30.06.2014 Views

Quick Look Determination of Oil-in-Place in Oil Shale Resource ...

Quick Look Determination of Oil-in-Place in Oil Shale Resource ...

Quick Look Determination of Oil-in-Place in Oil Shale Resource ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quick</strong> <strong>Look</strong> <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Oil</strong>-<strong>in</strong>-<strong>Place</strong> <strong>in</strong> <strong>Oil</strong> <strong>Shale</strong> <strong>Resource</strong> Plays*<br />

Marlan W. Downey 1 , Julie Garv<strong>in</strong> 1 , R. C. Lagomars<strong>in</strong>o 2 , and David F. Nickl<strong>in</strong> 2<br />

Search and Discovery Article #40764 (2011)<br />

Posted June 30, 2011<br />

*Adapted from oral presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011<br />

1 Roxanna <strong>Oil</strong> and Gas Company, Houston, TX (marlandowney@m<strong>in</strong>dspr<strong>in</strong>g.com)<br />

2 Exploration, Matador <strong>Resource</strong>s Company, Dallas, TX<br />

Abstract<br />

Quantitative measurements <strong>of</strong> gas-<strong>in</strong>-place volumes for coal gas and shale gas resource plays have been important and powerful start<strong>in</strong>g po<strong>in</strong>ts<br />

for plann<strong>in</strong>g optimized economic gas extraction. Quantitative desorption measurements <strong>of</strong> gas-<strong>in</strong>-place have strongly assisted <strong>in</strong>vestor<br />

confidence <strong>in</strong> the exploitation <strong>of</strong> coal gas and shale gas plays. Gas-<strong>in</strong>-place measurements provide the resource target that can justify on-go<strong>in</strong>g<br />

technical and bus<strong>in</strong>ess <strong>in</strong>vestments <strong>in</strong> gas shale resource plays.<br />

With recent successes <strong>in</strong> apparent commercial extraction <strong>of</strong> oil from shale, such as <strong>in</strong> the Eagle Ford <strong>Shale</strong> <strong>of</strong> South Texas and the Woodford<br />

<strong>Shale</strong> <strong>of</strong> southern Oklahoma, the question arises as to the efficiency <strong>of</strong> oil recovery us<strong>in</strong>g current completion and drill<strong>in</strong>g technologies. Given the<br />

high likelihood that these plays will prove to be long-term endeavors, it is a strategic and economic imperative that recovery efficiency be<br />

optimized, the start<strong>in</strong>g po<strong>in</strong>t be<strong>in</strong>g the reliable def<strong>in</strong>ition <strong>of</strong> the size <strong>of</strong> the oil-<strong>in</strong>-place resource. While this approach does not determ<strong>in</strong>e how<br />

much oil can be recovered, it provides a measurement <strong>of</strong> the maximum amount <strong>of</strong> oil-<strong>in</strong>-place, the target volume <strong>of</strong> the play area.<br />

We propose a quantitative measure <strong>of</strong> oil-<strong>in</strong>-place from measurements <strong>of</strong> the distillable oil <strong>in</strong> an oil shale, specifically from the S1 measurements<br />

<strong>of</strong> a standard Rock-Eval analysis. The measurements obta<strong>in</strong>ed may then be up-scaled to calculate oil-<strong>in</strong>-place for a given formation, trend or<br />

bas<strong>in</strong>. By compar<strong>in</strong>g these estimates to estimates <strong>of</strong> ultimate recovery per well-bore based on decl<strong>in</strong>e curve analysis, operators may glean greater<br />

<strong>in</strong>sight <strong>in</strong>to their recovery efficiency, and as a result determ<strong>in</strong>e the need for, and lay plans to carry out the m<strong>in</strong>imum amount <strong>of</strong> drill<strong>in</strong>g and<br />

formation fractur<strong>in</strong>g to ensure the maximum amount <strong>of</strong> oil extraction. The ultimate recovery efficiency will be determ<strong>in</strong>ed over time by iterative<br />

applications <strong>of</strong> technology.<br />

In test<strong>in</strong>g the technique, measurements were made <strong>in</strong> the Eagle Ford <strong>Shale</strong> <strong>of</strong> South Texas and <strong>in</strong> the Woodford <strong>Shale</strong> <strong>of</strong> southern Oklahoma.<br />

Comparisons were made between immature, mature and over-mature source rocks and between core derived measurements and those obta<strong>in</strong>ed<br />

from drill cutt<strong>in</strong>gs. Guidel<strong>in</strong>es are proposed for a simplified quick-look approach with po<strong>in</strong>ters to avoid potential pitfalls and ensure accuracy.<br />

Copyright © AAPG. Serial rights given by author. For all other rights contact author directly.


