08.07.2014 Views

Chapter 6

Chapter 6

Chapter 6

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

1<br />

<strong>Chapter</strong> 6 Differential Analysis of Fluid Flow<br />

Fluid Element Kinematics<br />

Fluid element motion consists of translation, linear deformation,<br />

rotation, and angular deformation.<br />

Types of motion and deformation for a fluid element.<br />

Linear Motion and Deformation:<br />

Translation of a fluid element<br />

Linear deformation of a fluid element<br />

1


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

2<br />

Change in:<br />

<br />

u <br />

x y z <br />

t<br />

x<br />

<br />

the rate at which the volume is changing per unit volume<br />

due to the gradient ∂u/∂x is<br />

1<br />

<br />

<br />

d u x t u<br />

lim<br />

dt t<br />

<br />

0<br />

t x<br />

If velocity gradients ∂v/∂y and ∂w/∂z are also present, then<br />

using a similar analysis it follows that, in the general case,<br />

<br />

<br />

1 d u v w<br />

V<br />

dt x y z<br />

This rate of change of the volume per unit volume is called<br />

the volumetric dilatation rate.<br />

Angular Motion and Deformation<br />

For simplicity we will consider motion in the x–y plane,<br />

but the results can be readily extended to the more general<br />

case.<br />

2


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

3<br />

Angular motion and deformation of a fluid element<br />

The angular velocity of line OA, ω OA , is<br />

<br />

OA<br />

lim<br />

t0<br />

t<br />

For small angles<br />

v xxt v tan t<br />

x x<br />

so that<br />

v x<br />

t v<br />

OA<br />

lim <br />

t0<br />

t<br />

x<br />

Note that if ∂v/∂x is positive, ω OA will be counterclockwise.<br />

Similarly, the angular velocity of the line OB is<br />

<br />

OB<br />

u<br />

lim <br />

t0<br />

t<br />

y<br />

In this instance if ∂u/∂y is positive, ω OB will be clockwise.<br />

3


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

4<br />

The rotation, ω z , of the element about the z axis is defined<br />

as the average of the angular velocities ω OA and ω OB of the<br />

two mutually perpendicular lines OA and OB. Thus, if<br />

counterclockwise rotation is considered to be positive, it<br />

follows that<br />

1 v<br />

u<br />

z<br />

<br />

2 x<br />

y<br />

Rotation of the field element about the other two coordinate<br />

axes can be obtained in a similar manner:<br />

1 w<br />

v<br />

x<br />

<br />

2 y<br />

z<br />

1 u<br />

w<br />

<br />

y<br />

<br />

2 z<br />

x<br />

<br />

The three components, ω x ,ω y , and ω z can be combined to<br />

give the rotation vector, ω, in the form:<br />

1 1<br />

ω xi yj zk curlV V<br />

2 2<br />

since<br />

i j k<br />

1 1 <br />

V <br />

2 2 x y z<br />

u v w<br />

1 w v 1 u w 1 v u<br />

<br />

i j k<br />

2 y z 2 z x 2 x y<br />

<br />

4


̇<br />

̇<br />

57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

5<br />

The vorticity, ζ, is defined as a vector that is twice the rotation<br />

vector; that is,<br />

2ω V<br />

The use of the vorticity to describe the rotational characteristics<br />

of the fluid simply eliminates the (1/2) factor associated<br />

with the rotation vector. If V 0 , the flow is<br />

called irrotational.<br />

In addition to the rotation associated with the derivatives<br />

∂u/∂y and ∂v/∂x, these derivatives can cause the fluid element<br />

to undergo an angular deformation, which results in a<br />

change in shape of the element. The change in the original<br />

right angle formed by the lines OA and OB is termed the<br />

shearing strain, δγ,<br />

<br />

The rate of change of δγ is called the rate of shearing strain<br />

or the rate of angular deformation:<br />

̇ [ ( ⁄ ) ( ⁄ ) ]<br />

Similarly,<br />

The rate of angular deformation is related to a corresponding<br />

shearing stress which causes the fluid element to<br />

change in shape.<br />

5


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

6<br />

The Continuity Equation in Differential Form<br />

The governing equations can be expressed in both integral<br />

and differential form. Integral form is useful for large-scale<br />

control volume analysis, whereas the differential form is<br />

useful for relatively small-scale point analysis.<br />

Application of RTT to a fixed elemental control volume<br />

yields the differential form of the governing equations. For<br />

example for conservation of mass<br />

V<br />

A<br />

CS<br />

<br />

<br />

CV<br />

<br />

dV<br />

t<br />

net outflow of mass = rate of decrease<br />

across CS<br />

of mass within CV<br />

6


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

7<br />

