05.07.2014 Views

Nano tools for macro problems: multiscale molecular ... - SFGP

Nano tools for macro problems: multiscale molecular ... - SFGP

Nano tools for macro problems: multiscale molecular ... - SFGP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

University of Trieste<br />

<strong>Nano</strong> <strong>tools</strong> <strong>for</strong> <strong>macro</strong><br />

<strong>problems</strong>: <strong>multiscale</strong><br />

<strong>molecular</strong> modeling <strong>for</strong> life<br />

and materials science<br />

Maurizio Fermeglia<br />

MOSE –DI3 ‐ University of Trieste<br />

Via valerio 10, 34127 Trieste (Italy)<br />

Maurizio.Fermeglia@di3.units.it<br />

mose.units.it<br />

Department of Industrial Engineering &<br />

In<strong>for</strong>mation Technology


The technology vision 2020<br />

InMother 2012<br />

Lyon, 20 April 2012 - 2


Horizon2020 Structure<br />

KET<br />

InMother 2012<br />

Lyon, 20 April 2012 - 3


Introduction of new generation of products and<br />

productive processes (2000‐2020)<br />

• Timeline <strong>for</strong> beginning of industrial prototyping and nanotechnology<br />

commercialization<br />

InMother 2012<br />

Lyon, 20 April 2012 - 4


Multiscale Molecular Modeling<br />

CHARACTERISTIC TIMES<br />

years<br />

Engineering<br />

design<br />

hours<br />

minutes<br />

seconds<br />

microseconds<br />

nanoseconds<br />

Atomistic<br />

simulation<br />

(atoms)<br />

Mesoscale<br />

modeling<br />

(groups of<br />

atoms or<br />

molecules)<br />

Process<br />

simulation<br />

FEM<br />

(continuum)<br />

picoseconds<br />

femtoseconds<br />

Quantum<br />

mechanics<br />

(electrons)<br />

1Å<br />

1nm 1μm 1mm 1m<br />

CHARACTERISTIC LENGHTS<br />

InMother 2012<br />

Lyon, 20 April 2012 - 5


Many scale Molecular Modeling<br />

CHARACTERISTIC TIMES<br />

years<br />

Engineering<br />

design<br />

hours<br />

minutes<br />

seconds<br />

microseconds<br />

nanoseconds<br />

Atomistic<br />

simulation<br />

(atoms)<br />

Mesoscale<br />

modeling<br />

(groups of<br />

atoms or<br />

molecules)<br />

Process<br />

simulation<br />

FEM<br />

(continuum)<br />

picoseconds<br />

femtoseconds<br />

Quantum<br />

mechanics<br />

(electrons)<br />

1Å<br />

1nm 1μm 1mm 1m<br />

CHARACTERISTIC LENGHTS<br />

InMother 2012<br />

Lyon, 20 April 2012 - 6


Modelling and experiments<br />

InMother 2012<br />

Lyon, 20 April 2012 - 7


• Introduction<br />

Outline of talk<br />

– Multiscale Molecular Modeling<br />

• Mapping procedure<br />

– From atomistic simulation to mesoscale<br />

– From mesoscale to micro FEM<br />

• Applications to materials science<br />

– Polymer clay nanocomposites<br />

– Self assembly of nanoparticles in block copolymers<br />

• Applications to life science<br />

– Block copolymers <strong>for</strong> drug delivery<br />

• Conclusions<br />

InMother 2012<br />

Lyon, 20 April 2012 - 8


From atoms … to beads<br />

Molecular Dynamics<br />

Dissipative Particle Dynamics<br />

ForceField based calculations<br />

Soft potentials calculations<br />

F i = f (a ii , a ij , …, r c )<br />

• Polymeric materials are modeled<br />

by connecting beads by<br />

harmonic springs<br />

InMother 2012<br />

Lyon, 20 April 2012 - 9


From atoms … to beads<br />

• The parameters <strong>for</strong> Mesoscale (MesoDyn or DPD) are<br />

– the bead size and Gaussian chain architecture<br />

– the bead mobilities M,<br />

– the effective Flory‐Huggins interactions<br />

• Method 1: polymer blends, copolymers, spherical nanofillers<br />

– bead size and Gaussian chain architecture: by MD<br />

• from characteristic ratio (C) in terms of Kuhn length<br />

– mobility: by Molecular Dynamics<br />

• Bead self diffusion coefficients<br />

– FH interactions: by Molecular Dynamics<br />

• Differences in non bonded energies between bulk and isolated chain<br />

• Method 2: nanofillers of any size and shape<br />

– bead size and Gaussian chain architecture: by MD<br />

• from characteristic ratio (C) in terms of Kuhn length<br />

– mobility: by Molecular Dynamics<br />

• Bead self diffusion coefficients<br />

– Interaction parameters are determined directly from energy distribution in<br />

