24.06.2014 Views

Geochemical energy sources for microbial primary production in the ...

Geochemical energy sources for microbial primary production in the ...

Geochemical energy sources for microbial primary production in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Available onl<strong>in</strong>e at www.sciencedirect.com<br />

Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

www.elsevier.com/locate/marchem<br />

<strong>Geochemical</strong> <strong>energy</strong> <strong>sources</strong> <strong>for</strong> <strong>microbial</strong> <strong>primary</strong> <strong>production</strong><br />

<strong>in</strong> <strong>the</strong> environment of hydro<strong>the</strong>rmal vent shrimps<br />

Carol<strong>in</strong>e Schmidt a,b , Renaud Vuillem<strong>in</strong> c , Christian Le Gall b ,<br />

Françoise Gaill a , Nad<strong>in</strong>e Le Bris b, ⁎<br />

a Université Pierre et Marie Curie Paris 6, UMR CNRS 7138 SAE, 7 quai Sa<strong>in</strong>t Bernard, 75252 Paris Cedex05, France<br />

b Département EEP, IFREMER, BP 70, 29280 Plouzané, France<br />

c Département TSI, IFREMER, BP 70, 29280 Plouzané, France<br />

Received 1 December 2006; received <strong>in</strong> revised <strong>for</strong>m 5 July 2007; accepted 17 September 2007<br />

Available onl<strong>in</strong>e 29 September 2007<br />

Abstract<br />

At deep-sea hydro<strong>the</strong>rmal vents, dense <strong>in</strong>vertebrate communities prevail along chemocl<strong>in</strong>es where <strong>the</strong> relaxation of redoxdisequilibria<br />

susta<strong>in</strong>s chemolithoautotrophic <strong>microbial</strong> CO 2 -fixation. At <strong>the</strong> Mid-Atlantic Ridge, swarms of thousands of Rimicaris<br />

exoculata shrimps thus assemble along <strong>the</strong> turbulent mix<strong>in</strong>g <strong>in</strong>terface between <strong>the</strong> hydro<strong>the</strong>rmal fluid and oxygenated seawater. It<br />

was suggested that this environment provides ideal conditions <strong>for</strong> growth to <strong>the</strong> abundant chemosyn<strong>the</strong>tic <strong>microbial</strong> epiflora that<br />

colonizes <strong>the</strong> shrimps' branchial cavity. Sulfide has long been considered as <strong>the</strong> prime electron donor used by <strong>the</strong> epibionts but, <strong>the</strong><br />

oxidation of iron has recently been hypo<strong>the</strong>sized as an alternative pathway <strong>for</strong> <strong>the</strong> iron-rich Ra<strong>in</strong>bow site. In order to exam<strong>in</strong>e <strong>the</strong><br />

potential <strong>energy</strong> <strong>sources</strong> <strong>for</strong> <strong>microbial</strong> <strong>primary</strong> <strong>production</strong> with<strong>in</strong> <strong>the</strong> swarms at Ra<strong>in</strong>bow, <strong>the</strong> chemical conditions along <strong>the</strong> mix<strong>in</strong>g<br />

gradient have been modeled from field data. This model provides a basis <strong>for</strong> <strong>the</strong> quantitative comparison of <strong>energy</strong>-budgets<br />

available <strong>for</strong> chemolithoautotrophic <strong>primary</strong> <strong>production</strong> based on different oxidative pathways (e.g.: oxidation of sulfide-iron IImethane<br />

and hydrogen by oxygen). A comparison was proposed <strong>for</strong> TAG, ano<strong>the</strong>r hydro<strong>the</strong>rmal vent field at <strong>the</strong> mid-Atlantic<br />

Ridge which is characterized by <strong>the</strong> presence of similar swarms. Although <strong>the</strong> narrow temperature range of <strong>the</strong> shrimp environment<br />

is similar at both sites, <strong>the</strong>ir chemically contrasted environments suggest different metabolic pathways would benefit from <strong>the</strong><br />

highest <strong>energy</strong> budgets. While sulfide oxidation is confirmed to be <strong>the</strong> energetically most favorable pathway at TAG, an orig<strong>in</strong>al<br />

biogeochemical context is suggested <strong>for</strong> Ra<strong>in</strong>bow. Here, <strong>the</strong> highest <strong>energy</strong> could be derived from iron oxidation. At this site, <strong>the</strong><br />

oxidation of hydrogen possibly constitutes ano<strong>the</strong>r dom<strong>in</strong>ant <strong>energy</strong> source, but this hypo<strong>the</strong>sis still needs to be constra<strong>in</strong>ed by<br />

k<strong>in</strong>etic studies. Methane and sulfide appears as m<strong>in</strong>or <strong>energy</strong> <strong>sources</strong> <strong>in</strong> <strong>the</strong> environment of shrimps. A wider and orig<strong>in</strong>al diversity<br />

of <strong>the</strong> metabolic pathways <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>microbial</strong> epibiosis can be expected at Ra<strong>in</strong>bow <strong>in</strong> comparison to TAG.<br />

© 2007 Elsevier B.V. All rights reserved.<br />

Keywords: Chemolithoautotrophy; Iron oxidation; Methane; Sulfide; Rimicaris; Ra<strong>in</strong>bow<br />

1. Introduction<br />

⁎ Correspond<strong>in</strong>g author. Tel.: +33 298 22 40 85; fax: +33 298 22 47 57.<br />

E-mail address: nlebris@ifremer.fr (N. Le Bris).<br />

At mid-ocean ridges, hydro<strong>the</strong>rmal vent<strong>in</strong>g on <strong>the</strong><br />

seafloor creates sharp chemical gradients along centimeter<br />

to decimeter-scales, with opposite trends <strong>in</strong><br />

reduc<strong>in</strong>g (e.g. sulfide, methane, ferrous iron) and<br />

0304-4203/$ - see front matter © 2007 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.marchem.2007.09.009


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

19<br />

oxidiz<strong>in</strong>g species (oxygen, nitrate) (Johnson et al., 1986;<br />

Le Bris et al., 2000; 2006). The dynamic mix<strong>in</strong>g of<br />

hydro<strong>the</strong>rmal fluid and seawater, and <strong>the</strong> relatively slow<br />

k<strong>in</strong>etics of redox reactions enable <strong>the</strong> chemical<br />

compounds to coexist <strong>in</strong> metastable conditions <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terfacial zone. The chemical <strong>energy</strong> released by <strong>the</strong><br />

relaxation of redox-disequilibria fuels <strong>microbial</strong> CO 2 -<br />

fixation which <strong>in</strong> turn susta<strong>in</strong>s <strong>in</strong>vertebrate communities<br />

that prevail along <strong>the</strong>se chemocl<strong>in</strong>es (Jannasch and<br />

Mottle, 1985). Thermodynamic properties hence place<br />

critical constra<strong>in</strong>ts on productivity and distribution of<br />

biological communities. The maximum amount of<br />

geochemical <strong>energy</strong> that can be used to convert CO 2<br />

<strong>in</strong>to biomass from a redox couple depends on both, <strong>the</strong><br />

availability of <strong>the</strong> correspond<strong>in</strong>g electron donor and<br />

acceptor, and <strong>the</strong> <strong>energy</strong> yield of <strong>the</strong> chemical reaction.<br />

Several studies have focused on <strong>the</strong> assessment of <strong>the</strong>se<br />

bioenergetic aspects <strong>in</strong> various hydro<strong>the</strong>rmal environments,<br />

rang<strong>in</strong>g from black smoker plumes to <strong>the</strong> deepsubseafloor<br />

habitats on ridge flanks (McCollom and<br />

Shock, 1997; McCollom, 2000; Shock and Holland,<br />

2004; Bach and Edwards, 2003).<br />

To date, <strong>energy</strong> budget calculations have not been<br />

considered <strong>in</strong> <strong>the</strong> environment of vent fauna, despite<br />

<strong>the</strong>y constitute <strong>the</strong> highest biomass <strong>in</strong> vent ecosystems.<br />

The oxidation of sulfide and methane by oxygen has<br />

been described as ma<strong>in</strong> <strong>energy</strong>-acquisition pathways<br />

driv<strong>in</strong>g chemolithoautotrophic metabolisms <strong>in</strong> deepsea<br />

hydro<strong>the</strong>rmal vent environments. Physiological<br />

and molecular biology studies have shown that thriv<strong>in</strong>g<br />

populations of tubeworms and bivalves are susta<strong>in</strong>ed<br />

by symbiotic <strong>in</strong>teraction with sulfide-and methaneoxidiz<strong>in</strong>g<br />

autotrophic bacteria (Childress and Fisher,<br />

1992; Cavanaugh et al., 2006). Recently, <strong>the</strong> existence<br />

of hydrogen-based symbioses has been suggested<br />

(Ziel<strong>in</strong>skietal.,2005). Bacterial cultivation was more<br />

successful <strong>for</strong> free liv<strong>in</strong>g vent microbes than <strong>for</strong> symbionts<br />

(e.g. Takaietal.,2005). These studies confirmed<br />

<strong>the</strong> importance of sulfide as a ma<strong>in</strong> electron donor <strong>for</strong><br />

autotrophic carbon fixation. Methane and, more recently,<br />

hydrogen have also been identified as potential<br />

substrates <strong>for</strong> <strong>microbial</strong> <strong>primary</strong> producers (Takaietal.,<br />

2004). Although, <strong>microbial</strong> oxidation of ferrous iron is<br />

known as a major biogeochemical pathway (Cornell<br />

and Schwertmann, 2003), it has long been considered<br />

to be energetically unfavorable <strong>for</strong> chemosyn<strong>the</strong>tic<br />

growth. Recent studies suggest that <strong>the</strong>y could play a<br />

significantrole<strong>in</strong>somedeep-seahydro<strong>the</strong>rmalenvironments.<br />

Stra<strong>in</strong>s of chemoautotrophic iron-oxidiz<strong>in</strong>g<br />

bacteria were isolated and cultured from dense filamentous<br />

mats of iron oxides at Loihi seamount<br />

(Emerson and Moyer, 2002) aswellasfromaltered<br />

iron sulfide m<strong>in</strong>erals on ridges flanks (Edwards et al.,<br />

2003). These stra<strong>in</strong>s were shown to grow <strong>in</strong> microaerophilic<br />

conditions at ambient temperature <strong>for</strong> which<br />

<strong>the</strong>y are able to compete with abiotic iron oxidation.<br />

The vent shrimp Rimicaris exoculata, that <strong>for</strong>ms<br />

swarms of up to thousands <strong>in</strong>dividuals per square meter<br />

at <strong>the</strong> mid-Atlantic Ridge hydro<strong>the</strong>rmal vent structures,<br />

constitutes ano<strong>the</strong>r example of highly productive<br />

chemosyn<strong>the</strong>tically susta<strong>in</strong>ed communities. Part of <strong>the</strong><br />

abundant microbes that colonize <strong>the</strong> shrimps' branchial<br />

cavity were shown to fix carbon chemolithoautotrophically<br />

(Wirsen et al., 1993). Gebruk et al. (2000) suggested<br />

that <strong>the</strong> localization of <strong>the</strong> shrimps <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g<br />

zone could provide ideal conditions <strong>for</strong> <strong>the</strong> growth of<br />

<strong>the</strong>se microbes. Sulfide has long been considered as <strong>the</strong><br />

sole electron donor used by <strong>the</strong> shrimp epibionts,<br />

accord<strong>in</strong>g to <strong>the</strong> observation of elemental sulfur<br />

associated with <strong>in</strong>dividuals from <strong>the</strong> TAG site (Gebruk<br />

et al., 2000). A first phylogenetic analysis of Rimicaris<br />

samples from Snake Pit emphasized a s<strong>in</strong>gle ɛ-<br />

Proteobacteria phylotype <strong>for</strong> this hypo<strong>the</strong>sized sulfidebased<br />

epibiose (Polz and Cavanaugh, 1995). Recently,<br />

Zb<strong>in</strong>den et al. (2004) have shown that bacteria <strong>in</strong> <strong>the</strong><br />

branchial cavity were closely associated with ferrihydrite<br />

potentially orig<strong>in</strong>at<strong>in</strong>g from biogenic oxidation of<br />

ferrous iron (Gloter et al., 2004; Anderson et al., <strong>in</strong><br />

press). They proposed that iron oxidation may represent<br />

Fig. 1. Temperature measurement and chemical analysis <strong>in</strong> <strong>the</strong> shrimp<br />

swarm <strong>in</strong> close vic<strong>in</strong>ity to <strong>in</strong>dividuals (1: ROV temperature probe; 2:<br />

Alchimist <strong>in</strong>lets <strong>for</strong> dissolved sulfide and ferrous iron detection circuit;<br />

3: pH electrode with protection).


