28.06.2014 Views

here - Faculty of Science - University of Waterloo

here - Faculty of Science - University of Waterloo

here - Faculty of Science - University of Waterloo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Evolution Operators and Boundary Conditions<br />

for Propagation and Reflection Methods<br />

David Yevick<br />

Department <strong>of</strong> Physics<br />

<strong>University</strong> <strong>of</strong> <strong>Waterloo</strong><br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

1


Collaborators<br />

• Frank Schmidt (ZIB)<br />

• Tilmann Friese (ZIB, <strong>University</strong> <strong>of</strong> <strong>Waterloo</strong>]<br />

• Hatem El-Refaei, Nortel Networks<br />

• Ian Betty, Nortel Networks<br />

• Chunlin Yu, Queen’s <strong>University</strong><br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

2


Outline<br />

• Fundamental Equations<br />

• Non-Local Boundary Conditions<br />

• Improving Accuracy in Fast Reflection<br />

Calculations<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

3


Part I - Fundamental Equations<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

4


Scalar Wave Equation<br />

• Scalar, Monochromatic Electric Field<br />

⎛ ∂<br />

⎜<br />

⎝ ∂z<br />

Defining<br />

Y<br />

0<br />

2<br />

⎛ ∂<br />

⎜<br />

⎝ ∂z<br />

2<br />

2<br />

=<br />

2<br />

+<br />

k<br />

+<br />

0<br />

∂<br />

2<br />

∂x<br />

k<br />

2<br />

n<br />

1 ∂<br />

2 2<br />

n ∂y<br />

2<br />

0<br />

0<br />

0<br />

n<br />

∂<br />

+<br />

∂y<br />

= n<br />

2<br />

0<br />

2<br />

2<br />

( X<br />

2<br />

0<br />

2<br />

+<br />

k<br />

reference<br />

, X<br />

and N =<br />

+ Y<br />

0<br />

2<br />

0<br />

n<br />

2<br />

⎞<br />

( r )<br />

⎟ Ε( x,<br />

y,<br />

z)<br />

= 0<br />

⎠<br />

0<br />

2<br />

1 ∂<br />

= ,<br />

2 2 2<br />

k0<br />

n ∂x<br />

0<br />

2 <br />

n ( r )<br />

−1,<br />

we have<br />

2<br />

n<br />

0<br />

⎞<br />

+ N)<br />

⎟ E( x,<br />

y,<br />

z)<br />

= 0<br />

⎠<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

5


Forward Solution<br />

• Define H = X<br />

0<br />

+ Y0<br />

+ N . For forwardtravelling<br />

waves ( time-dependence<br />

i t<br />

)<br />

E( x,<br />

y,<br />

z<br />

+ ∆z)<br />

=<br />

e<br />

δ∆z 1+H<br />

E( x<br />

y<br />

z<br />

⎛<br />

⎜<br />

⎝<br />

∂<br />

∂z<br />

+<br />

e ω , , )<br />

⎞<br />

ik0 n0<br />

1+<br />

H ⎟ E( x,<br />

y,<br />

z)<br />

=<br />

⎠<br />

0<br />

• We then have with<br />

δ = −ik 0 n 0<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

6


Modal Analysis<br />

• Modal Decomposition<br />

E( x,<br />

y,<br />

z)<br />

= ∑ a<br />

m<br />

m<br />

E<br />

m<br />

( x,<br />

y,<br />

z)<br />