A QUICKLOOK DETERMINATION OF<br />

OIL-IN-PLACE IN OIL SHALE<br />

RESOURCE PLAYS<br />

Marlan W. Downey, Julie Garv<strong>in</strong>, RC Lagomars<strong>in</strong>o, David F.<br />

Nickl<strong>in</strong>


ACKNOWLEDGEMENTS:<br />

<br />

<br />

<br />

<br />

<br />

<br />

Roxanna <strong>Oil</strong> and Gas Company<br />

Eddie Little<br />

Matador <strong>Resource</strong>s Company<br />

Anne L<strong>in</strong>dsey McColloch<br />

Just<strong>in</strong> Bagley<br />

Bo Henk


DISCUSSION TOPICS<br />

Gas-<strong>in</strong>-place measurements <strong>in</strong> the Coal and<br />

<strong>Shale</strong> Gas Industry<br />

<br />

Gas desorption methodology<br />

Importance <strong>of</strong> Hydrocarbon Target Volumes<br />

<strong>in</strong> Unconventional <strong>Resource</strong> Plays<br />

Measure amount <strong>of</strong> Hydrocarbons available<br />

Application <strong>of</strong> RockEval Pyrolysis for S1 values


GAS DESORPTION METHODOLOGY<br />

Standard analytical technique over 20 years<br />

Measures total gas conta<strong>in</strong>ed <strong>in</strong> coal cores or<br />

shale cores.<br />

Allows the determ<strong>in</strong>ation <strong>of</strong> the total gas<br />

resource <strong>in</strong> place <strong>in</strong> a given area.


HYDROCARBON TARGET VOLUMES<br />

Focus on application <strong>of</strong> hydrocarbon<br />

distillation from Rock-Eval.<br />

Requires rock samples, preferably whole core,<br />

properly collected.<br />

Determ<strong>in</strong>es volumes <strong>of</strong> distillable hydrocarbons<br />

<strong>in</strong> the rock <strong>in</strong> mg <strong>of</strong> hydrocarbon/g <strong>of</strong> dry rock.<br />

Relatively simple and cheap to do.<br />

Results can be obta<strong>in</strong>ed early <strong>in</strong> exploration<br />

campaign.<br />

Easily up-scaled to reflect total rock potential.


HYDROCARBON TARGET VOLUMES<br />

Emphasis on S1 measurement<br />

<strong>of</strong> distillable hydrocarbons.


Rock Eval Pyrolysis<br />

S1 represents the free hydrocarbons <strong>in</strong> a rock<br />

• Primarily <strong>in</strong>dicates generated free oil (liquid hydrocarbons)<br />

• The greater the S1 value, the greater amount <strong>of</strong> free oil<br />

• Optimum data from whole core<br />

S1 Peak<br />

Volatilization <strong>of</strong><br />

exist<strong>in</strong>g HC<br />

Exist<strong>in</strong>g <strong>Oil</strong><br />

Tmax<br />

S2 Peak<br />

Pyrolysis <strong>of</strong> kerogen<br />

(nonvolatile organic matter)<br />

Potential <strong>Oil</strong><br />

TEMPERATURE<br />

TIME


APPLICATION PROCEDURE<br />

Establish S1 values, preferably from whole core,<br />

preferably every foot. This represents measured oil<strong>in</strong>-place<br />

per unit volume <strong>of</strong> rock.<br />

Upscale oil-<strong>in</strong>-place to Acre-feet or “Section-feet”<br />

(i.e. one square mile <strong>of</strong> surface area x one foot thick<br />

x hydrocarbon richness).<br />

Result<strong>in</strong>g volume from core measurements is a<br />

m<strong>in</strong>imum value for the oil-<strong>in</strong>-place volume.


METHODOLOGY: OIL IN PLACE FROM S1<br />

Step 1: grams <strong>of</strong> oil per section<br />

M S1HC = Ah (ρ Av ) (S1 Av )(.001) ÷ 8.11E-10 acre-ft/cc<br />

Where:<br />

M S1HC = Mass <strong>of</strong> S1 hydrocarbons per section (g)<br />

A = Area <strong>of</strong> <strong>in</strong>terest <strong>in</strong> acres (sectional area – 640 acres)<br />

h = Reservoir height (ft)<br />

ρ Av = Average bulk density (g/cc)<br />

S1 Av =Average S1 (mg/g)


METHODOLOGY (CONT.)<br />

Step 2: volume <strong>of</strong> oil per section (cc)<br />

V S1HC = M S1HC ÷ρ oil<br />

Where:<br />

V S1HC = Volume <strong>of</strong> S1 hydrocarbons per section (cc)<br />

M S1HC = Mass <strong>of</strong> S1 hydrocarbons per section (g)<br />

ρ oil = Density <strong>of</strong> oil (g/cc)