20 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

Fig. 2. Temperature measurement locations <strong>in</strong> <strong>the</strong> shrimp swarms at Ra<strong>in</strong>bow (a) and TAG (b).<br />

an alternative <strong>energy</strong>-pathway <strong>for</strong> chemosyn<strong>the</strong>tic <strong>microbial</strong><br />

communities at Ra<strong>in</strong>bow.<br />

Our study is focused on <strong>the</strong> shrimp environment at<br />

<strong>the</strong> Ra<strong>in</strong>bow vent field, that has been <strong>in</strong>vestigated<br />

dur<strong>in</strong>g two submersible cruises <strong>in</strong> <strong>the</strong> past 6 years. The<br />

hydro<strong>the</strong>rmal end-member fluid composition is strongly<br />

depart<strong>in</strong>g from o<strong>the</strong>r previously studied MAR sites<br />

(Charlou et al., 2002). It is highly enriched <strong>in</strong> hydrogen,<br />

methane, ferrous iron and relatively depleted <strong>in</strong> sulfide.<br />

These particular features result from <strong>the</strong> location of <strong>the</strong><br />

Ra<strong>in</strong>bow vent field on ultramafic rocks; <strong>in</strong> contrast to<br />

<strong>the</strong> more extensively studied basalt-hosted sites on midocean<br />

ridges. Ma<strong>in</strong> differences should be expected <strong>for</strong><br />

TAG that is hosted on basaltic rocks, where <strong>the</strong> shrimp<br />

R. exoculata was first discovered and described by Rona<br />

et al. (1986). In contrast to Ra<strong>in</strong>bow, <strong>the</strong> black smoker<br />

complexes at TAG expel fluids that are enriched <strong>in</strong><br />

sulfide and significantly lower <strong>in</strong> iron (Edmonds et al.,<br />

1996). Although <strong>the</strong> data set characteriz<strong>in</strong>g <strong>the</strong> shrimp<br />

environment is more limited <strong>for</strong> this site, a first<br />

comparison with <strong>the</strong> obta<strong>in</strong>ed results <strong>for</strong> Ra<strong>in</strong>bow is<br />

presented.<br />

Our aim was to address <strong>the</strong> two follow<strong>in</strong>g questions:<br />

(1) what are <strong>the</strong> energetically most favored autotrophic<br />

CO 2 -fixation pathways <strong>in</strong> <strong>the</strong> shrimp environment at<br />

Ra<strong>in</strong>bow?, (2) should substantial difference be expected<br />

between <strong>the</strong> Ra<strong>in</strong>bow vent site and <strong>the</strong> basalt-hosted<br />

Rimicaris habitat on <strong>the</strong> MAR? The <strong>the</strong>rmal and<br />

chemical variability of <strong>the</strong> shrimp environment has<br />

been described from temperature measurements, <strong>in</strong> situ<br />

chemical analysis and discrete fluid sampl<strong>in</strong>g. The<br />

evolution of physico-chemical parameters as a function<br />

of temperature <strong>in</strong> <strong>the</strong> hydro<strong>the</strong>rmal fluid-seawater<br />

mix<strong>in</strong>g zone was modeled from <strong>the</strong>se data. In comparison<br />

to tubeworm communities fixed on seafloor<br />

rocks that were previously studied (Le Bris et al., 2006),<br />

<strong>the</strong> local source fuell<strong>in</strong>g <strong>the</strong> shrimp habitat was hidden<br />

beh<strong>in</strong>d m<strong>in</strong>eral spires and <strong>the</strong>re<strong>for</strong>e <strong>in</strong>accessible <strong>for</strong><br />

sampl<strong>in</strong>g with <strong>the</strong> submersible manipulator. Although<br />

<strong>the</strong> composition and temperature of <strong>the</strong> local source<br />

rema<strong>in</strong>s unknown, <strong>the</strong> relative depletion of electron<br />

donors and oxygen <strong>in</strong> <strong>the</strong> mix with respect to <strong>the</strong> endmember<br />

and seawater contributions could be constra<strong>in</strong>ed<br />

from <strong>the</strong> data set obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> shrimp<br />

environment. On this basis, <strong>the</strong> <strong>energy</strong>-yield of various<br />

oxidative pathways <strong>in</strong> <strong>the</strong> swarm environment at<br />

Ra<strong>in</strong>bow and TAG could be quantified and consequently<br />

compared.<br />

2. Materials and methods<br />

2.1. Temperature measurements<br />

Temperature data were obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> submersible<br />

cruises ATOS (2001) at Ra<strong>in</strong>bow and EXOMAR (2005) at<br />

Ra<strong>in</strong>bow and TAG. Temperature measurements were operated<br />

from <strong>the</strong> ROV VICTOR6000 and controlled simultaneously<br />

on board of <strong>the</strong> R/V Atalante. By means of <strong>the</strong> submersible<br />

manipulator, <strong>the</strong> probes were positioned <strong>in</strong> close proximity to<br />

<strong>the</strong> shrimps, avoid<strong>in</strong>g to touch <strong>the</strong> wall of neighbor<strong>in</strong>g<br />

chimneys. The probe rema<strong>in</strong>ed at each sampl<strong>in</strong>g po<strong>in</strong>t <strong>for</strong> a<br />

maximum of 6 m<strong>in</strong>. All operations were registered and<br />

followed by video control, us<strong>in</strong>g a deported camera (Bowtech


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

21<br />

Table 1<br />

Chemolithoautotrophic pathways <strong>in</strong> oxic deep-sea hydro<strong>the</strong>rmal environments and <strong>the</strong> correspond<strong>in</strong>g changes <strong>in</strong> standard Gibbs free <strong>energy</strong> (ΔG°)<br />

Metabolic process Chemical reaction ΔG° 298K<br />

kJ mol −1<br />

Methanotrophy<br />

(Jannasch, 1995)<br />

Sulfide oxidation<br />

(Jannasch, 1995)<br />

Iron (II) oxidation<br />

(Emerson et al., 2002;<br />

Edwards et al., 2003)<br />

Hydrogen oxidation (Jannasch, 1995; Takai<br />

et al., 2005)<br />

CH 4 +2O 2 →HCO 3 − +H + +H 2 O<br />

HS − +2O 2 →SO 2− 4 +H +<br />

HS − +1/2 O 2 +H + →S°+H 2 O<br />

Fe 2+ +1/4 O 2 +3/2 H 2 O→FeOOH+2H +<br />

H 2 +1/2 O 2 →H 2 O<br />

All <strong>the</strong>rmodynamic constants were calculated from <strong>the</strong> PHREEQC database, except <strong>for</strong> iron oxidation 2-l<strong>in</strong>e ferrihydrite data reported <strong>in</strong> Majzlan<br />

et al. (2004) were used <strong>in</strong>stead of <strong>the</strong> PHREEQC iron hydroxide constants.<br />

−803<br />

−790<br />

−182<br />

−26<br />

−263<br />

Ltd) attached to <strong>the</strong> probe as described <strong>in</strong> Le Bris et al. (2005)<br />

(Fig. 1).<br />

In 2001, temperature measurements were per<strong>for</strong>med <strong>in</strong> two<br />

shrimp swarms located <strong>in</strong> depressions on <strong>the</strong> side of two<br />

smoker groups at Ra<strong>in</strong>bow (position markers Iris 7 and Iris<br />

13). A complementary chemical characterization was per<strong>for</strong>med<br />

<strong>for</strong> <strong>the</strong> swarm at Iris 13. In 2005, a swarm located at<br />

exactly <strong>the</strong> same spot was <strong>in</strong>vestigated. To characterize <strong>the</strong><br />

spatial variation of temperature and dissolved chemical species<br />

with<strong>in</strong> a shrimp assemblage, measurements were done <strong>in</strong> <strong>the</strong><br />

center of <strong>the</strong> swarm and <strong>in</strong> border<strong>in</strong>g areas to unpopulated<br />

chimney walls (Fig. 2a).<br />

At TAG <strong>the</strong> chimneys were covered by huge shrimp<br />

swarms. Temperature measurements were done <strong>in</strong> dist<strong>in</strong>ct<br />

locations distributed with<strong>in</strong> one of <strong>the</strong>se swarm (Fig. 2b).<br />

Several discharges of black smoke were observed on <strong>the</strong> flank<br />

of <strong>the</strong> chimney complex.<br />

2.2. In situ chemical analysis<br />

In 2001 and 2005, <strong>the</strong> submersible flow analyzer Alchimist<br />

(Le Bris et al., 2000) was <strong>in</strong>stalled on <strong>the</strong> Victor and used to<br />

determ<strong>in</strong>e <strong>in</strong> situ dissolved ferrous iron and sulfide concentrations<br />

by flow <strong>in</strong>jection analysis (FIA). The FIA method<br />

<strong>for</strong> iron analysis is described <strong>in</strong> Sarrad<strong>in</strong> et al. (2005). The<br />

fluid was drawn from <strong>the</strong> <strong>in</strong>let positioned with <strong>the</strong> manipulator<br />

to <strong>the</strong> colorimetric detection unit <strong>in</strong>stalled on <strong>the</strong> ROV.<br />

The calibration of <strong>the</strong> device was per<strong>for</strong>med <strong>in</strong> situ, be<strong>for</strong>e<br />

and after each sampl<strong>in</strong>g run. The analyses were done with a<br />

frequency of 60 s over a total sampl<strong>in</strong>g period of about 6 m<strong>in</strong><br />

<strong>for</strong> each position. The <strong>primary</strong> aim of <strong>the</strong>se measurements<br />

was to correlate temperature and chemical parameters with<strong>in</strong><br />

<strong>the</strong> steep gradients encountered <strong>in</strong> <strong>the</strong>se media. As described<br />

previously (Le Bris et al. 2001), <strong>the</strong> <strong>in</strong>let was tightly attached<br />

to <strong>the</strong> temperature probe of <strong>the</strong> Victor. At TAG, comb<strong>in</strong>ed<br />

Fe II and temperature measurements were obta<strong>in</strong>ed <strong>in</strong> different<br />

location of <strong>the</strong> swarm, as done <strong>in</strong> o<strong>the</strong>r vent fauna<br />

habitats (Le Bris et al., 2006). At Ra<strong>in</strong>bow, one set of Fe II and<br />

temperature measurements could be obta<strong>in</strong>ed <strong>in</strong> 2001 but <strong>the</strong><br />

<strong>in</strong>let was accidentally detached from <strong>the</strong> temperature probe<br />

prevent<strong>in</strong>g <strong>the</strong> direct comb<strong>in</strong>ation of <strong>the</strong> data sets. Successive<br />

measurements of temperature and iron at several po<strong>in</strong>ts with<strong>in</strong><br />

<strong>the</strong> swarm enabled to establish a coarse correlation between<br />

<strong>the</strong>se parameters. These measurements were repeated<br />

dur<strong>in</strong>g <strong>the</strong> EXOMAR cruise at Ra<strong>in</strong>bow. However, due to<br />

technical problems, measurements were obta<strong>in</strong>ed at only one<br />

po<strong>in</strong>t with<strong>in</strong> <strong>the</strong> swarm.<br />

At both sites, Ra<strong>in</strong>bow and TAG, <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong><br />

S − II /temperature correlation could not be achieved due to<br />

failure <strong>in</strong> <strong>the</strong> sulfide analyzer unit or <strong>the</strong> temperature probe.<br />

Simultaneous analyses of Fe II and S − II could solely be<br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g of a swarm at Ra<strong>in</strong>bow dur<strong>in</strong>g <strong>the</strong><br />

ATOS cruise.<br />

2.3. Fluid sampl<strong>in</strong>g and analysis<br />

Discrete fluid samples were obta<strong>in</strong>ed <strong>in</strong> 2001 and 2005<br />

us<strong>in</strong>g <strong>the</strong> VICTOR6000 pump<strong>in</strong>g fluid multisampler consist<strong>in</strong>g<br />

of 19 evacuated 200 ml titanium bottles, which were<br />

r<strong>in</strong>sed with 0.1N HCl and deionised water be<strong>for</strong>e operation.<br />

In 2005, <strong>the</strong> ROV temperature probe was coupled to <strong>the</strong><br />

sampler <strong>in</strong>let, enabl<strong>in</strong>g to measure temperature simultaneously<br />

to <strong>the</strong> fluid sampl<strong>in</strong>g. All samples were obta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong><br />

swarms. In 2001, a few samples were additionally obta<strong>in</strong>ed<br />

with gas-tight titanium bottles. For <strong>the</strong>se samples a comb<strong>in</strong>ed<br />

autonomous probe enabled to set <strong>the</strong> average temperature at<br />

<strong>the</strong> sampl<strong>in</strong>g po<strong>in</strong>t. S<strong>in</strong>ce <strong>the</strong> ROV sampler <strong>in</strong>let was not<br />

equipped with a temperature sensor <strong>in</strong> 2001, temperature<br />

data are <strong>the</strong>re<strong>for</strong>e not available <strong>for</strong> <strong>the</strong>se samples. In 2001, a<br />

punctual source of fluid <strong>in</strong> <strong>the</strong> immediate environment of<br />

<strong>the</strong> shrimp assemblage was sampled as well with titanium<br />

syr<strong>in</strong>ges.<br />

The pH was measured with a conventional pH electrode<br />

immediately after <strong>the</strong> sampl<strong>in</strong>g bottles were recovered on<br />

board. For oxygen measurements, sub-samples were carefully<br />

transferred <strong>in</strong> glass rod flasks avoid<strong>in</strong>g <strong>the</strong> <strong>for</strong>mation of gas<br />

bubbles. In order to fix oxygen, W<strong>in</strong>kler reagents were immediately<br />

added be<strong>for</strong>e subsequent titration (ATOS 2001).