with<br />

⎡ ∂<br />

⎢<br />

⎣∂x<br />

2<br />

2<br />

+<br />

∂<br />

2<br />

∂y<br />

2<br />

+<br />

k<br />

2<br />

0<br />

n<br />

2<br />

( x,<br />

⎤<br />

y,<br />

z)<br />

⎥ E<br />

⎦<br />

m<br />

( x,<br />

y,<br />

z)<br />

=<br />

β ( x,<br />

2<br />

m<br />

y,<br />

z) E<br />

m<br />

( x,<br />

y,<br />

z)<br />

• Approximate Forward Solution<br />

E(<br />

∑<br />

−iβ<br />

m ( x,<br />

y,<br />

z ) ∆z<br />

x,<br />

y,<br />

z + ∆z)<br />

= e E<br />

m<br />

( x,<br />

y,<br />

z)<br />

m<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

7


Fresnel Approximation<br />

• Fresnel Approximation<br />

1<br />

+<br />

H ≈ 1+<br />

H<br />

2<br />

• Slowly-Varying Envelope<br />

E(<br />

x,<br />

y,<br />

z)<br />

= E( x,<br />

y,<br />

z)<br />

e<br />

−δ z<br />

⎛<br />

⎜<br />

⎝<br />

∂<br />

∂z<br />

δ<br />

⎞<br />

+ ( X<br />

0<br />

+ Y0<br />

+ N)<br />

⎟E(<br />

x,<br />

y,<br />

z)<br />

=<br />

2<br />

⎠<br />

0<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

8


Wide-Angle Approximations<br />

• Taylor Series Expansion<br />

1 1 2 1 3 5 4<br />

1+<br />

H ≈ 1+<br />

H − H + H − H + O(<br />

H<br />

2 8 16 128<br />

• Padé [2,0] approximant:<br />

1+<br />

H<br />

≈ 1+<br />

H<br />

2<br />

H<br />

−<br />

8<br />

• Padé [1,1] approximant<br />

1+<br />

H<br />

1+<br />

3H<br />

/ 4<br />

≈<br />

1+<br />

H / 4<br />

1<br />

= 1+<br />

H −<br />

2<br />

2<br />

1<br />

8<br />

H<br />

2<br />

+<br />

1<br />

32<br />

H<br />

3<br />

−<br />

1<br />

128<br />

H<br />

4<br />

5<br />

)<br />

+ O(<br />

H<br />

5<br />

)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

9


Square-Root Operator Recursion<br />

• Recursion Relation<br />

1+<br />

H −1<br />

=<br />

=<br />

=<br />

( 1+<br />

H −1)<br />

1+<br />

2 +<br />

H<br />

H + 1<br />

H<br />

⎛<br />

⎜<br />

⎝<br />

1+<br />

1+<br />

( 1+<br />

H −1)<br />

H<br />

H<br />

+ 1⎞<br />

⎟<br />

+ 1<br />

⎠<br />

f<br />

• Thus if<br />

1 1 ) ( − + = H x<br />

we have<br />

f ( x)<br />

= x /(2 + f ( x))<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

10


Continued Fraction Expansion<br />

• Iterating the recursion relation yields<br />

1+<br />

H<br />

−1<br />

=<br />

2<br />

• Note that we have employed f ( x)<br />

= 0<br />

to terminate the fraction, yielding a real<br />

expression.<br />

+<br />

2<br />

+<br />

H<br />

H<br />

...<br />

2<br />

H<br />

H<br />

+<br />

2<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

11


Padé Representations<br />

• The Padé approximant can be factored as<br />

1+<br />

H<br />

≈<br />

s<br />

∏<br />

⎡<br />

⎢1+<br />

sin<br />

⎢<br />

⎢<br />

⎢<br />

1+<br />

