26.06.2014 Views

N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H ...

N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H ...

N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Happ et al.<br />

TABLE 3. Photophysical Data of the <str<strong>on</strong>g>D<strong>on</strong>or</str<strong>on</strong>g>- <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Acceptor</str<strong>on</strong>g>-<str<strong>on</strong>g>Type</str<strong>on</strong>g><br />

Lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s<br />

compound λ abs [nm] (ε [10 3 L 3 mol -1 3 cm-1 ]) a λ em [nm] a<br />

5 250 (2), 323 (32), 338 (30) 378<br />

10a 273 (26), 343 (47) - b<br />

10b 271 (30), 315 (33), 338 (21) - b<br />

10c 297 (24), 315 (32), 329 (26) 363<br />

10d 297 (24), 315 (29), 329 (25) 358<br />

12 270 (18), 342 (25) - b<br />

a For all measurements: 10 -6 M soluti<strong>on</strong> (CH 2 Cl 2 ). For emissi<strong>on</strong><br />

measurements: excitati<strong>on</strong> at l<strong>on</strong>gest absorpti<strong>on</strong> wavelength. b No emissi<strong>on</strong><br />

detectable at room temperature.<br />

π*-orbitals (q.v. results of the DFT calculati<strong>on</strong>s). Starting at<br />

-1.8 V all five complexes showed additi<strong>on</strong>al reducti<strong>on</strong> waves<br />

deriving from lig<str<strong>on</strong>g>and</str<strong>on</strong>g>-based (dmbpy <str<strong>on</strong>g>and</str<strong>on</strong>g> triazole lig<str<strong>on</strong>g>and</str<strong>on</strong>g>)<br />

π*-orbitals.<br />

Photophysical Properties. The UV-vis absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

emissi<strong>on</strong> data of the d<strong>on</strong>or- <str<strong>on</strong>g>and</str<strong>on</strong>g> acceptor-type systems are<br />

depicted in Table 3. As expected, lig<str<strong>on</strong>g>and</str<strong>on</strong>g> 10a (nitro-moiety in<br />

the para-positi<strong>on</strong>) revealed the largest bathochromic shift in<br />

the absorpti<strong>on</strong> spectrum, but did not show fluorescence at<br />

room temperature. In c<strong>on</strong>trast to 10a, the d<strong>on</strong>or-system 5 as<br />

well as the acceptor lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s without nitro groups (10c/d)<br />

revealed room temperature emissi<strong>on</strong>. Compound 5 showed<br />

the largest Stokes shift of 3130 cm -1 whereas 10c <str<strong>on</strong>g>and</str<strong>on</strong>g> 10d<br />

featured remarkably small Stokes shifts (10c: 1220 cm -1 ;<br />

10d: 1240 cm -1 ). The reas<strong>on</strong> for the large Stokes shift of 5<br />

was probably caused by the charge transfer nature of the<br />

electr<strong>on</strong>ic transiti<strong>on</strong>.<br />

The optical properties of the heteroleptic ruthenium(II)<br />

complexes are summarized in Table 4. A comm<strong>on</strong> feature of<br />

all complexes was a broad absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> at around 400 to<br />

500 nm, which could be assigned mainly to various metal-tolig<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

charge-transfer (MLCT) transiti<strong>on</strong>s between the ruthenium<br />

metal center <str<strong>on</strong>g>and</str<strong>on</strong>g> either the 4,4 0 -dimethyl-2,2 0 -bipyridine<br />

or the triazole lig<str<strong>on</strong>g>and</str<strong>on</strong>g> (see DFT calculati<strong>on</strong>s). All complexes<br />

possessed extincti<strong>on</strong> coefficients of about 20 000 M -1 3 cm-1 ,<br />

whereas the alkoxy <str<strong>on</strong>g>and</str<strong>on</strong>g> the unsubstituted systems showed<br />

slightly higher values (24 000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 21 000 M -1 3 cm-1 )than<br />

their trifluoromethyl (18 000 M -1 3 cm-1 )orevennitrocounterparts<br />

(12 000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 13 000 M -1 3 cm-1 ). Between 300 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

400 nm, the complexes investigated herein exhibited different<br />

absorpti<strong>on</strong> behavior c<strong>on</strong>cerning their wavelength maxima <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> shape. Therefore, this regi<strong>on</strong> seemed to be dominated by<br />

intralig<str<strong>on</strong>g>and</str<strong>on</strong>g> (IL) transiti<strong>on</strong>s, namely located at the triazole lig<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

A comparis<strong>on</strong> with the respective absorpti<strong>on</strong> spectra of triazole<br />

lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Table 3) supported this assumpti<strong>on</strong>. At 286 nm a str<strong>on</strong>g<br />

absorpti<strong>on</strong> (65 000 to 135 000 M -1 3 cm-1 ) could be observed for<br />

all complexes, most likely originating from a dmbpy-located IL<br />

JOCArticle<br />

transiti<strong>on</strong>. More b<str<strong>on</strong>g>and</str<strong>on</strong>g>s were present below 280 nm that arose<br />

from further MLCT, lig<str<strong>on</strong>g>and</str<strong>on</strong>g>-to-lig<str<strong>on</strong>g>and</str<strong>on</strong>g> charge transfer (LLCT)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> metal-centered (MC) d-d transiti<strong>on</strong>s, respectively.<br />