22 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

Table 2<br />

Temperatures measured at different locations <strong>in</strong> a shrimp swarm at<br />

Ra<strong>in</strong>bow (upper) and TAG (lower) as displayed <strong>in</strong> Fig. 2 (SD: standard<br />

deviation, N: number of data)<br />

Sampl<strong>in</strong>g po<strong>in</strong>t T m<strong>in</strong> [°C] T mean [°C] T max [°C] SD [°C] N<br />

1 5.3 6.2 6.7 0.4 12<br />

2 5.3 6.2 7.1 0.4 27<br />

3 6.4 7.7 9 0.6 29<br />

4 9.7 11.9 14.5 1.3 33<br />

5 6.8 8.5 11.3 1 26<br />

6 7.3 10.9 15.8 2.2 29<br />

7 7.2 12.3 18.2 2.2 28<br />

8 9.3 10.6 14.6 1.2 30<br />

9 7.4 9.3 12.7 1.2 32<br />

10 11.4 16 17.3 1.3 28<br />

1 5.3 7.2 11.9 1.2 97<br />

2 2.8 5.3 7.9 1.2 94<br />

3 3.3 5.9 9.1 1.3 97<br />

4 4 7.1 13.3 1.7 86<br />

5 5.1 6.4 8.2 0.7 97<br />

6 4 7.5 12.6 1.6 85<br />

7 3.6 6 8.5 1.1 96<br />

8 4.1 9 17.4 2.5 90<br />

9 4 10.2 16.6 3.2 96<br />

10 3.6 4.6 5.4 0.4 97<br />

Alternatively, oxygen was directly measured us<strong>in</strong>g an<br />

amperometric microelectrode (EXOMAR 2005). Fluid subsamples<br />

were preserved <strong>in</strong> gas-tight flasks under <strong>the</strong> addition<br />

of Hg 2 Cl 2 <strong>for</strong> CO 2 and CH 4 on-shore GC-analysis (ATOS<br />

samples). Applied analytical methods are described <strong>in</strong> Sarrad<strong>in</strong><br />

et al. (1998). Total iron was preserved <strong>in</strong> acidified sub-samples<br />

and analyzed on-shore us<strong>in</strong>g <strong>the</strong> ferroz<strong>in</strong>e method after<br />

reduction of ferric iron with ascorbic acid.<br />

2.4. <strong>Geochemical</strong> model<strong>in</strong>g<br />

<strong>Geochemical</strong> calculations were per<strong>for</strong>med apply<strong>in</strong>g <strong>the</strong><br />

computation code PHREEQC (version 2.8) (Parkhust and<br />

Appelo, 1999) <strong>in</strong> order to simulate <strong>the</strong> chemical composition<br />

of <strong>the</strong> mix<strong>in</strong>g zone as function of temperature <strong>in</strong> <strong>the</strong> shrimp<br />

environment. The program is based on chemical equilibria <strong>in</strong><br />

aqueous solutions <strong>in</strong>teract<strong>in</strong>g with m<strong>in</strong>erals. The PHREEQC<br />

database accounts <strong>for</strong> temperature effects on <strong>the</strong>rmodynamic<br />

constants but not <strong>for</strong> <strong>the</strong> <strong>in</strong>fluence of high pressure (about<br />

23 MPa at 2300 m depth and 35 MPa at 3500 m depth). As<br />

hypo<strong>the</strong>sized <strong>in</strong> Le Bris et al. (2003) <strong>the</strong> effect of pressure<br />

should be of m<strong>in</strong>or importance <strong>for</strong> <strong>the</strong> <strong>in</strong>vestigated reactions<br />

<strong>in</strong> <strong>the</strong> temperature range (2–30 °C). The <strong>the</strong>rmodynamic<br />

constants <strong>for</strong> <strong>the</strong> considered chemical species were def<strong>in</strong>ed<br />

from <strong>the</strong> PHREEQC database, except <strong>for</strong> aqueous ferrous<br />

iron-sulfide complexes. For <strong>the</strong>se complexes, <strong>the</strong> database<br />

has been upgraded us<strong>in</strong>g data from Rickard and Morse<br />

(2005). Accord<strong>in</strong>g to <strong>the</strong>se authors, only Fe(HS) + displays a<br />

certa<strong>in</strong> congruency among authors with a determ<strong>in</strong>ed log K<br />

close to 5.2. Additionally, soluble iron-sulfide molecular<br />

clusters (FeSaq) are expected to dom<strong>in</strong>ate labile iron-sulfide<br />

<strong>for</strong>ms <strong>in</strong> hydro<strong>the</strong>rmal fluids (Lu<strong>the</strong>r et al., 2001). Accord<strong>in</strong>g<br />

to Theberge and Lu<strong>the</strong>r (1997), <strong>the</strong>se complexes will <strong>for</strong>m at<br />

saturation of <strong>the</strong> medium with respect to precipitated ironmonosulfide<br />

FeS. The Ks used <strong>in</strong> our calculation <strong>for</strong> this<br />

precipitate corresponds to <strong>the</strong> value def<strong>in</strong>ed by Benn<strong>in</strong>g et al.<br />

(2000). Full equilibration between <strong>the</strong> dissolved species and<br />

<strong>the</strong> solid phase was not allowed, unless specified.<br />

The progressive mix<strong>in</strong>g of <strong>the</strong> end-member fluid with<br />

seawater was modeled assum<strong>in</strong>g that <strong>the</strong> chemistry of <strong>the</strong><br />

hydro<strong>the</strong>rmal fluid at Ra<strong>in</strong>bow corresponds to <strong>the</strong> composition<br />

recorded <strong>in</strong> 1997 as presented <strong>in</strong> Charlou et al. (2002)<br />

and Douville et al. (2002). The end-member composition<br />

used <strong>for</strong> TAG refers to Edmonds et al. (1996). Theseendmembers<br />

are termed ‘reference end-members’ <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

sections. This def<strong>in</strong>ition does not <strong>in</strong>fer a stable composition<br />

of <strong>the</strong> end-members over years, but ra<strong>the</strong>r provides<br />

a comparison basis from which <strong>the</strong> composition of <strong>the</strong> local<br />

source fluid could be estimated. Fitt<strong>in</strong>g <strong>the</strong> model outputs to<br />

empirical data enabled to quantify <strong>the</strong> depletion of Fe II and<br />

S − II <strong>in</strong> <strong>the</strong> local source fluids with respect to <strong>the</strong> conservative<br />

dilution of <strong>the</strong> reference end-members. The concentration<br />

of methane <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g gradient was estimated by<br />

similar adjustment to <strong>the</strong> field data.<br />

Fur<strong>the</strong>rmore, different scenarios were considered to<br />

account <strong>for</strong> oxygen consumption by electron donors which<br />

could spontaneously occur <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone or <strong>in</strong> <strong>the</strong><br />

sampl<strong>in</strong>g bottles. For this purpose O 2 -pH and O 2 -T data-sets<br />

Table 3<br />

Compilation of <strong>the</strong>rmal data (mean values and ranges) <strong>in</strong> <strong>the</strong> immediate<br />

environment of <strong>the</strong> shrimp <strong>in</strong> different swarms at <strong>the</strong> Mid-Atlantic<br />

Ridge (RB: Ra<strong>in</strong>bow, SP: Snake Pit, L: Logatchev)<br />

Site Location T [°C] Reference<br />

Diverse Swarm 10–40 Gebruk et al.<br />

(1993)<br />

SP Swarm 10–15 (5–37) Segonzac et al.<br />

(1993)<br />

L Swarm N20 Gebruk et al.<br />

(1993)<br />

RB Swarm 9–25 Desbruyères et al.<br />

(2000)<br />

RB Swarm 13.2 Desbruyères et al.<br />

(2001)<br />

RB Swarm 11 (4.7–25) Geret et al. (2002)<br />

RB Swarm 1 11.8 (3.9–16.6) this study<br />

(ATOS 2001)<br />

RB Swarm 2 8.7 (4.5–18.3) this study<br />

(ATOS 2001)<br />

RB Swarm 3 11.5 (3.2–18) this study<br />

(EXOMAR 2005)<br />

TAG Swarm 7 (2.8–17.4) this study<br />

(EXOMAR 2005)


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

23<br />

where ΔG T and ΔG T ° (J mol − 1 ) denote <strong>the</strong> change <strong>in</strong> Gibbs<br />

free <strong>energy</strong> and <strong>the</strong> change <strong>in</strong> standard Gibbs free <strong>energy</strong> (all<br />

species activities are set to 1 at standard state), respectively.<br />

Πa i product /Πa i reactive represents <strong>the</strong> activity quotient of <strong>the</strong><br />

products and reagents of <strong>the</strong> chemical reaction. The temperature<br />

dependence of ΔG° can be determ<strong>in</strong>ed apply<strong>in</strong>g <strong>the</strong><br />

Van't Hoff law:<br />

ln K T<br />

K 298K<br />

¼<br />

<br />

<br />

DH-<br />

R d 1<br />

T<br />

<br />

1<br />

T 298K<br />

ð2Þ<br />

with K, <strong>the</strong> equilibrium constant, def<strong>in</strong>ed as ΔG T °=−RT ln K.<br />

R represents <strong>the</strong> ideal gas constant (8.314 kJ mol − 1 ), ΔH° <strong>the</strong><br />

change <strong>in</strong> standard enthalpy of <strong>the</strong> reaction and T is temperature<br />

<strong>in</strong> Kelv<strong>in</strong>.<br />

The total amounts of chemical <strong>energy</strong> available from a<br />

redox reaction, <strong>the</strong>re<strong>for</strong>e potentially disposable <strong>for</strong> <strong>microbial</strong>ly<br />

mediated processes, were determ<strong>in</strong>ed by <strong>the</strong> follow<strong>in</strong>g<br />

relationship:<br />

Fig. 3. Schematic representation of <strong>the</strong> shrimp environment. The<br />

swarm position <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone between seawater and a local<br />

source of <strong>the</strong> hydro<strong>the</strong>rmal fluid on <strong>the</strong> flank of <strong>the</strong> chimney.<br />

were compared to <strong>the</strong>ir modeled trends at equilibrium with<br />

sulfide, ferrous iron and hydrogen. Variable contribution of<br />

<strong>the</strong>se electron donors <strong>in</strong> <strong>the</strong> source fluid were considered. The<br />

200 ml mix<strong>in</strong>g zone samples are composed of multiple mix<strong>in</strong>g<br />

fractions with highly diverse compositions and temperature.<br />

pH is a more reliable tracer to asses <strong>the</strong> contribution of <strong>the</strong><br />

hydro<strong>the</strong>rmal end-member fluid to such samples than temperature<br />

at <strong>the</strong> sampl<strong>in</strong>g <strong>in</strong>let which only reflects punctual<br />

conditions. For this reason and consider<strong>in</strong>g <strong>the</strong> lack of temperature<br />

data <strong>for</strong> most samples, pH was first chosen as <strong>the</strong><br />

correlation factor <strong>in</strong> order to constra<strong>in</strong> <strong>the</strong> model. Equilibrium<br />