cos<br />

⎣<br />

r=<br />

1 2<br />

⎛ rπ<br />

⎞<br />

⎜ ⎟H<br />

⎝ 2s<br />

+ 1⎠<br />

⎛ rπ<br />

⎞<br />

⎜ ⎟H<br />

⎝ 2s<br />

+ 1⎠<br />

• In a partial fraction representation<br />

2<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

1+<br />

H<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

= 1+<br />

s<br />

∑<br />

⎡ 2<br />

⎢<br />

⎢<br />

2s<br />

+<br />

⎢<br />

⎢<br />

1+<br />

cos<br />

⎣<br />

sin<br />

1<br />

r=<br />

1 2<br />

⎛<br />

⎜<br />

⎝<br />

⎛ rπ<br />

⎞<br />

⎜ ⎟H<br />

⎝ 2s<br />

+ 1⎠<br />

rπ<br />

⎞<br />

⎟H<br />

2s<br />

+ 1⎠<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

2<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

12


Finite Difference Method<br />

• Applying a [1,1] Padé approximant yields the<br />

Crank-Nicholson procedure<br />

E(<br />

z<br />

+ ∆z)<br />

=<br />

e<br />

H<br />

δ<br />

2<br />

E(<br />

z)<br />

=<br />

e<br />

δ<br />

( X<br />

2<br />

0<br />

+ Y<br />

0<br />

+ N )<br />

E(<br />

z)<br />

≈<br />

⎛<br />

⎜<br />

⎝<br />

1<br />

1<br />

+<br />

−<br />

δ<br />

δ<br />

H<br />

H<br />

/<br />

/<br />

4<br />

4<br />

⎞<br />

⎟E(<br />

z)<br />

⎠<br />

+<br />

O(<br />

δ<br />

3<br />

)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

13


Discrete Representation<br />

• On a one-dimensional transverse grid<br />

{ } x i<br />

E(<br />

x<br />

w<strong>here</strong><br />

D<br />

2<br />

x<br />

i<br />

E<br />

1−<br />

, z + ∆z)<br />

=<br />

1+<br />

i<br />

=<br />

E<br />

i+<br />

1<br />

− 2E<br />

∆z<br />

i<br />

2<br />

i∆z<br />

4k0n<br />

i∆z<br />

4k<br />

n<br />

+<br />

and for any operator O,<br />

0<br />

E<br />

0<br />

0<br />

i−1<br />

1<br />

O<br />

( k<br />

( k<br />

2<br />

0<br />

2<br />

0<br />

( n<br />

( n<br />

2<br />

2<br />

( x<br />

( x<br />

) − n<br />

) − n<br />

represents O<br />

i<br />

i<br />

2<br />

0<br />

2<br />

0<br />

−1<br />

) +<br />

) +<br />

.<br />

D<br />

D<br />

2<br />

x<br />

2<br />

x<br />

)<br />

)<br />

E(<br />

x<br />

i<br />

, z)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

14


Part II - Nonlocal Boundary<br />

Conditions<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

15


Objective<br />

• To simulate on a finite, discrete<br />

computational grid the field radiated from<br />

a local source into a homogeneous semiinfinite<br />

medium.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

16


Electrorefraction Modulator<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

17


Standard Boundary Conditions<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

18


Improved Boundary Conditions<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