Consider a cubical element oriented so that its sides are to<br />

the (x,y,z) axes<br />

<br />

<br />

u <br />

x<br />

<br />

<br />

outlet mass flux<br />

u<br />

dx<br />

dydz<br />

inlet mass flux<br />

udydz<br />

Taylor series expansion<br />

retaining only first order term<br />

We assume that the element is infinitesimally small such<br />

that we can assume that the flow is approximately one dimensional<br />

through each face.<br />

The mass flux terms occur on all six faces, three inlets, and<br />

three outlets. Consider the mass flux on the x faces<br />

x<br />

<br />

<br />

<br />

ρu ρudx dydz<br />

x<br />

<br />

<br />

ρudydz<br />

<br />

= ( u) dxdydz<br />

x <br />

V<br />

flux outflux influx<br />

Similarly for the y and z faces<br />

<br />

yflux<br />

( v)dxdydz<br />

y<br />

z<br />

flux<br />

<br />

( w)dxdydz<br />

z<br />

7


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

8<br />

The total net mass outflux must balance the rate of decrease<br />

of mass within the CV which is<br />

<br />

dxdydz<br />

t<br />

Combining the above expressions yields the desired result<br />

<br />

<br />

( u)<br />

( v)<br />

( w)<br />

dxdydz 0<br />

t x y z<br />

<br />

<br />

dV<br />

<br />

<br />

t<br />

<br />

<br />

( u)<br />

<br />

x<br />

<br />

( v)<br />

<br />

y<br />

<br />

<br />

( w)<br />

z<br />

0<br />

per unit V<br />

differential form of continuity<br />

equations<br />

<br />

(<br />

V)<br />

0<br />

t<br />

<br />

V V<br />

D<br />

V<br />

Dt<br />

0<br />

D<br />

Dt<br />

<br />

<br />

t<br />

V <br />

Nonlinear 1 st order PDE; ( unless = constant, then linear)<br />

Relates V to satisfy kinematic condition of mass conservation<br />

Simplifications:<br />

1. Steady flow: ( V)<br />

0<br />

2. = constant: V 0<br />

8


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

9<br />

u<br />

v<br />

w<br />

i.e., 0<br />

x<br />

y<br />

z<br />

3D<br />

u<br />

x<br />

<br />

v<br />

y<br />

0<br />

2D<br />

The continuity equation in Cylindrical Polar Coordinates<br />

The velocity at some arbitrary point P can be expressed as<br />

V vrer ve <br />

vze<br />

z<br />

The continuity equation:<br />

<br />

1rvr 1v<br />

v<br />

<br />

z<br />

0<br />

t r r r <br />

z<br />

For steady, compressible flow<br />

1rvr 1v<br />

vz<br />

0<br />

r r r <br />

z<br />

For incompressible fluids (for steady or unsteady flow)<br />

1rvr<br />

1v<br />

vz<br />

0<br />

r r r <br />

z<br />

9


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

10<br />

The Stream Function<br />

Steady, incompressible, plane, two-dimensional flow represents<br />

one of the simplest types of flow of practical importance.<br />

By plane, two-dimensional flow we mean that<br />

there are only two velocity components, such as u and v,<br />

when the flow is considered to be in the x–y plane. For this<br />

flow the continuity equation reduces to<br />

u<br />

v<br />

0<br />

x<br />

y<br />

We still have two variables, u and v, to deal with, but they<br />

must be related in a special way as indicated. This equation<br />

suggests that if we define a function ψ(x, y), called the<br />

stream function, which relates the velocities as<br />

<br />

<br />

u , v <br />

y<br />

x<br />

then the continuity equation is identically satisfied:<br />

2 2<br />

<br />

0<br />

x y y x xy xy<br />

Velocity and velocity components along a streamline<br />

10


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

11<br />

Another particular advantage of using the stream function<br />

is related to the fact that lines along which ψ is constant are<br />

streamlines.The change in the value of ψ as we move from<br />

one point (x, y) to a nearby point (x + dx, y + dy) along a<br />

line of constant ψ is given by the relationship:<br />

<br />

d dx dy vdx udy 0<br />

x<br />

y<br />

and, therefore, along a line of constant ψ<br />

dy v<br />

<br />

dx u<br />

The flow between two streamlines<br />

The actual numerical value associated with a particular<br />

streamline is not of particular significance, but the change<br />

in the value of ψ is related to the volume rate of flow. Let<br />

dq represent the volume rate of flow (per unit width perpendicular<br />

to the x–y plane) passing between the two<br />

streamlines.<br />

<br />

<br />

dq udy vdx dx dy d<br />

x<br />

y<br />

Thus, the volume rate of flow, q, between two streamlines<br />

such as ψ1 and ψ2, can be determined by integrating to<br />

yield:<br />

11


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

12<br />

q<br />

<br />

<br />

2<br />

d <br />

1<br />

<br />