<strong>in</strong> samples after recovery on-board was modeled <strong>for</strong> a temperature<br />

of 25 °C. To model <strong>the</strong> <strong>in</strong> situ oxygen variation<br />

required to account <strong>for</strong> <strong>the</strong> real temperature of <strong>the</strong> mix and<br />

<strong>for</strong> <strong>the</strong> electron donors that achieve equilibrium <strong>in</strong> situ with<br />

oxygen.<br />

For TAG, only <strong>the</strong> correlation of iron II concentration with<br />

temperature could be constra<strong>in</strong>ed by means of <strong>in</strong> situ data. As<br />

hydrogen is unlikely to be present <strong>in</strong> <strong>the</strong> shrimp environment<br />

at this site, only sulfide was accounted to impact on <strong>the</strong><br />

oxygen-pH relation <strong>in</strong> samples. The sulfide content <strong>in</strong> <strong>the</strong><br />

mix<strong>in</strong>g zone was estimated on this basis.<br />

2.5. Energy budget calculation<br />

Energy calculation were per<strong>for</strong>med <strong>for</strong> <strong>the</strong> mild part of <strong>the</strong><br />

mix<strong>in</strong>g zone (temperature below 30 °C). The <strong>energy</strong> release<br />

per mole of reactants <strong>for</strong> a given reaction at temperature T is<br />

determ<strong>in</strong>ed by:<br />

<br />

DG T ¼ DG T - þ RT ln<br />

Pa product<br />

i<br />

=Pa reactive<br />

i<br />

<br />

ð1Þ<br />

DGðtotÞ T<br />

¼ DG T d½e<br />

Š ð3Þ<br />

ΔG(tot) T <strong>in</strong> kJ kg −1 represents <strong>the</strong> maximum <strong>energy</strong> amount<br />

that can be liberated per mass unit of solution. It depends on<br />

both, <strong>the</strong> Gibbs free <strong>energy</strong> ΔG T per mole [kJ mol − 1 ]and[e − ],<br />

<strong>the</strong> concentration of electron donor that can be oxidized,<br />

consider<strong>in</strong>g that this quantity is limited by <strong>the</strong> availability of<br />

oxygen and <strong>the</strong> number of electron needed to oxidize one<br />

compound (mol kg − 1 ). The reactions considered <strong>in</strong> this study<br />

are <strong>the</strong> oxidation of methane, sulfide, hydrogen and ferrous<br />

iron. Both, <strong>the</strong> complete oxidation of sulfide (as HS − )to<br />

sulfate or partial oxidation to S° are <strong>in</strong>vestigated.<br />

To quantify <strong>the</strong> <strong>energy</strong> budget available from ferrous iron<br />

oxidation, <strong>the</strong> def<strong>in</strong>ition of <strong>the</strong>rmodynamic properties of <strong>the</strong><br />

oxidized <strong>for</strong>m of iron is of ma<strong>in</strong> importance. Two-l<strong>in</strong>e<br />

ferrihydrite is <strong>the</strong> m<strong>in</strong>eral that was shown to be <strong>for</strong>med<br />

dom<strong>in</strong>antly <strong>in</strong> association with <strong>the</strong> shrimp epibionts that are<br />

harbored <strong>in</strong> <strong>the</strong> branchial cavity (Gloter et al., 2004). The<br />

<strong>the</strong>rmodynamic properties of this compound have only<br />

recently been assessed <strong>in</strong> experimental conditions. Majzlan<br />

et al. (2004) def<strong>in</strong>ed ΔG 298K ° rang<strong>in</strong>g from 26 to 29 kJ mol − 1<br />

and ΔH° of−48 to−47 kJ mol − 1 <strong>for</strong> <strong>the</strong> <strong>for</strong>mation of 2-l<strong>in</strong>e<br />

ferrihydrite, depend<strong>in</strong>g on <strong>the</strong> duration of precipitation process<br />

(Table 1).<br />

3. Results<br />

3.1. Temperature ranges <strong>for</strong> <strong>the</strong> shrimp habitat<br />

Temperature measurements per<strong>for</strong>med <strong>in</strong> a shrimp swarm<br />

at TAG and Ra<strong>in</strong>bow <strong>in</strong> 2005 are summarized <strong>in</strong> Table 2 and<br />

<strong>the</strong> correspond<strong>in</strong>g sampl<strong>in</strong>g locations are shown <strong>in</strong> Fig. 2a, b.<br />

The temperature ranged between 2.8–17.4 °C at TAG and<br />

5.3–18.2 °C at Ra<strong>in</strong>bow. At both sites, Ra<strong>in</strong>bow and TAG,<br />

<strong>the</strong> lowest temperature was recorded at <strong>the</strong> boundary of <strong>the</strong><br />

shrimp swarm and <strong>the</strong> unpopulated rock, while more elevated


24 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

Iron distribution appears conservative <strong>in</strong> first approximation<br />

<strong>in</strong> <strong>the</strong> studied environment, with a roughly l<strong>in</strong>ear<br />

correlation with temperature. The observed trend still lies<br />

significantly below <strong>the</strong> reference end-member dilution model.<br />

This depletion reflects, ei<strong>the</strong>r a reduction of <strong>the</strong> end-member<br />

iron content, or more likely, iron removal by precipitation from<br />

<strong>the</strong> secondary source fluid be<strong>for</strong>e its emission <strong>in</strong>to seawater.<br />

From <strong>the</strong> <strong>in</strong> situ iron II measurements per<strong>for</strong>med <strong>in</strong> 2005, a<br />

ratio of 51 μMFe II °C − 1 was established. This estimate depicts<br />

an iron depletion <strong>in</strong> <strong>the</strong> local source fluid of about 23%, with<br />

regard to <strong>the</strong> end-member dilution measured <strong>in</strong> 1997 (i.e.<br />

18.4 mM <strong>in</strong>stead of 24 mM when extrapolated to <strong>the</strong> end-<br />

Fig. 4. (a) Iron as a function of temperature at Ra<strong>in</strong>bow show<strong>in</strong>g <strong>the</strong><br />

reference end-member dilution model (dotted l<strong>in</strong>e) and <strong>the</strong> model<br />

def<strong>in</strong>ed from 2005 <strong>in</strong> situ data (solid l<strong>in</strong>e). Open circles: total Fe <strong>in</strong><br />

samples (2001), triangles: <strong>in</strong> situ Fe II measurements (2005), crosses:<br />

<strong>in</strong> situ Fe II measurements (2001). (b) Sulfide as a function of iron at<br />

Ra<strong>in</strong>bow. Bold dotted l<strong>in</strong>e: reference end-member dilution model,<br />

solid l<strong>in</strong>e: empirical model, th<strong>in</strong> dotted l<strong>in</strong>e: model allow<strong>in</strong>g<br />

equilibrium with FeS precipitate. Open circles: sample contents,<br />

Close circles: Fe II <strong>in</strong> situ data (ATOS 2001).<br />

temperatures were measured <strong>in</strong> <strong>the</strong> center of <strong>the</strong> swarms. A<br />

temperature gradient was observed along a vertical axis<br />

with<strong>in</strong> <strong>the</strong> shrimp assemblages. Similar ranges and patterns<br />

were obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> ATOS cruise (2001) <strong>for</strong> two different<br />

swarms at <strong>the</strong> Ra<strong>in</strong>bow site (Table 3). These features<br />

and <strong>the</strong> turbulent currents of shimmer<strong>in</strong>g fluid observed<br />

around <strong>the</strong> bottom of <strong>the</strong> swarm suggest a hot fluid emission<br />

below <strong>the</strong> swarm as schematized <strong>in</strong> Fig. 3. The direct outflow<br />

source was not observable, as it was masked by a group of<br />

m<strong>in</strong>eral spires.<br />

3.2. Comparison of empirical data with <strong>the</strong> end-member<br />

dilution model<br />

3.2.1. Ra<strong>in</strong>bow<br />

Iron concentrations <strong>in</strong> <strong>the</strong> swarm environment have been<br />

determ<strong>in</strong>ed, both, <strong>in</strong> situ (Fe II alone) and from fluid sampl<strong>in</strong>g<br />

(total labile Fe after reduction of Fe III with ascorbic acid). The<br />

iron–temperature correlation <strong>for</strong> <strong>the</strong> data sets obta<strong>in</strong>ed <strong>in</strong> 2001<br />

and 2005 is ra<strong>the</strong>r consistent (Fig. 4a). Fur<strong>the</strong>rmore, <strong>the</strong> total<br />

Fe-temperature correlation <strong>in</strong> fluid samples does not significantly<br />

depart from <strong>in</strong> situ data (Fig. 4a). This suggests that <strong>the</strong><br />

contribution of ferric iron to <strong>the</strong> overall <strong>in</strong> situ iron budget <strong>in</strong><br />

<strong>the</strong> shrimp surround<strong>in</strong>g is m<strong>in</strong>or.<br />

Fig. 5. (a) pH as a function of temperature, (b) CO 2 as a function of pH<br />

<strong>for</strong> Ra<strong>in</strong>bow samples. Solid l<strong>in</strong>e: without Fe II oxidation, l<strong>in</strong>e with<br />

crosses: allow<strong>in</strong>g Fe II oxidation <strong>in</strong> samples. Open squares: <strong>in</strong> <strong>the</strong><br />

shrimp habitat (2001), triangles: local hot fluid source (2001), close<br />

squares: <strong>in</strong> <strong>the</strong> shrimp habitat (2005). (c) CH 4 as a function of pH <strong>for</strong><br />

Ra<strong>in</strong>bow samples. Th<strong>in</strong> l<strong>in</strong>e: reference end-member dilution model,<br />

solid l<strong>in</strong>e: empirically fitted model.


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

25<br />

that 40% of <strong>the</strong> reference end-member methane content is<br />

preserved <strong>in</strong> <strong>the</strong> source fluid (Fig. 5c).<br />

Fig. 6. Iron as a function of temperature at TAG show<strong>in</strong>g <strong>the</strong> reference<br />

end-member dilution model (solid l<strong>in</strong>e) and <strong>the</strong> <strong>in</strong> situ measurements<br />

(crosses).<br />

member temperature). The sampl<strong>in</strong>g data from 2001 are <strong>in</strong><br />

agreement or slightly below <strong>the</strong> conservative dilution model<br />

<strong>for</strong> this local source (Fig. 4a).<br />

In situ sulfide measurements recorded parallel to iron II at<br />

Ra<strong>in</strong>bow show a l<strong>in</strong>ear correlation between <strong>the</strong>se two parameters<br />

(Fig. 4b). Although sulfide is likely to be associated with<br />

iron <strong>in</strong> <strong>the</strong> shrimp environment where <strong>the</strong> Fe II :S − II ratio<br />

exceeds 30, this l<strong>in</strong>ear correlation <strong>in</strong>dicates that labile ironsulfide<br />

compounds are present. The hypo<strong>the</strong>sis of <strong>in</strong> situ<br />

equilibrium with stable iron sulfide precipitates, i.e. mack<strong>in</strong>awite,<br />

that do not dissociate <strong>in</strong> <strong>the</strong> analyzer manifold is not<br />

supported by <strong>the</strong>se results (Fig. 4b). As previously described <strong>in</strong><br />

hydro<strong>the</strong>rmal environments (Lu<strong>the</strong>r et al. 2001), iron sulfide<br />

complexes FeS° and FeS-colloids more likely dom<strong>in</strong>ate <strong>the</strong> <strong>in</strong><br />

situ speciation of sulfide. The Fe II :S − II ratio fur<strong>the</strong>rmore<br />

reflects a sulfide content reach<strong>in</strong>g only 40% of <strong>the</strong> correspond<strong>in</strong>g<br />

end-member contribution <strong>for</strong> a given mix<strong>in</strong>g ratio<br />