19


Boundary Layers<br />

– The approximate propagation operators<br />

introduced above are unitary. To remove the<br />

outward propagating electric field at the<br />

boundary we can introduce absorbing or<br />

impedance-matched boundary layers.<br />

z<br />

x 1<br />

x<br />

N<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

20


Transparent Boundaries<br />

E E N + 1<br />

• Set 0 and to be consistent with<br />

purely outgoing waves at the boundary.<br />

– Local Boundary Conditions: E , 0<br />

E N +1 are<br />

computed from Eat the last propagation step.<br />

– Nonlocal Boundary Conditions: E0<br />

, E N +1 are<br />

obtained from previous values <strong>of</strong> .<br />

E<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

21


Impedance-Matched Layer<br />

• For a non-equidistant grid, ∆ X<br />

i<br />

= (1 − bi<br />

) ∆X<br />

the governing equation in a homogeneous<br />

refractive index layer near the boundary is<br />

⎛<br />

⎜−<br />

2ik<br />

⎝<br />

• For continuous<br />

• Thus, if<br />

E<br />

k<br />

∂<br />

d<br />

⎞<br />

)<br />

⎟E(<br />

x,<br />

y,<br />

z)<br />

⎠<br />

2<br />

2 2 2<br />

0<br />

n0<br />

+ + k0<br />

( n − n<br />

2<br />

b 0<br />

=<br />

∂z<br />

dx<br />

x, z<br />

b → ia<br />

i i<br />

x<br />

, k<br />

( x,<br />

z)<br />

z<br />

, no spurious effects.<br />

, we have<br />

∝<br />

e<br />

ik<br />

x<br />

(1+<br />

ia<br />

i<br />

) x+<br />

ik<br />

z<br />

z<br />

0<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

22


Impedance-Matched Layer<br />

Attenuation<br />

=<br />

e<br />

∑<br />

−2k<br />

∆x<br />

a −2k0n<br />

x<br />

l<br />

l<br />

=<br />

e<br />

b<br />

∆xsinθ<br />

∑<br />

l<br />

a<br />

l<br />

n b<br />

n(r <br />

Z = L a<br />

)<br />

n b<br />

θ<br />

/ tanθ<br />

x<br />

L a<br />

z<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

23


Approximate and Exact Results<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

24


Continuous Nonlocal Boundary<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

25


Continuous Nonlocal Boundary<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

26


Gaussian Beam - Continuous N.L.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

27


Remaining Power - Continuous<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

28


Exact Nonlocal Boundary<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

29


Remaining Power - Discrete<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

30


Padé [1,1] Boundary Conditions<br />

• [1,1] Padé Approximation<br />

−1+<br />

1+<br />

H ≈<br />

• Claerbout’s Equation<br />

H / 2<br />

1+<br />

H / 4<br />

⎡⎛ 1 H ⎞ ∂ H ⎤<br />

⎢⎜<br />

+ ⎟ + δ ( , , )<br />

4 2<br />

⎥ E x y z<br />

⎣⎝<br />

⎠ ∂z<br />

⎦<br />

=<br />

• Boundary Condition Equation ( n b<br />

= n 0 )<br />

⎛<br />

⎜1<br />

+<br />

⎝<br />

X<br />

4<br />

0<br />

⎞⎡1−<br />

s ⎤<br />

⎟⎢<br />

E(<br />

z<br />

z ⎥<br />

⎠⎣<br />

∆ ⎦<br />

+ ∆z)<br />

X<br />

= − δ<br />

4<br />

0<br />

(1 +<br />

0<br />

s)<br />

E(<br />

z<br />

+ ∆z)<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

31


Padé [2,0] Boundary Conditions<br />

• [2,2] Padé Equation<br />

⎛1−<br />

s ⎞<br />

⎜ ⎟E<br />

⎝ ∆z<br />

⎠<br />

2<br />

⎛ X<br />

0<br />

X ⎞<br />

0 ⎛ 1+<br />

s ⎞<br />

+ 1(<br />

x)<br />

= −δ<br />

⎜1<br />

⎟<br />

+ − ⎜ ⎟E<br />

j 1(<br />

x)<br />

2 8<br />

⎝<br />

⎠⎝<br />

2 ⎠<br />

j +<br />

• Laplace transform this equation with<br />

respect to x in the exterior region.<br />

• Requiring that no poles are present in the<br />

right-hand plane <strong>of</strong> the transform yields the<br />

desired boundary condition.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

32


[2,2] Boundary Condition Results<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