MD<br />

• Considering density distribution around nanofiller<br />

InMother 2012<br />

Lyon, 20 April 2012 - 10


Method 1: bead size, chain architecture<br />

• MD NPT runs on homo polymers<br />

– Monomer length<br />

– C ∞ calculation and Kuhn lenght<br />

– Chain architecture<br />

r<br />

r<br />

2<br />

max<br />

0<br />

C<br />

NL<br />

<br />

nl<br />

2<br />

<br />

NL<br />

2<br />

Rotational Isomeric State<br />

C1 C2 C3 C4 Cn<br />

MM minimization and annealing<br />

MD - NPT<br />

2 – end to end distance<br />

2 / n l 2 = C∞<br />

Change<br />

chain<br />

lenght<br />

Cinf(% )<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 50 100 150 200<br />

N<br />

Fermeglia, M. et al., Polymer, 47:5979‐5989 (2006)<br />

InMother 2012<br />

C∞<br />

Lyon, 20 April 2012 - 11


Method 1: F‐H interaction parameter chi<br />

• Molecular dynamics NPT and NVT runs<br />

E<br />

coh<br />

<br />

E<br />

periodic<br />

nb<br />

<br />

E<br />

isolated<br />

nb<br />

<br />

E<br />

<br />

RT<br />

mix<br />

V<br />

mon<br />

E<br />

mix<br />

<br />

1<br />

<br />

<br />

<br />

E<br />

V<br />

coh<br />

<br />

<br />

<br />

pure1<br />

<br />

2<br />

<br />

<br />

<br />

E<br />

V<br />

coh<br />

<br />

<br />

<br />

pure2<br />

<br />

<br />

<br />

E<br />

V<br />

coh<br />

<br />

<br />

<br />

mix<br />

a<br />

AB<br />

a<br />

<br />

3.271<br />

<br />

<br />

3.9<br />

<br />

AA 0. 51<br />

nDPD<br />

<br />

<br />

<br />

AB<br />

Fermeglia, M. and Pricl S., AIChE J., 2619 (45), 1999<br />

InMother 2012<br />

Lyon, 20 April 2012 - 12


Method 2: Mapping DPD parameters<br />

Single, binary, ternary<br />

energies from MD<br />

Binding energies are<br />

rescaled considering the<br />

number of contacts<br />

tot<br />

E n E n E 2<br />

sys<br />

ii ii<br />

jj jj<br />

n<br />

ij<br />

E<br />

ij<br />

Binding energies from MD<br />

(vdW + Coulomb)<br />

References DPD<br />

Interactions are selected<br />

Equal beads aij 25<br />

Define DPD beads<br />

(head, tail, …) and<br />

recalculate energies<br />

DPD matrix parameters<br />

(scaling from references)<br />

Strong repulsive beads<br />

aij >25<br />

Density profiles from MD =? Density profiles from DPD<br />

Scocchi et al., J. Phys. Chem. B,<br />

(2007), 111, 2143<br />

InMother 2012<br />

Lyon, 20 April 2012 - 13


From beads to micro FEM<br />

Dissipative Particle Dynamics<br />

Micro ‐ FEM Simulation<br />

FEM Analysis:<br />

Macroscopic<br />

properties<br />

Soft potentials calculations<br />

F i = f (a ii , a ij , …, r c )<br />

Characteristic dimension of mesoscopic<br />

system<br />

Toth R., Santese F., Pereira S.P., Romero‐Nieto D., Pricl S., Fermeglia M., Posocco, Journal of Materials Chemistry, 2012<br />

InMother 2012<br />

Lyon, 20 April 2012 - 14


From beads … to micro: fixed grid<br />

• Geometry: map cubes to Palmyra<br />

tetrahedrons<br />

• Laplace equation is solved <strong>for</strong><br />

electric conductance,<br />

diffusion and permeability<br />

• Local de<strong>for</strong>mation allow the<br />

calculation of mechanical<br />

properties<br />

Atomistic<br />

Mesoscale<br />

Fixed grid<br />

Variable grid<br />

Physical Prop.<br />

InMother 2012<br />

Lyon, 20 April 2012 - 15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!