METHODOLOGY (CONT.)<br />

Step 3: barrels <strong>of</strong> oil per section<br />

<strong>Oil</strong> <strong>in</strong> <strong>Place</strong> per section (Bbl)<br />

=<br />

V S1HC x 6.29E-6 bbl/cc


OIL IN PLACE FROM S1<br />

Simplified Equation<br />

<strong>Oil</strong> <strong>in</strong> <strong>Place</strong> per 640 acre/ft = 4965.36 x (ρ Av ) (S1 Av )(ρ oil )<br />

Where:<br />

ρ Av = Average bulk density (g/cc)<br />

S1 Av =Average S1 (mg/g)<br />

ρ oil = Density <strong>of</strong> oil (g/cc)


OIL IN PLACE FROM S1<br />

Simplified Equation<br />

<strong>Oil</strong> <strong>in</strong> <strong>Place</strong> per 640 acre/ft = 9677.48 x (S1 Av )<br />

Where:<br />

S1 Av =Average S1 (mg/g)<br />

Assumes:<br />

2.5 g/cc Bulk Density<br />

50º API <strong>Oil</strong> Gravity


CONVERSIONS<br />

1 section = 640 Acres<br />

1 cc = 8.10713194 E-10 Acre-ft<br />

1 cc = 6.28981077E-6 Bbl<br />

Specific gravity = 141.5/(131.5 + API gravity)<br />

Specific gravity 1 =1 g/cc<br />

1 mg = .001 g


QUICKLOOK CONVERSION OF S1 TO OIL<br />

Us<strong>in</strong>g S1 <strong>in</strong> mg/g to BBL <strong>of</strong> <strong>Oil</strong> <strong>in</strong> 640 acres/foot<br />

72,000<br />

4.0<br />

56,000<br />

S1<br />

MG/G<br />

3.0<br />

40,000<br />

BBL/FT<br />

(M<strong>in</strong>. Target Vol.)<br />

2.0<br />

24,000<br />

1.0<br />

0.0<br />

8,000<br />

Assumes:<br />

2.5 g/cc Bulk Density<br />

50º API <strong>Oil</strong> Gravity<br />

(R.C. Lagomars<strong>in</strong>o)


EAGLE FORD SHALE – STUDY WELLS<br />

Well ‘A’<br />

Well ‘B’<br />

OIL FAIRWAY<br />

COMBO<br />

LIQUIDS/GAS<br />

FAIRWAY<br />

DRY GAS FAIRWAY


VERTICAL VARIATIONS IN S1 VALUES FOR<br />

EAGLE FORD, WELL ‘A’<br />

(Less Thermally Mature)<br />

0.0 1.0 2.0 3.0 4.0 5.0 6.0<br />

7,740<br />

Average S1 = 3.55 g/mg<br />

56.525 MBBL/640 ac/ft<br />

7,760<br />

S1 Data vs Depth, Ro= 0.7 to 0.8<br />

S1 (mg/g)<br />

Depth (ft)<br />

7,780<br />

7,800<br />

7,820<br />

Weighted Avg. =<br />

11.0<br />

MMBBL/640 Ac.<br />

(M<strong>in</strong>. Target Vol.)<br />

S1 Data<br />

7,840<br />

7,860<br />

7,880<br />

7,900


EAGLE FORD SHALE – STUDY WELLS<br />

Well ‘A’<br />

Well ‘B’<br />

OIL FAIRWAY<br />

COMBO<br />

LIQUIDS/GAS<br />

FAIRWAY<br />

DRY GAS FAIRWAY


VERTICAL VARIATIONS IN S1 VALUES FOR<br />

EAGLE FORD, WELL ‘B’<br />

(More Thermally Mature)<br />

0.0 1.0 2.0 3.0 4.0<br />

10,020<br />

Average S1 = 1.86 g/mg<br />

29.616 MBBL/640 ac/ft<br />

Depth (ft)<br />

10,040<br />

10,060<br />

10,080<br />

10,100<br />

10,120<br />

S1 Data vs Depth, Ro= 1.2 to 1.4<br />

S1 (mg/g)<br />

Weighted Avg. =<br />

4.0<br />

MMBBL/640 Ac.<br />

(M<strong>in</strong>. Target Vol.)<br />

S1 Data<br />

10,140<br />

10,160


CONCLUSIONS<br />

• Rock-Eval S1 value provides early measurement<br />

<strong>of</strong> oil <strong>in</strong> place.<br />

• Can be up-scaled easily for various thicknesses<br />

for quantified values <strong>of</strong> oil-<strong>in</strong>-place.<br />

• Measurements <strong>of</strong> oil-<strong>in</strong>-place compared to<br />

production decl<strong>in</strong>e analysis will provide<br />

improved measures <strong>of</strong> recovery efficiency.<br />

• For further <strong>in</strong>formation, check out:<br />

www.roxannaoil.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!