(i.e. 500 μM <strong>in</strong>stead of 1.2 mM when extrapolated to <strong>the</strong> endmember<br />

temperature). In contrast to <strong>in</strong> situ data, sulfide<br />

appears completely depleted <strong>in</strong> discrete samples (Fig. 4b). The<br />

hypo<strong>the</strong>sis that crystall<strong>in</strong>e FeS phases that would not be<br />

detected by <strong>the</strong> Cl<strong>in</strong>e Method have <strong>for</strong>med dur<strong>in</strong>g recovery<br />

cannot be discarded. However, equilibrium with this phase<br />

cannot expla<strong>in</strong> <strong>the</strong> quantitative removal of sulfide from<br />

samples (Fig. 4b). A more relevant explanation to <strong>the</strong><br />

undetectable or very low sulfide concentrations <strong>in</strong> <strong>the</strong> samples<br />

is <strong>the</strong> complete oxidation of S − II dur<strong>in</strong>g recovery.<br />

Data po<strong>in</strong>ts of both sampl<strong>in</strong>g sets (2001 and 2005) lie close<br />

or slightly below <strong>the</strong> modeled pH–T correlation curve,<br />

allow<strong>in</strong>g sulfide oxidation at 25 °C (Fig. 5a). The deviation<br />

observed (b0.4 pH) may reflect conductive cool<strong>in</strong>g of <strong>the</strong> fluid<br />

or, underestimation of <strong>the</strong> temperature correspond<strong>in</strong>g to each<br />

sample. Ano<strong>the</strong>r possibility is that Fe II oxidation <strong>in</strong> samples<br />

resulted <strong>in</strong> acidification of <strong>the</strong> medium. Part of <strong>the</strong> data from<br />

2005 support this assumption. A better fit is <strong>in</strong>deed obta<strong>in</strong>ed<br />

<strong>for</strong> <strong>the</strong>m assum<strong>in</strong>g that iron is <strong>in</strong> equilibrium with O 2 (Fig. 5a).<br />

However, <strong>the</strong> CO 2 -pH correlation would <strong>the</strong>n depart significantly<br />

from <strong>the</strong> model which assumes that iron II does not<br />

reach equilibrium with O 2 .CO 2 -pH data <strong>in</strong> 2001 samples<br />

ra<strong>the</strong>r agree with <strong>the</strong> later hypo<strong>the</strong>sis (Fig. 5b). The methane–<br />

pH correlation was also consistent with this model assum<strong>in</strong>g<br />

3.2.2. TAG<br />

The iron II concentration at TAG is consistent with <strong>the</strong><br />

conservative dilution of <strong>the</strong> reference end-member (Fig. 6).<br />

L<strong>in</strong>ear extrapolation of <strong>in</strong> situ ferrous iron to <strong>the</strong> reference<br />

end-member temperature of 365 °C, 5160 μM, is fairly similar<br />

to <strong>the</strong> end-member fluid content (5180 μM) as reported <strong>in</strong><br />

Edmonds et al. (1996).<br />

Similar <strong>in</strong> situ sulfide data could not be obta<strong>in</strong>ed due to<br />

analyzer failure. The S − II :Fe II end-member ratio of 0.6<br />

determ<strong>in</strong>ed by Edmonds et al. (1996) enables to set an upper<br />

limit of <strong>the</strong> sulfide concentrations <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone. As<br />

sulfide is <strong>the</strong> dom<strong>in</strong>ant electron donor <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone at<br />

TAG, <strong>the</strong> oxygen content <strong>in</strong> <strong>the</strong> samples can be used to<br />

constra<strong>in</strong> <strong>in</strong> situ sulfide levels. Assum<strong>in</strong>g conservative dilution<br />

of <strong>the</strong> end-member fluid with respect to sulfide (i.e. 100% endmember<br />

total sulfide concentration contributes to <strong>the</strong> source<br />

fluid) and total sulfide oxidation with oxygen <strong>in</strong> samples, will<br />

significantly under-estimate <strong>the</strong> oxygen content <strong>in</strong> samples<br />

(Fig. 7). This suggests that sulfide is depleted <strong>in</strong> <strong>the</strong> source<br />

fluid with regards to Fe II , possibly caused by FeS 2 precipitation.<br />

A better fit <strong>for</strong> <strong>the</strong> O 2 sample measurements is obta<strong>in</strong>ed<br />

<strong>for</strong> a total sulfide concentration reach<strong>in</strong>g about 20% of <strong>the</strong> endmember<br />

contribution.<br />

Fig. 7. Oxygen content as function of pH (a) and temperature (b) <strong>for</strong><br />

TAG show<strong>in</strong>g <strong>the</strong> reference end-member dilution model (dotted l<strong>in</strong>e),<br />

<strong>the</strong> model assum<strong>in</strong>g that only 20% of <strong>the</strong> reference end-member sulfide<br />

contributes to <strong>the</strong> mix (solid l<strong>in</strong>e) and <strong>the</strong> sample contents (crosses).


26 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

content is preserved <strong>in</strong> <strong>the</strong> source fluid fuell<strong>in</strong>g <strong>the</strong> mix<strong>in</strong>g<br />

zone.<br />

Consequently, two cases can be considered: (1) H 2 is fully<br />

oxidized <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone and <strong>the</strong> available O 2 is def<strong>in</strong>ed<br />

by its equilibrium with H 2 (Fig. 9a), (2) H 2 does not oxidize<br />

spontaneously <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone and its concentration is at a<br />

maximum of 40% of <strong>the</strong> level expected from reference endmember<br />

dilution (Fig. 9b).<br />

The m<strong>in</strong>imum <strong>in</strong> situ O 2 boundary <strong>in</strong> this last case is more<br />

difficult to constra<strong>in</strong> s<strong>in</strong>ce no redox couple is assumed to<br />

control oxygen variations <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone. An arbitrary<br />

upper limit of 100 °C was set consider<strong>in</strong>g that k<strong>in</strong>etically<br />

<strong>in</strong>hibited reactions at low temperature would be much more<br />

rapid at this temperature and that electron donors would be <strong>in</strong><br />

large excess.<br />

A similar assumption was done <strong>for</strong> oxygen at TAG. The<br />

oxygen trend was fit to <strong>the</strong> O 2 concentrations <strong>in</strong> <strong>the</strong> fluid<br />

samples obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> EXOMAR Cruise <strong>in</strong> 2005.<br />

Assum<strong>in</strong>g 80% depletion of <strong>the</strong> end-member sulfide contribution<br />

<strong>in</strong> <strong>the</strong> source fluid and its total oxidation <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g<br />

zone sets <strong>the</strong> oxic–anoxic <strong>in</strong>terface around 30 °C.<br />

3.4. Chemical <strong>energy</strong> budgets<br />

Fig. 8. O 2 as a function of pH (a) and temperature (b) <strong>in</strong> Ra<strong>in</strong>bow<br />

samples (open squares: 2001; filled squares: 2005). The model curves<br />

reflect total oxidation of sulfide <strong>in</strong> samples and <strong>the</strong> oxidation of<br />

hydrogen assum<strong>in</strong>g variable contribution <strong>in</strong> <strong>the</strong> source fluid with<br />

respect to <strong>the</strong> reference end-member: 0% (l<strong>in</strong>e with crosses), 20% (th<strong>in</strong><br />

l<strong>in</strong>e), 40% (bold l<strong>in</strong>e), 100% (dotted l<strong>in</strong>e). Filled squares: 2005 shrimp<br />

habitat samples, open squares: 2001 shrimp habitat samples, triangles:<br />

2001 local fluid source samples.<br />

The <strong>energy</strong> available to chemolithoautotrophic organisms<br />

per mole of electron donor was assessed by consider<strong>in</strong>g <strong>the</strong><br />

3.3. Potential controls on <strong>the</strong> oxygen content <strong>in</strong> samples<br />

On <strong>the</strong> basis of <strong>the</strong>se empirically estimated S − II and Fe II<br />

contents <strong>in</strong> <strong>the</strong> Ra<strong>in</strong>bow source fluids, different scenarios were<br />

considered assum<strong>in</strong>g that redox equilibrium is achieved with<br />

oxygen <strong>for</strong> one or several of <strong>the</strong> most abundant reduc<strong>in</strong>g<br />

species <strong>in</strong> Ra<strong>in</strong>bow fluids, S − II ,Fe II or H 2 . Fig. 8 presents <strong>the</strong><br />

comparison of modeled O 2 -pH correlations with field data.<br />

The conversion of sulfide <strong>in</strong>to sulfate dur<strong>in</strong>g sample recovery<br />

is suggested by its depletion <strong>in</strong> samples but this process cannot<br />

solely expla<strong>in</strong> <strong>the</strong> O 2 depletion (Fig. 8a). Fe II /Fe III equilibrium<br />

with O 2 /H 2 O is <strong>in</strong>sufficient as well to account <strong>for</strong> <strong>the</strong> observed<br />

oxygen trend. Additional scenarios accounted <strong>for</strong> <strong>the</strong> presence<br />

of hydrogen <strong>in</strong> <strong>the</strong> source fluid. It is likely that hydrogen<br />

would equilibrate with O 2 over several hours <strong>in</strong> <strong>the</strong> samples,<br />

s<strong>in</strong>ce <strong>the</strong>ir reaction rate is expected to be quite rapid. However,<br />

if 100% of <strong>the</strong> hydrogen conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> reference endmember<br />

was preserved dur<strong>in</strong>g mix<strong>in</strong>g with seawater, <strong>the</strong><br />

oxygen concentration <strong>in</strong> <strong>the</strong> sample should be dist<strong>in</strong>ctly lower<br />

than measured (Fig. 9). The O 2 -pH trend agrees much better<br />

with <strong>the</strong> empirical data as long as only 20 to 40% of <strong>the</strong> endmember<br />

hydrogen contribution is accounted <strong>in</strong> <strong>the</strong> model.<br />

From <strong>the</strong>se computations, it can be estimated that a maximum<br />

hydrogen contribution of 40% of its reference end-member<br />

Fig. 9. Variation of oxygen (l<strong>in</strong>e with crosses), ferrous iron (bold l<strong>in</strong>es)<br />

and hydrogen (bold dotted l<strong>in</strong>e) <strong>in</strong> <strong>the</strong> two scenarios considered <strong>for</strong><br />

<strong>energy</strong> budgets calculation at Ra<strong>in</strong>bow: (a) as function of pH, (b) as<br />

function of temperature.


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

27<br />

change <strong>in</strong> Gibbs free <strong>energy</strong> (ΔG) <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g gradient<br />

(Table 4). Although <strong>the</strong> <strong>for</strong>mation of 2-l<strong>in</strong>e ferrihydrite at<br />

neutral to alkal<strong>in</strong>e pH results <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Gibbs free<br />

<strong>energy</strong> of <strong>the</strong> reaction, <strong>the</strong> less energetic reaction on a molar<br />

basis is <strong>the</strong> oxidation of iron. The conversion of HS − to<br />

elemental sulfur is slightly more energetic. Comparatively, <strong>the</strong><br />

ΔG per mole of electron donor are almost one order of<br />

magnitude higher <strong>for</strong> <strong>the</strong> oxidation of sulfide to sulfate or<br />

methane oxidation to HCO 3 − . The oxidation of hydrogen<br />

constitutes an <strong>in</strong>termediate with a ΔG be<strong>in</strong>g four times lower<br />

than <strong>the</strong> oxidation of methane or sulfide to sulfate.<br />

Multiply<strong>in</strong>g <strong>the</strong>se values with <strong>the</strong> equivalent quantity of<br />

electron donor that can be oxidized per unit mass of solution<br />

enables to assess <strong>the</strong> total amount of <strong>energy</strong> that can be<br />

released <strong>for</strong> a given reaction (ΔG(tot) <strong>in</strong> kJ kg − 1 ). Consequently,<br />

<strong>the</strong> variation of ΔG(tot) is important over <strong>the</strong> mix<strong>in</strong>g<br />

range, show<strong>in</strong>g a progressive <strong>in</strong>crease up to a maximum value<br />

be<strong>for</strong>e decreas<strong>in</strong>g due to oxygen limitation (Fig. 10). For <strong>the</strong><br />

Ra<strong>in</strong>bow site hydrogen-related assumptions <strong>in</strong>fluence <strong>the</strong><br />

overall available <strong>energy</strong>-budget to a large extend. If H 2 is<br />

considered to reach equilibrium with oxygen <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g<br />

zone, <strong>the</strong> oxygen boundary would be slightly below 30 °C<br />

(Fig. 9b). In <strong>the</strong>se conditions, <strong>the</strong> maximum <strong>energy</strong> yield is<br />

reached around 15 °C <strong>for</strong> ferrous iron oxidation. The available<br />