33


Padé [N,N] Boundary Conditions<br />

• For the [N,N] case,<br />

g<br />

g<br />

g<br />

(1)<br />

i<br />

(2)<br />

i<br />

( k −1)<br />

i<br />

sE<br />

⎛ ′ 2<br />

1 a ⎞<br />

1<br />

( x)<br />

⎜ − ∂<br />

x<br />

= ⎟E<br />

⎜<br />

2<br />

1−<br />

a1∂<br />

⎟<br />

x<br />

⎝ ⎠<br />

⎛ ′ 2<br />

1 a ⎞<br />

2 x<br />

( x)<br />

⎜ − ∂<br />

= ⎟g<br />

⎜<br />

2<br />

1−<br />

a ⎟<br />

2∂<br />

x<br />

⎝ ⎠<br />

<br />

i−1<br />

(1)<br />

i<br />

⎛ ′ 2<br />

1 a ⎞<br />

1<br />

( x)<br />

⎜ −<br />

k −<br />

∂<br />

x<br />

= ⎟g<br />

⎜<br />

2<br />

1−<br />

ak<br />

−1∂<br />

⎟<br />

x<br />

⎝ ⎠<br />

⎛ ′ 2<br />

1 a ⎞<br />

k x ( k<br />

Ei<br />

( x)<br />

⎜ − ∂<br />

= ⎟g<br />

2 i<br />

⎜ 1−<br />

a ⎟<br />

k∂<br />

x<br />

⎝ ⎠<br />

i<br />

( x)<br />

= E<br />

1(<br />

x)<br />

, w<strong>here</strong><br />

( x)<br />

( x)<br />

( k −2)<br />

i<br />

−1)<br />

( x)<br />

( x)<br />

i−<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

34


General Boundary Conditions (2)<br />

• Introducing a vector<br />

g<br />

g i<br />

(x) with<br />

( j)<br />

, j<br />

( x)<br />

= g<br />

i<br />

( x),<br />

j = 1k<br />

−1,<br />

g<br />

i,<br />

k<br />

( x)<br />

Ei<br />

( x)<br />

i<br />

=<br />

yields<br />

( E<br />

2<br />

+ A ∂ ) ( x)<br />

x g i<br />

with boundary conditions<br />

g<br />

B<br />

g<br />

g<br />

= 0<br />

B<br />

i, +<br />

=<br />

+ i,<br />

+<br />

,<br />

i,<br />

−<br />

=<br />

+ i,<br />

−<br />

g<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

35


General Boundary Conditions (3)<br />

• After Laplace transforming, this yields<br />

(<br />

2<br />

E + p A) g ( p)<br />

= A(<br />

pg<br />

+ g<br />

)<br />

or, defining C<br />

2 = −A<br />

−1 E ,<br />

• Problem: Construct<br />

<strong>of</strong> ( I + C) −1<br />

have<br />

ˆ<br />

i<br />

i,0<br />

i,<br />

0<br />

(<br />

2 2<br />

p I − C ) gˆ<br />

( p)<br />

= pg<br />

,0<br />

+ g<br />

, 0<br />

i<br />

i<br />

C<br />

p Rp<br />

> 0 j<br />

i<br />

such that all poles<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

36


[N,N] Boundary Condition Results<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

37


Part III - Improving Accuracy in<br />

Fast Reflection Calculations<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

38


Facet Reflection Coefficient<br />

E y<br />

∂<br />

E y<br />

• Matching and at the boundary gives<br />

∂z<br />

Ψ<br />

y<br />

= Ψ<br />

+<br />

o<br />

e<br />

−ik<br />

o<br />

n<br />

ol<br />

L<br />

l<br />

z<br />

+ Ψ<br />

−<br />

o<br />

e<br />

ik<br />

o<br />

n<br />

ol<br />

L<br />

l<br />

z<br />

A<br />

B<br />

( 1)<br />

E k +<br />

yr<br />

[ R]<br />

TE<br />

=<br />

=<br />

1 ( k<br />

L )(<br />

)<br />

B<br />

LA<br />

E<br />

yr<br />

(1 −<br />

2<br />

E<br />

E<br />

yr<br />

yi<br />

=<br />

n<br />

n<br />

oA<br />

oA<br />

L<br />

L<br />

A<br />

A<br />

−<br />

−<br />

+<br />

E<br />

n<br />

n<br />

yi<br />

oB<br />

oB<br />

)<br />

L<br />

L<br />

, or<br />

B<br />

B<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

39


Reflection Coefficients<br />

Air<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

n 2<br />

n 1<br />

2d<br />

nco<br />

n cl<br />

Waveguide Geometry<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

40


Standard Operator Results<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

41


Calculated Reflection Error<br />

• Since the Padé approximation for L<br />

has poles in the evanescent spectral<br />

region, uncontrollable errors can develop.<br />

• One method to resolve this - Generate an<br />

approximant with complex coefficients by<br />

selecting an imaginary termination<br />

condition for the continued fraction<br />

representation <strong>of</strong> 1+ H .<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