The observed emissi<strong>on</strong> energies (Table 4) showed a clear<br />

dependency <strong>on</strong> the used substituent. Starting at 602 nm in the<br />

case of the alkoxy-c<strong>on</strong>taining system, the emissi<strong>on</strong> was<br />

str<strong>on</strong>gly red-shifted to 621 nm for the unsubstituted triazole<br />

lig<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> to 640 <str<strong>on</strong>g>and</str<strong>on</strong>g> even 674 nm in the case of the complexes<br />

possessing an o- <str<strong>on</strong>g>and</str<strong>on</strong>g> p-nitrophenyl moiety, respectively.<br />

This trend was most likely caused by the stabilizati<strong>on</strong><br />

of the π*-orbitals located at the triazole lig<str<strong>on</strong>g>and</str<strong>on</strong>g> via introducti<strong>on</strong><br />

of electr<strong>on</strong>-withdrawing groups. These orbitals are, at<br />

least in case of electr<strong>on</strong>-acceptor substituents, supposed to be<br />

involved in the emissive 3 MLCT state, so that a lower energy<br />

level led to decreased emissi<strong>on</strong> energy.<br />

Also depicted in Table 4 are the photoluminescence quantum<br />

yields (Φ PL ) of the ruthenium(II) systems. At least in<br />

aerated acet<strong>on</strong>itrile, the Φ PL values were rather low (around<br />

0.1% for 16a-e, nearly no emissi<strong>on</strong> in the case of phenylsubstituted<br />

17 <str<strong>on</strong>g>and</str<strong>on</strong>g> about 0.3% for the “inverse” system 18).<br />

When changing to dichloromethane as solvent, the emissi<strong>on</strong><br />

efficiencies rose <str<strong>on</strong>g>and</str<strong>on</strong>g> a significant difference between the<br />

d<strong>on</strong>or- (16a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the acceptor-substituted complex (16b)<br />

became obvious (0.5% <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.2%, respectively).<br />

DFT Calculati<strong>on</strong>s. To gain a more detailed insight into the<br />

photophysical properties of the acceptor- <str<strong>on</strong>g>and</str<strong>on</strong>g> d<strong>on</strong>or-based<br />

complexes, density functi<strong>on</strong>al theory (DFT) <str<strong>on</strong>g>and</str<strong>on</strong>g> time-depended<br />

(TD) DFT (B3LYP/6-31G*) calculati<strong>on</strong>s were performed.<br />

DFT/TD-DFT studies <strong>on</strong> Ru(II) polypyridyl complexes have<br />

been successfully used to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> rati<strong>on</strong>alize the experimental<br />

photophysical features of these complexes. 15 Figure 4<br />

shows the obtained Kohn-Sham fr<strong>on</strong>tier orbitals <str<strong>on</strong>g>and</str<strong>on</strong>g> energy<br />

level schemes of the ground state optimized geometries of<br />

complexes 16a <str<strong>on</strong>g>and</str<strong>on</strong>g> 16b. In complex 16b the highest occupied<br />

molecular orbitals (HOMOs) were the set t 2g of the central Ru II<br />

atom. A π-orbital localized in the 2-(<strong>1H</strong>-[1,2,3]triazol-4-yl)-<br />

pyridine lig<str<strong>on</strong>g>and</str<strong>on</strong>g> (π L ) was lower in energy corresp<strong>on</strong>ding to<br />

the HOMO-3. These orbitals were in different order in the<br />

complex 16a: Theπ L corresp<strong>on</strong>ded to the HOMO orbital <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the set t 2g of orbitals was found lower in energy. Both complexes<br />

16a <str<strong>on</strong>g>and</str<strong>on</strong>g> 16b also differed in the order of the lowest<br />

unoccupied molecular orbitals (LUMO). In the case of the<br />

acceptor-type compound the LUMO orbital corresp<strong>on</strong>ded to a<br />

π-antib<strong>on</strong>ding orbital located in the 2-(<strong>1H</strong>-[1,2,3]triazol-4-yl)-<br />

pyridine lig<str<strong>on</strong>g>and</str<strong>on</strong>g> (π* L ), while this orbital was shifted to the<br />

LUMOþ2 in complex 16a. In 16a the LUMO possessed<br />

π-antib<strong>on</strong>ding character <str<strong>on</strong>g>and</str<strong>on</strong>g> was located <strong>on</strong> the dmbpy lig<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(π* dmbpy ). Substituti<strong>on</strong> of the 2-(<strong>1H</strong>-[1,2,3]triazol-4-yl)pyridine<br />

lig<str<strong>on</strong>g>and</str<strong>on</strong>g> with an electr<strong>on</strong>-d<strong>on</strong>ating or -withdrawing group,<br />

TABLE 4. Photophysical Data Recorded for the Ru II Complexes<br />

complex λ abs [nm] (ε [10 3 L 3 mol -1 3 cm-1 ]) a,b λ em [nm] a a,c<br />

Φ PL<br />

16a 206 (145.6), 286 (133.1), 333 (59.8), 435 (23.6) 602 0.001 [0.005 d ]<br />

16b 209 (58.4), 286 (63.4), 328 (38.6), 441 (11.6) 674 0.001 [0.022 d ]<br />

16c 209 (88.1), 286 (103.9), 312s (51.6), 440 (18.3) 620 0.002<br />

16d 208 (66.6), 286 (74.7), 341s (22.6), 442 (12.4) 640 0.001<br />

16e 205 (131.1), 286 (125.6), 315s (60.9), 438 (20.6) 621 0.001<br />

17 206 (83.7), 286 (76.9), 326 (52.5), 440 (12.8) 642

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!