<strong>energy</strong> budgets from <strong>the</strong> oxidation of methane or sulfide to<br />

sulfate reach <strong>the</strong>ir maximum at around 20–24 °C. Still, <strong>the</strong>y<br />

rema<strong>in</strong> half <strong>the</strong> <strong>energy</strong> available from iron. In <strong>the</strong> second<br />

scenario, hydrogen is preserved <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone and <strong>the</strong><br />

oxygen level rema<strong>in</strong>s much higher. Under <strong>the</strong>se conditions, <strong>the</strong><br />

largest <strong>energy</strong> can still be derived from <strong>the</strong> oxidation of iron II<br />

and its maximum shifted to slightly higher temperature (about<br />

20–22 °C if an oxygen boundary at 100 °C is assumed).<br />

Hydrogen constitutes ano<strong>the</strong>r substantial source of <strong>energy</strong> <strong>in</strong><br />

this case. The <strong>energy</strong> available from <strong>the</strong> oxidation of hydrogen<br />

lies <strong>in</strong> <strong>the</strong> same order of magnitude, at least up to 20 °C. The<br />

provided <strong>energy</strong> <strong>in</strong>creases up to 25 °C where it reaches a<br />

maximum. The <strong>energy</strong> budget <strong>for</strong> sulfide and methane<br />

oxidation are significantly lower. They are not limited by <strong>the</strong><br />

availability of oxygen below 30 °C.<br />

At TAG <strong>the</strong>se <strong>energy</strong> maxima are shifted above 30 °C,<br />

when <strong>the</strong> maximum oxygen limit <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone is<br />

arbitrary set at 100 °C (Fig. 10c). If this boundary is moved<br />

toward lower temperature, an <strong>energy</strong> maximum may be<br />

reached below 30 °C. In any case, <strong>the</strong> conversion of sulfide to<br />

sulfate would be <strong>the</strong> most energetic process. Iron oxidation<br />

Table 4<br />

M<strong>in</strong>imum and maximum ΔG values calculated <strong>for</strong> <strong>the</strong> mix<strong>in</strong>g zone <strong>for</strong><br />

Ra<strong>in</strong>bow and TAG<br />

T<br />

(°C)<br />

FeII/<br />

FeOOH<br />

HS − /<br />

2−<br />

SO 4<br />

CH4/<br />

−<br />

HCO 3<br />

HS − /<br />

S°<br />

H 2 /<br />

H 2 O<br />

TAG 2.2 −69.5 −757.3 −786.5 −78.3 –<br />

32 −69.1 −740.2 −770.0 −93.3 –<br />

Ra<strong>in</strong>bow 3.9 −77.8 −776.8 −796.2 −94.2 −225.9<br />

32 −68.4 −746.1 −772.0 −95.7 −229.7<br />

Fig. 10. Potential <strong>energy</strong> yield (per kilogram fluid) <strong>for</strong> <strong>the</strong> accounted<br />

chemosyn<strong>the</strong>tic processes <strong>in</strong> <strong>the</strong> mild part of <strong>the</strong> hydro<strong>the</strong>rmal fluidmix<strong>in</strong>g<br />

zone as a function of temperature at Ra<strong>in</strong>bow (1rst scenario:<br />

hydrogen equilibrates with O 2 <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone (a), 2nd scenario:<br />

hydrogen rema<strong>in</strong>s available <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone (b)), and TAG (c).<br />

still constitutes a substantial <strong>energy</strong> source. Methane is not<br />

enriched <strong>in</strong> TAG end-member and should <strong>the</strong>re<strong>for</strong>e not<br />

significantly contribute to <strong>the</strong> <strong>energy</strong> budget.<br />

4. Discussion<br />

4.1. Availability of electron donors and oxygen <strong>in</strong> <strong>the</strong><br />

mix<strong>in</strong>g zone<br />

The comparison of empirical data and modeled<br />

trends provides quantitative <strong>in</strong><strong>for</strong>mation on <strong>the</strong> availability<br />

of electron donors and oxygen with respect to <strong>the</strong><br />

conservative end-member dilution. At Ra<strong>in</strong>bow, contents<br />

of <strong>the</strong> electron donors, are only about 77% <strong>for</strong><br />

ferrous iron and 40% sulfide and methane with regard to<br />

<strong>the</strong>ir reference end-member. At TAG, <strong>the</strong> distribution of


28 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

iron II <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone may be conservative, but<br />

sulfide appears depleted by about 80% of its endmember<br />

value. These results suggest that <strong>the</strong> shrimp<br />

environment is fuelled by a secondary fluid source from<br />

which chemical compounds have been partly removed<br />

by precipitation or <strong>microbial</strong> consumption as shown <strong>in</strong><br />

o<strong>the</strong>r hydro<strong>the</strong>rmal environments (Le Bris et al., 2003;<br />

Von Damm and Lilley, 2004).<br />

The oxygen variation with pH at Ra<strong>in</strong>bow substantially<br />

departs from conservative mix<strong>in</strong>g. These data<br />

provided clues to identify <strong>the</strong> redox couple that could<br />

reach equilibrium with O 2 /H 2 O, ei<strong>the</strong>r <strong>in</strong> situ or dur<strong>in</strong>g<br />

<strong>the</strong> sample recovery process. As previously documented<br />

(Le Bris et al., 2006), sulfide appears to be oxidized<br />

dur<strong>in</strong>g sample recovery. This result is consistent with<br />

<strong>the</strong> fast sulfide oxidation rate <strong>in</strong> presence of Fe II (Zhang<br />

and Millero, 1994). A similar assumption can be done<br />

<strong>for</strong> hydrogen, which is a major constituent of Ra<strong>in</strong>bow<br />

fluids. Its presence <strong>in</strong> <strong>the</strong> source fluid is suggested by<br />

oxygen content <strong>in</strong> <strong>the</strong> samples, which is lower than it<br />

could be expla<strong>in</strong>ed by sulfide oxidation. A maximum<br />

amount of 40% hydrogen <strong>in</strong> <strong>the</strong> source fluid with<br />

respect to <strong>the</strong> reference end-member (Charlou et al.,<br />

2002) was estimated from <strong>the</strong>se data, assum<strong>in</strong>g that iron<br />

oxidation is k<strong>in</strong>etically <strong>in</strong>hibited.<br />

The presence of hydrogen <strong>in</strong> diffuse fluids has been<br />

reported by Butterfield et al. (2004) and Von Damm and<br />

Lilley (2004). It is not surpris<strong>in</strong>g that hydrogen could be<br />

enriched <strong>in</strong> <strong>the</strong> secondary fluid source at Ra<strong>in</strong>bow, as it<br />

is highly enriched <strong>in</strong> <strong>the</strong> hydro<strong>the</strong>rmal end-member<br />

fluid. However, H 2 may be completely oxidized <strong>in</strong> <strong>the</strong><br />

oxic part of <strong>the</strong> mix<strong>in</strong>g zone, as long as <strong>the</strong> reaction is<br />

fast enough to be completed <strong>in</strong> this dynamic environment.<br />

Alternatively, hydrogen may be ma<strong>in</strong>ta<strong>in</strong>ed to a<br />

substantial level if <strong>the</strong> renewal rate is high enough to<br />

balance its fast oxidation. Two scenarios were proposed<br />

on this basis. In order to draw conclusions on <strong>the</strong><br />

accuracy of ei<strong>the</strong>r of <strong>the</strong>m it would be required to<br />

per<strong>for</strong>m hydrogen <strong>in</strong> situ measurements. It is <strong>in</strong>deed<br />

unlikely that H 2 could rema<strong>in</strong> stable <strong>for</strong> hours <strong>in</strong><br />

oxygenated fluid samples. There<strong>for</strong>e, hydrogen determ<strong>in</strong>ation<br />

from samples would always be afflicted with<br />

imprecision. Comparison of <strong>in</strong> situ oxygen measurements<br />

with discrete sample contents would provide<br />

fur<strong>the</strong>r clues to assess <strong>the</strong> presence of hydrogen <strong>in</strong> <strong>the</strong><br />

medium. Un<strong>for</strong>tunately <strong>the</strong>se data are lack<strong>in</strong>g to date.<br />

4.2. Potential chemosyn<strong>the</strong>tic <strong>energy</strong> pathways<br />

In both scenarios, iron oxidation appears as a major<br />

<strong>energy</strong> source <strong>in</strong> <strong>the</strong> mild part of <strong>the</strong> mix<strong>in</strong>g zone at<br />

Ra<strong>in</strong>bow. This peculiar result is due to <strong>the</strong> exceptional<br />

enrichment of iron <strong>in</strong> <strong>the</strong> local vent fluid. The enrichment<br />

of hydrogen <strong>in</strong> <strong>the</strong> source fluid could have as well important<br />

biogeochemical implications. In <strong>the</strong> first scenario,<br />

assum<strong>in</strong>g that hydrogen is fully oxidized <strong>in</strong> <strong>the</strong><br />

mix<strong>in</strong>g zone, <strong>the</strong> O 2 availability will be limited to <strong>the</strong> low<br />

temperature range (b25 °C). In <strong>the</strong> second scenario<br />

hydrogen rema<strong>in</strong>s available <strong>in</strong> <strong>the</strong> whole mix<strong>in</strong>g zone.<br />

The energetical yield <strong>for</strong> hydrogen oxidizers would be <strong>in</strong><br />

<strong>the</strong> same range as <strong>for</strong> iron oxidizers below 18 °C and<br />

slightly more above. This last scenario provides an upper<br />

estimate of <strong>the</strong> <strong>energy</strong> available as <strong>the</strong> hydrogen and<br />

oxygen contents where maximized <strong>in</strong> this assumption. In<br />

comparison, sulfide and methane only appear as secondary<br />

<strong>energy</strong> <strong>sources</strong> <strong>for</strong> <strong>the</strong> shrimp epibionts at Ra<strong>in</strong>bow.<br />

In contrast, at <strong>the</strong> TAG site, total sulfide oxidation to<br />

sulfate appears as <strong>the</strong> dom<strong>in</strong>ant potential <strong>energy</strong> source<br />

below 30 °C. In this <strong>the</strong>rmal range, <strong>the</strong> <strong>energy</strong> that<br />

would be available <strong>for</strong> chemosyn<strong>the</strong>tic microbes us<strong>in</strong>g<br />

iron II is much lower but still substantial. Methane is<br />

only a m<strong>in</strong>or component of TAG fluids and should not<br />

constitute a significant electron donor <strong>for</strong> <strong>primary</strong><br />

<strong>production</strong>. The <strong>energy</strong> that could be supplied from<br />

<strong>the</strong> oxidation of <strong>the</strong>se reduced compounds <strong>in</strong> <strong>the</strong> shrimp<br />

habitat at <strong>the</strong> two Mid-Atlantic Ridge vent sites thus<br />

depict very different patterns.<br />

4.3. Energetic and physico-chemical characteristics of<br />

<strong>the</strong> shrimp habitat<br />

Although <strong>the</strong> shrimp are highly mobile, <strong>the</strong>y aggregate<br />

<strong>in</strong> swarms of several thousand of <strong>in</strong>dividuals with<strong>in</strong><br />

very sharp <strong>the</strong>rmal limits. Similar temperature ranges<br />

have been determ<strong>in</strong>ed <strong>for</strong> two swarms at two locations at<br />

<strong>the</strong> Ra<strong>in</strong>bow site <strong>in</strong> 2001, and aga<strong>in</strong> <strong>in</strong> a swarm at one of<br />

<strong>the</strong>se location <strong>in</strong> 2005 (Table 3). Slightly lower data<br />

were obta<strong>in</strong>ed <strong>for</strong> a swarm at TAG.<br />

This result is generally consistent with <strong>the</strong> <strong>the</strong>rmal<br />

ranges reported <strong>in</strong> <strong>the</strong> literature <strong>for</strong> <strong>the</strong> R. exoculata<br />

habitat, but it does not confirm <strong>the</strong> highest values<br />

presented <strong>in</strong> some studies (Table 3). Results acquired at<br />

Ra<strong>in</strong>bow and at TAG show a certa<strong>in</strong> homogeneity. This<br />

suggests that <strong>the</strong> <strong>the</strong>rmal range def<strong>in</strong>ed <strong>in</strong> this study may<br />

be representative <strong>for</strong> Rimicaris swarms. Even though <strong>the</strong><br />

presence of shrimp at higher temperatures cannot be<br />

ruled out, Ravaux et al. (2003) demonstrated that <strong>the</strong><br />

shrimp expresses a biochemical response to <strong>the</strong>rmal<br />

stress above 25 °C. We believe that <strong>the</strong> present study<br />

provides a more accurate def<strong>in</strong>ition of <strong>the</strong> <strong>the</strong>rmal<br />

conditions <strong>in</strong> <strong>the</strong> Rimicaris habitat than early studies.<br />

