only check the ability of the UE to decode the new downlink physical channels.<br />

Nothing yet defined to determine if the UE can actually sustain high data throughput<br />

in the uplink.<br />

10.2 Detection of E-HICH<br />

10.3 Detection of E-RGCH<br />

10.4 Demodulation of E-AGCH<br />

Similar to section 9 HSDPA tests except that section 10 (being focused on data<br />

throughput) is statistics-based, i.e. test limits are based on the probability of<br />

success rather than discrete measurement result.<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Functional Test – Soft Handover Operation<br />

Most common place for errors to occur is during handovers<br />

Test application performance during soft handover (SHO) to ensure<br />

UE correctly:<br />

• Soft-combines<br />

E-HICHs<br />

• Responds to<br />

ACK/NACKs<br />

• Responds to<br />

E-RGCH commands<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

16


Functional Test – Data Throughput<br />

• Stress test devices at data<br />

rates beyond that<br />

expected on a network,<br />

ensuring deployment of<br />

high-quality devices<br />

• Test high-rate data<br />

throughput while<br />

simulating <strong>RF</strong> impairments<br />

to promote network<br />

operator confidence in<br />

device and application<br />

operation<br />

• Prove or demonstrate<br />

device and application<br />

performance under highspeed<br />

data rate operation<br />

to gain early competitive<br />

advantage in the<br />

marketplace<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Functional Test – Testing Different Layers<br />

Step 1 – Validate <strong>RF</strong> and MAC<br />

• RB Test Mode call<br />

• “User Defined Channel”<br />

– Flexible parameters<br />

– Real-time changes<br />

Step 2 – Validate RLC, Driver, and IP<br />

• PS data call<br />

• “UDP Flood”<br />

– Defined data rate<br />

– Confidence in UE<br />

Step 3 – Validate Video Streaming<br />

• PS data call<br />

• “Darwin Server”<br />

– First real app<br />

– Medium µP load<br />

Step 4 – Validate TCP and System<br />

• PS data call<br />

• “ftp”<br />

– TCP is ‘busy’<br />

– Fills UL WCDMA<br />

– System stress<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

17


Agenda<br />

<strong>HSUPA</strong> Overview<br />

Key <strong>HSUPA</strong> <strong>Concepts</strong><br />

Testing <strong>HSUPA</strong> Devices<br />

– New / Important 3GPP TS34.121 Tests<br />

– Functional Test<br />

Summary<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

Summary<br />

• <strong>HSUPA</strong>’s commercial roll-out is just starting<br />

• Its main benefit – higher data rates – is largely driven by competing<br />

technologies like 1xEV-DO Release B<br />

• <strong>HSUPA</strong> features make system more complex yet<br />

• Designing and testing <strong>HSUPA</strong> devices is challenging as a result<br />

• Agilent has variety of test equipment for <strong>HSUPA</strong> design and test<br />

• Signal analyzers<br />

• Signal generators<br />

• One box testers / call-processing<br />

• Software for automation and simulation<br />

<strong>HSUPA</strong> <strong>Concepts</strong> & <strong>RF</strong> <strong>Measurements</strong><br />

Agilent Restricted<br />

18 July 2007<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!