42


Complex Padé Reflection<br />

0.45<br />

0.41<br />

Complex Pade<br />

Real Pade<br />

Reflection Power<br />

0.37<br />

0.33<br />

0.29<br />

0.25<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Pade Order<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

43


Rotated Padé Approximants<br />

• A second method: Write<br />

1+<br />

H<br />

=<br />

e<br />

1+<br />

[(1 +<br />

x)<br />

e<br />

iα / 2<br />

−iα<br />

−1]<br />

and perform a Padé expansion in the<br />

variable<br />

y<br />

=<br />

− α<br />

( 1+<br />

x)<br />

e<br />

i −1<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

44


Rotated Padé Reflection<br />

0.4<br />

0.38<br />

Rotation Angle 0<br />

Rotation Angle 30<br />

Rotation Angle 60<br />

Rotation Angle 90<br />

Reflection Power<br />

0.36<br />

0.34<br />

0.32<br />

0.3<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Pade Order<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

45


Refractive Index Discretization<br />

+<br />

Ψ in<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

46


Transition, Propagation Operator<br />

+<br />

Ψin<br />

j<br />

−<br />

Ψin<br />

j<br />

+<br />

Ψout<br />

j + 1<br />

−<br />

Ψout<br />

j + 1<br />

P<br />

m<br />

=<br />

⎛e<br />

⎜<br />

⎝0<br />

− jk<br />

o<br />

n<br />

om<br />

L<br />

e<br />

m<br />

jk<br />

z<br />

o<br />

n<br />

om<br />

L<br />

0<br />

m<br />

z<br />

⎟ ⎞<br />

⎠<br />

T<br />

j<br />

=<br />

⎛<br />

⎜1+<br />

1 ⎜<br />

⎜<br />

2 ⎜<br />

⎜1−<br />

⎝<br />

n<br />

n<br />

n<br />

o<br />

n<br />

o<br />

o<br />

j+<br />

1<br />

o<br />

j<br />

j<br />

j+<br />

1<br />

L<br />

L<br />

−1<br />

j+<br />

1<br />

−1<br />

j+<br />

1<br />

L<br />

L<br />

j<br />

j<br />

1−<br />

1+<br />

n<br />

n<br />

n<br />

o<br />

n<br />

o<br />

o<br />

j+<br />

1<br />

o<br />

j<br />

j<br />

j+<br />

1<br />

L<br />

L<br />

−1<br />

j+<br />

1<br />

−1<br />

j+<br />

1<br />

L<br />

L<br />

j<br />

j<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

47


Distributed Feedback<br />

Normalized power<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.800 0.801 0.802 0.803 0.804 0.805 0.806 0.807<br />

Wavelength ( µ m)<br />

Reflectivity using rotated [1/1] Padé<br />

Reflectivity using rotated [3/3] Padé<br />

Reflectivity using rotated [5/5] Padé<br />

Coupled wave theory [14]<br />

Total power using [1/1] Padé<br />

Total power using [3/3] Padé<br />

Total power using [5/5] Padé<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

48


Conclusions<br />

• Procedures now exist for constructing<br />

exact, nonlocal boundary conditions for<br />

wide-classes <strong>of</strong> two-dimensional<br />

parabolic partial differential equations.<br />

• Modified Padé operators can be employed<br />

to increase the accuracy <strong>of</strong> reflection<br />

calculations at abrupt interfaces.<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Science</strong> - Department <strong>of</strong><br />

Physics 5/3/2009<br />

D. Yevick - Evolution Operators and<br />

Boundary Conditions<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!