Temperature ranges were carefully assessed from large<br />

data sets and followed by close-up video-control <strong>in</strong> order<br />

to ensured <strong>the</strong> precise location of <strong>the</strong> probe tip. These


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

29<br />

short-term studies however may not fully reflect <strong>the</strong><br />

temporal temperature variation pattern with<strong>in</strong> a swarm.<br />

Over <strong>the</strong>se narrow ranges, <strong>the</strong> potential <strong>energy</strong> <strong>sources</strong><br />

available to <strong>the</strong> epibionts <strong>for</strong> <strong>the</strong> chemolithoautotrophic<br />

CO 2 fixation is unambiguous. The conditions with<strong>in</strong> <strong>the</strong><br />

shrimp habitat at Ra<strong>in</strong>bow appear energetically optimal<br />

<strong>for</strong> chemolithoautotrophic growth rely<strong>in</strong>g on iron II, and<br />

potentially on hydrogen oxidation. At TAG, <strong>the</strong> oxidation<br />

of sulfide provides <strong>the</strong> ma<strong>in</strong> <strong>energy</strong> budgets. These<br />

bioenergetic considerations support previous studies that<br />

have suggested iron oxidation as an important metabolic<br />

pathway, based on <strong>the</strong> analysis of iron oxide deposits <strong>in</strong><br />

<strong>the</strong> branchial cavity of shrimp sampled at Ra<strong>in</strong>bow<br />

(Gloter et al., 2004; Zb<strong>in</strong>den et al. 2004). The fast abiotic<br />

oxidation of iron <strong>in</strong> alkal<strong>in</strong>e to neutral media at ambient<br />

temperature (∼25 °C) is expected to limit <strong>the</strong> <strong>microbial</strong>ly<br />

mediated conversion to low O 2 conditions. Accord<strong>in</strong>g to<br />

<strong>the</strong> temperature dependence of <strong>the</strong> k<strong>in</strong>etic rate constant<br />

(Millero et al. 1987), this effect should not be limit<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> tepid Rimicaris habitat.<br />

Although <strong>the</strong> presence of H 2 <strong>in</strong> <strong>the</strong> shrimp environment<br />

at Ra<strong>in</strong>bow rema<strong>in</strong>s speculative, it is <strong>in</strong>terest<strong>in</strong>g to<br />

note that <strong>the</strong> available <strong>energy</strong> budget provided by<br />

hydrogen oxidation could be <strong>in</strong> <strong>the</strong> same range as <strong>the</strong><br />

one liberated by <strong>the</strong> oxidation of iron. Reaction k<strong>in</strong>etics<br />

is a determ<strong>in</strong>ant criteria that should be <strong>in</strong>vestigated <strong>in</strong><br />

order to fur<strong>the</strong>r asses <strong>the</strong> importance of this electron<br />

donor. The commonly described electron donors <strong>in</strong><br />

chemosyn<strong>the</strong>tic ecosystems, i.e., sulfide and methane,<br />

do not represent <strong>the</strong> predom<strong>in</strong>ant <strong>energy</strong> <strong>sources</strong> at<br />

Ra<strong>in</strong>bow. Still, <strong>the</strong>ir oxidation may constitute a possible<br />

chemosyn<strong>the</strong>tic pathway, as some <strong>energy</strong> can be derived,<br />

although <strong>the</strong> yield is much lower than <strong>for</strong> iron and<br />

hydrogen oxidation.<br />

5. Conclusion<br />

Estimations on <strong>the</strong> <strong>energy</strong> budget as a function of <strong>the</strong><br />

mix<strong>in</strong>g ratio suggested that chemolithoautotrophic <strong>primary</strong><br />

producers may f<strong>in</strong>d optimal conditions <strong>for</strong> growth<br />

<strong>in</strong> association with highly active shrimps that aggregate<br />

<strong>in</strong> swarms <strong>in</strong> <strong>the</strong> hydro<strong>the</strong>rmal fluid-seawater mix<strong>in</strong>g<br />

<strong>in</strong>terface. This study confirmed that <strong>the</strong> chemical <strong>energy</strong><br />

<strong>sources</strong> that could be utilized by <strong>primary</strong> producers<br />

associated with R. exoculata differ substantially between<br />

Ra<strong>in</strong>bow and TAG, even though <strong>the</strong>y colonize<br />

similar habitats. Although <strong>the</strong> shrimps were observed <strong>in</strong><br />

comparable narrow temperature ranges, <strong>the</strong>y may harbor<br />

a highly diversified <strong>microbial</strong> epiflora at different sites,<br />

depend<strong>in</strong>g on <strong>the</strong> hydro<strong>the</strong>rmal fluid chemistry. Consideration<br />

based on <strong>the</strong>rmodynamic constra<strong>in</strong>ts need to<br />

be fur<strong>the</strong>r supported by <strong>microbial</strong> studies s<strong>in</strong>ce <strong>the</strong> most<br />

energetic processes are not necessarily <strong>the</strong> one which<br />

dom<strong>in</strong>antly fuel <strong>the</strong> shrimp epibionts. Rimicaris shrimps<br />

ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong>mselves <strong>in</strong> a quite narrow environmental<br />

range with<strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone. The electron donors that<br />

are commonly described to fuel chemosyn<strong>the</strong>tic growth,<br />

like sulfide and methane, do not appear as <strong>the</strong> ma<strong>in</strong><br />

<strong>energy</strong> <strong>sources</strong> at Ra<strong>in</strong>bow. Here, <strong>the</strong> oxidation of iron<br />

yields <strong>the</strong> maximum <strong>energy</strong> <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone. A firstorder<br />

calculation revealed that hydrogen could act as<br />

well as a major electron donor <strong>for</strong> CO 2 -fixation <strong>in</strong> <strong>the</strong><br />

shrimp habitat, as long as its residence time is long<br />

enough to allow <strong>microbial</strong> uptake. Field studies are still<br />

required to provide a direct evidence of this hypo<strong>the</strong>sis<br />

and to estimate to what extend hydrogen will be preserved<br />

<strong>in</strong> <strong>the</strong> mix<strong>in</strong>g zone.<br />

Acknowledgments<br />

This work was f<strong>in</strong>ancially supported by IFREMER,<br />

University Pierre and Marie Curie-Paris 6, and <strong>the</strong><br />

European Community (PhD grant to C.S. / MOMARNET<br />

RTN contract 2004-5050026). The authors would like<br />

to particularly acknowledge <strong>the</strong> chief scientists of <strong>the</strong><br />

research cruises, Pierre-Marie Sarrad<strong>in</strong> <strong>for</strong> ATOS and<br />

Anne Godfroy <strong>for</strong> EXOMAR, <strong>the</strong> capta<strong>in</strong>s and crews of<br />

<strong>the</strong> RV Atalante and <strong>the</strong> Victor 6000 operation group, as<br />

well as <strong>in</strong>strumentation eng<strong>in</strong>eers and technicians <strong>for</strong> <strong>the</strong>ir<br />

essential support at sea.<br />

References<br />

Anderson, L.M., Halary, S., Lechaire, J.-P., Boudier, T., Frebourg, G.,<br />

Marco, S., Zb<strong>in</strong>den, M., Gaill, F., <strong>in</strong> press. Tomography of<br />

bacteria-m<strong>in</strong>eral associations with<strong>in</strong> <strong>the</strong> deep sea hydro<strong>the</strong>rmal<br />

vent shrimp Rimicaris exoculata. C.R. Chimie.<br />

Bach, W., Edwards, K.J., 2003. Iron and sulfide oxidation with<strong>in</strong> <strong>the</strong><br />

basaltic ocean crust: Implifications <strong>for</strong> chemolithoautotrophic<br />

<strong>microbial</strong> biomass <strong>production</strong>. Geochim. Cosmochim. Acta 67<br />

(20), 3871–3887.<br />

Benn<strong>in</strong>g, L.G., Wilk<strong>in</strong>, R.T., Barnes, H.L., 2000. Reaction pathways <strong>in</strong><br />

<strong>the</strong> Fe–S system below 100 degrees C. Chem. Geol. 167, 25–51.<br />

Butterfield, D.A., Roe, K.K., Lilley, M.D., Huber, J.A., Baross, J.A.,<br />

Embley, R.W., Massoth, G.J., 2004. Mix<strong>in</strong>g, reaction and<br />

<strong>microbial</strong> activiry <strong>in</strong> <strong>the</strong> sub-seafloor revealed by temporal and<br />

spatial variation <strong>in</strong> diffuse flow vents at axial volcano. In: Wilock,<br />

W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A., Cary, S.C.<br />

(Eds.), The subseafloor biosphere at Mid-Ocean ridges. American<br />

Geophysical Union, Wash<strong>in</strong>gton, DC.<br />

Cavanaugh, C.M., McK<strong>in</strong>ess, Z., Newton, I.L.G., Stewart, F., 2006.<br />

Mar<strong>in</strong>e chemosyn<strong>the</strong>tic symbioses. In: Dwork<strong>in</strong>, M., Falkow, S.,<br />

Rosenberg, E., Schleifer, K.-H., Stackebrandt, E. (Eds.), The<br />

prokaryotes: A handbook on <strong>the</strong> biology of bacteria. Spr<strong>in</strong>ger, Verlag.<br />

Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N.,<br />

2002. Geochemistry of high H 2 and CH 4 vent fluids issu<strong>in</strong>g from<br />

ultramafic rocks at <strong>the</strong> Ra<strong>in</strong>bow hydro<strong>the</strong>rmal field (36°14′N,<br />

MAR). Chem. Geol. 191, 345–359.


30 C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

Childress, J.J., Fisher, C.R., 1992. The biology of hydro<strong>the</strong>rmal vent<br />

animals: physiology, biochemistry, and autotrophic symbioses.<br />

Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441.<br />

Cornell, R.M., Schwertmann, U., 2003. The Iron oxides – Structure,<br />

properties, reactions occurrences and uses, 2nd edition. Wiley-<br />

VCH, We<strong>in</strong>heim.<br />

Desbruyères, D., Almeida, A., Biscoito, M., Comtet, T., Khripounoff,<br />

A., Le Bris, N., Sarrad<strong>in</strong>, P.M., Segonzac, M., 2000. A review of<br />

<strong>the</strong> distribution of hydro<strong>the</strong>rmal vent communities along <strong>the</strong><br />

nor<strong>the</strong>rn Mid-Atlantic Ridge: dispersal vs. environmental controls<br />

Hydrobiologia 440 (1–3), 201–216.<br />

Desbruyères, D., Biscoito, M., Caprais, J.-C., Colaco, A., Comtet, T.,<br />

Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K.,<br />

Riso, R., Sarr<strong>in</strong>, P.-M., Segonzac, M., Vangriesheim, A., 2001.<br />

Variations <strong>in</strong> deep-sea hydro<strong>the</strong>rmal vent communities on <strong>the</strong> Mid-<br />

Atlantic Ridge near <strong>the</strong> Azores plateau. Deep-Sea Res. I 48,<br />

1325–1346.<br />

Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Jove Colon,<br />

C.F., Donval, J.P., Fouquet, Y., Prieur, D., Appriou, P., 2002. The<br />

ra<strong>in</strong>bow vent f luids (36_14VN, MAR): <strong>the</strong> <strong>in</strong>fluence of ultramafic<br />

rocks and phase separation on trace metal content <strong>in</strong> Mid-Atlantic<br />

Ridge hydro<strong>the</strong>rmal fluids. Chem. Geol. 184, 37–48.<br />

Edmonds, H.N., German, C.R., Green, D.R.H., Huh, Y., Gamo, T.,<br />

Edmond, J.M., 1996. Cont<strong>in</strong>uation of <strong>the</strong> hydro<strong>the</strong>rmal fluid<br />

chemistry time series at TAG, and <strong>the</strong> effects of ODP drill<strong>in</strong>g.<br />

Geophys. Res. Lett. 23 (23), 3487–3489.<br />

Edwards, K.J., Rogers, D.R., Wirsen, C.O., McCollom, T.M., 2003.<br />

Isolation and characterization of novel psychrophilic, neutrophilic,<br />

Fe-oxidiz<strong>in</strong>g, chemolithoautotrophic α-and γ-Proteobacteria from<br />

<strong>the</strong> deep sea. Appl. Environ. Microb. 69 (5), 2906–2913.<br />

Emerson, D., Moyer, C.L., 2002. Neutrophilic Fe-oxidiz<strong>in</strong>g bacteria<br />

are abundant at <strong>the</strong> Loihi seamount hydro<strong>the</strong>rmal vents and play a<br />

major role <strong>in</strong> Fe oxide deposition. Appl. Environ. Microbiol. 68<br />

(6), 3085–3093.<br />

Gebruk, A.V., Pimenov, N.V., Savvichev, A.S., 1993. Feed<strong>in</strong>g<br />

specialization of bresiliid shrimps <strong>in</strong> <strong>the</strong> TAG site hydro<strong>the</strong>rmal<br />

community. Mar. Ecol., Prog. Ser. 98, 247–253.<br />

Gebruk, A.V., Southward, E.C., Kennedy, H., Southward, A.J., 2000. Food<br />

<strong>sources</strong>, behaviour, and distribution of hydro<strong>the</strong>rmal vent shrimp at <strong>the</strong><br />

Mid-Atlantic-Ridge. J. Mar. Biol. Assoc. UK 80, 485–499.<br />

Geret, F., Riso, R., Sarrad<strong>in</strong>, P.M., Caprais, J.C., Cosson, P., 2002.<br />

Metal bioaccumulation and storage <strong>for</strong>ms <strong>in</strong> <strong>the</strong> shrimp, Rimicaris<br />

exoculata, from <strong>the</strong> Ra<strong>in</strong>bow hydro<strong>the</strong>rmal field (Mid-Atlantic-<br />

Ridge); prelim<strong>in</strong>ary approach to <strong>the</strong> fluid-organism relationship.<br />

Cah. Biol. Mar. 43, 43–52.<br />

Gloter, A., Zb<strong>in</strong>den, M., Guyot, F., Gaill, F., Colliex, C., 2004. TEM-<br />

EELS study of natural ferrihydrite from geological-biological<br />

<strong>in</strong>teractions <strong>in</strong> hydro<strong>the</strong>rmal systems. Earth Planet. Sci. Lett. 222,<br />

947–957.<br />

Jannasch, H.W., Mottle, M.J., 1985. Geomicrobiology of deep-sea<br />

hydro<strong>the</strong>rmal vents. Science 229, 717–725.<br />

Jannasch, H.W., 1995. Life at <strong>the</strong> seafloor. Nature 374, 676–677.<br />

Johnson, K.S., Beelher, C.L., Sakamoto-Arnold, C.M., Childress, J.J.,<br />

1986. In situ measurements of chemical distributions <strong>in</strong> a deep-sea<br />

hydro<strong>the</strong>rmal vent field. Science 231, 1139–1141.<br />

Le Bris, N., Sarrad<strong>in</strong>, P.M., Birot, D., Alayse-Danet, A.M., 2000. A<br />

new chemical analyzer <strong>for</strong> <strong>in</strong>-situ measurement of nitrate and total<br />

sulfide over hydro<strong>the</strong>rmal vent biological communities. Mar.<br />

Chem. 72 (1), 1–15.<br />

Le Bris, N., Sarrad<strong>in</strong>, P.-M., Pennec, S., 2001. A new deep-sea probe<br />

<strong>for</strong> <strong>in</strong> situ pH measurement <strong>in</strong> <strong>the</strong> environment of hydro<strong>the</strong>rmal<br />

vent biological communities. Deep-Sea Res. I. 48, 1941–1951.<br />

Le Bris, N., Sarrad<strong>in</strong>, P.M., Caprais, J.C., 2003. Contrasted sulphide<br />

chemistries <strong>in</strong> <strong>the</strong> environment of 13°N EPR vent fauna. Deep-Sea<br />

Res. I 50, 737–747.<br />

Le Bris, N., Zb<strong>in</strong>den, M., Gaill, F., 2005. Processes controll<strong>in</strong>g <strong>the</strong><br />

physico-chemical micro-environments associated with Pompeii<br />

worms. Deep-Sea Res. I 52 (6), 1071–1083.<br />

Le Bris, N., Govenar, B., Le Gall, C., Fisher, C.R., 2006. Variability of<br />

physico-chemical conditions <strong>in</strong> 9°50′N EPR diffuse flow vent<br />

habitats. Mar. Chem. 98 (2–4), 167–182.<br />

Lu<strong>the</strong>r, G.W., Rozan, T.F., Taillefert, M., Nuzzio, D.B., Di Meo, C.,<br />

Shank, T.M., Lutz, R.A., Cary, C., 2001. Chemical speciation<br />

drives hydro<strong>the</strong>rmal vent ecology. Nature 410, 813–816.<br />

Majzlan, J., Navrotsky, A., Schwertmann, U., 2004. Thermodynamics<br />

of iron oxides: Part III. Enthalpies of <strong>for</strong>mation and stability of<br />

ferrihydrite (Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8),<br />

and Fe2O3. Geochim. et Cosmochim. Acta 68 (5), 1049–1059.<br />

McCollom, T.M., Shock, E.L., 1997. <strong>Geochemical</strong> constra<strong>in</strong>ts on<br />

chemolithoautotrophic metabolism by microorganisms <strong>in</strong> seafloor<br />

hydro<strong>the</strong>rmal systems. Geochim. Cosmochim. Acta 61 (20),<br />

4375–4391.<br />

McCollom, T.M., 2000. <strong>Geochemical</strong> constra<strong>in</strong>ts on <strong>primary</strong> productivity<br />

<strong>in</strong> submar<strong>in</strong>e hydro<strong>the</strong>rmal vent plumes. Deep-Sea Res. I 47,<br />

85–101.<br />

Millero, F.J., Sotolongo, S., Izaguirre, M., 1987. The oxidation<br />

k<strong>in</strong>etics of Fe(II) <strong>in</strong> seawater. Geochim. Cosmochim. Acta 51,<br />

793–801.<br />

Parkhust, D.L., Appelo, T., 1999. User's guide to PHREEQC – a<br />

computer program <strong>for</strong> speciation, batch reaction, one dimensional<br />

transport, and <strong>in</strong>verse geochemical modell<strong>in</strong>g. U.S. Geol. Survey.<br />

water-resource Invest. (http://www.brr.cr.usgs.gov/projets/<br />

GWC_coupled/phreeqc).<br />

Polz, M.F., Cavanaugh, C.M., 1995. Dom<strong>in</strong>ance of one bacterial<br />

phylotype at a Mid-Atlantic Ridge hydro<strong>the</strong>rmal vent site. Proc.<br />

Natl. Acad. Sci. USA. 92 (16), 7232–7236.<br />

Ravaux, J., Gaill, F., Le Bris, N., Sarrad<strong>in</strong>, P.M., Jollivet, D., Shillito,<br />

B., 2003. Heat-shock response and temperature resistance <strong>in</strong> <strong>the</strong><br />

deep-sea vent shrimp Rimicaris exoculata. J. Exp. Biol. 206,<br />

20345–20354.<br />

Rickard, D., Morse, J.W., 2005. Acid volatile sulfide (AVS). Mar. Chem.<br />

97 (3–4), 141–197.<br />

Rona, P.A., Kl<strong>in</strong>khammer, G., Nelsen, T.A., Trefry, J.H., Elderfield,<br />

H., 1986. Black smokers, massive sulfides and vent biota at <strong>the</strong><br />

Mid-Atlantic-Ridge. Nature 321, 33–37.<br />

Sarrad<strong>in</strong>, P.M., Caprais, J.C., Briand, P., Gaill, F., Shillito, B.,<br />

Desbruyères, D., 1998. Chemical and <strong>the</strong>rmal description of <strong>the</strong><br />

environment of <strong>the</strong> Genesis hydro<strong>the</strong>rmal vent community (13°N,<br />

EPR). Cah. Biol. Mar. 39, 159–167.<br />

Sarrad<strong>in</strong>, P.M., Le Bris, N., Le Gall, C., Rodier, P., 2005. Fe analysis<br />

by <strong>the</strong> ferroz<strong>in</strong>e method: adaptation to FIA towards <strong>in</strong> situ analysis<br />

<strong>in</strong> hydro<strong>the</strong>rmal environment. Talanta 66 (5), 1131–1138.<br />

Segonzac, M., de Sa<strong>in</strong>t Laurent, M., Casanova, B., 1993. L’énigme du<br />

comportement trophique des crevettes Alv<strong>in</strong>ocarididae des sites<br />

hydro<strong>the</strong>rmaux de la dorsale médio-atlantique. Cah. Biol. Mar. 34,<br />

535–571.<br />

Shock, E.L., Holland, M.E., 2004. <strong>Geochemical</strong> <strong>energy</strong> <strong>sources</strong> that<br />

support <strong>the</strong> subsurface biosphere. In: Wilock, W.S.D., DeLong, E.F.,<br />

Kelley, D.S., Baross, J.A., Cary, S.C. (Eds.), The subseafloor<br />

biosphere at Mid-Ocean ridges. American Geophysical Union,<br />

Wash<strong>in</strong>gton DC, pp. 153–166.<br />

Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H.,<br />

Nealson, K.H., Hoirikoshi, K., 2004. Geochmical and microbiological<br />

evidence <strong>for</strong> a hydrogen-based, hyper<strong>the</strong>rmophilic


C. Schmidt et al. / Mar<strong>in</strong>e Chemistry 108 (2008) 18–31<br />

31<br />

subsurface lithoautotrophic <strong>microbial</strong> ecosystem (HyperSLIME)<br />

beneath an active deep-sea hydro<strong>the</strong>rmal field. Extremophiles 8,<br />

269–282.<br />

Takai, K., Campbell, B.J., Cary, S.C., Suzuki, M., Oida, H., Nunoura,<br />

T., Hirayama, H., Nakagawa, S., Suzuki, Y., Inagaki, F., Horikoshi,<br />

K., 2005. Enzymatic and genetic characterization of carbon and<br />

<strong>energy</strong> metabolisms by deep-sea hydro<strong>the</strong>rmal chemolithoautotrophic<br />

isolates of epsilonproteobacteria. Appl. Environ. Microbiol.<br />

71, 7310–7320.<br />

Theberge, S.M., Lu<strong>the</strong>r, G.W., 1997. Determ<strong>in</strong>ation of <strong>the</strong> electrochemical<br />

properties of a soluble aqueous FeS species present <strong>in</strong><br />

sulfidic solutions. Aquatic Geochem. 3, 191–211.<br />

Von Damm, K.L., Lilley, M.D., 2004. Diffuse flow hydro<strong>the</strong>rmal<br />

fluids from 9°50′N East Pacific Rise: orig<strong>in</strong>, evolution and<br />

biogeochemical controls. In: Wilock, W.S.D., DeLong, E.F.,<br />

Kelley, D.S., Baross, J.A., Cary, S.C. (Eds.), The subseafloor<br />

biosphere at Mid-Ocean ridges. American Geophysical Union,<br />

Wash<strong>in</strong>gton DC.<br />

Wirsen, C.O., Jannasch, H.W., Molyneaux, S.J., 1993. Chemosyn<strong>the</strong>tic<br />

<strong>microbial</strong> activity at Mid-Atlantic-Ridge hydro<strong>the</strong>rmal vent<br />

sites. J. Geophys. Res. 98 (B6), 9693–9703.<br />

Ziel<strong>in</strong>ski, F., Pape, T., Wenzhöfer, F., Seifert, R., Dubilier, N., 2005.<br />

Hydrogen may be an <strong>energy</strong> source <strong>for</strong> endosymbiotic bacteria of<br />

<strong>the</strong> vent mussel Bathymodiolus puteoserpentis. EOS Trans. AGU<br />

86 (52) (Fall Meet. Suppl., abstract OS33A-1456).<br />

Zb<strong>in</strong>den, M., Le Bris, N., Gaill, F., Compère, P., 2004. Distribution of<br />

bacteria and associated m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> gill chamber of <strong>the</strong> vent<br />

shrimp Rimicaris exoculata and related biogeochemical processes.<br />

Mar. Ecol. Prog. Ser. 284, 237–251.<br />

Zhang, J.Z., Millero, F.J., 1994. Investigation of metal sulfide<br />

complexes <strong>in</strong> sea-water us<strong>in</strong>g cathotic stripp<strong>in</strong>g square-wave<br />

voltammetry. Anal. Chim. Acta 284 (3), 497–504.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!