2 1<br />

In cylindrical coordinates the continuity equation for incompressible,<br />

plane, two-dimensional flow reduces to<br />

1rvr<br />

1v<br />

0<br />

r r r <br />

and the velocity components, v r and v θ , can be related to the<br />

stream function, ψ(r, θ), through the equations<br />

1 <br />

<br />

vr<br />

, v<br />

<br />

r <br />

r<br />

Navier-Stokes Equations<br />

Differential form of momentum equation can be derived by<br />

applying control volume form to elemental control volume<br />

The differential equation of linear momentum: elemental<br />

fluid volume approach<br />

12


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

13<br />

⏟<br />

∫<br />

( )<br />

∫<br />

⏟<br />

( )<br />

̂<br />

(1) = ( ) ( )<br />

(2) = [ ( ) ⏟ ( )<br />

⏟<br />

⏟ ( )]<br />

=[ ]<br />

combining and making use of the continuity equation yields<br />

[ { ( )<br />

⏟ } ( )]<br />

or<br />

where<br />

13


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

14<br />

Body forces are due to external fields such as gravity or<br />

magnetics. Here we only consider a gravitational field; that<br />

is,<br />

F<br />

and<br />

i.e.,<br />

dFgrav<br />

gdxdydz<br />

g gkˆ<br />

for g z<br />

f body gkˆ<br />

body<br />

Surface forces are due to the stresses that act on the sides of<br />

the control surfaces<br />

symmetric ( ij = ji )<br />

ij = - p ij + ij<br />

2 nd order tensor<br />

normal pressure<br />

viscous stress<br />

ij = 1<br />

ij = 0<br />

i = j<br />

i j<br />

= -p+ xx xy xz<br />

yx -p+ yy yz<br />

zx zy -p+ zz<br />

As shown before for p alone it is not the stresses themselves<br />

that cause a net force but their gradients.<br />

<br />

<br />

x<br />

<br />

y<br />

<br />

z<br />

dF x,surf = <br />

<br />

<br />

<br />

<br />

dxdydz<br />

<br />

<br />

<br />

p<br />

x<br />

xx<br />

<br />

x<br />

xy<br />

<br />

y<br />

= <br />

<br />

<br />

<br />

<br />

dxdydz<br />

xx<br />

xy<br />

xz<br />

<br />

<br />

<br />

z<br />

xz<br />

<br />

<br />

14


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

15<br />

This can be put in a more compact form by defining vector<br />

stress on x-face<br />

<br />

x<br />

<br />

xx<br />

î <br />

xy<br />

ĵ<br />

<br />

xz<br />

kˆ<br />

and noting that<br />

p<br />

<br />

dF x,surf =<br />

<br />

x dxdydz<br />

x<br />

<br />

p<br />

f x,surf = x<br />

per unit volume<br />

x<br />

similarly for y and z<br />

p<br />

f y,surf = y<br />

y yxî<br />

yyĵ<br />

yzkˆ<br />

y<br />

f z,surf =<br />

p<br />

z<br />

z zxî<br />

zyĵ<br />

zzkˆ<br />

z<br />

finally if we define<br />

î ĵ<br />

kˆ then<br />

ij<br />

x<br />

y<br />

z<br />

f<br />

surf<br />

p<br />

ij<br />

ij<br />

ij pij<br />

ij<br />

15


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

16<br />

Putting together the above results<br />

f<br />

f<br />

body<br />

f<br />

surf<br />

<br />

DV<br />

Dt<br />

f body gkˆ<br />

f p<br />

<br />

surface<br />

DV V<br />

a VV<br />

Dt t<br />

ij<br />

a gkˆ<br />

p<br />

<br />

ij<br />

inertia body<br />

force force surface surface force<br />

due to force due due to viscous<br />

gravity to p shear and normal<br />

stresses<br />

16


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

17<br />

For Newtonian fluid the shear stress is proportional to the<br />

rate of strain, which for incompressible flow can be written<br />

( )<br />

where,<br />

= coefficient of viscosity<br />

= rate of strain tensor<br />

( ) ( )<br />

=<br />

( ) ( )<br />

[<br />

( ) ( )<br />

]<br />

Ex) 1-D flow<br />

̂ ( )<br />

where,<br />

( ) ( )<br />

⏟ ⏟<br />

(<br />

)<br />

̂<br />

( ) Navier-Stokes Equation<br />

Continuity Equation<br />

17


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

18<br />

Four equations in four unknowns: V and p<br />

Difficult to solve since 2 nd order nonlinear PDE<br />

x: [ ] [ ]<br />

y: [ ] [ ]<br />

z: [ ] [ ]<br />

u<br />

x<br />

v<br />

<br />

y<br />

w<br />

<br />

z<br />

0<br />

Navier-Stokes equations can also be written in other coordinate<br />

systems such as cylindrical, spherical, etc.<br />

There are about 80 exact solutions for simple geometries.<br />

For practical geometries, the equations are reduced to algebraic<br />

form using finite differences and solved using computers.<br />

18


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

19<br />

Ex) Exact solution for laminar incompressible steady flow<br />

in a circular pipe<br />

Use cylindrical coordinates with assumptions<br />

: Fully-developed flow<br />

: Flow is parallel to the wall<br />

Continuity equation:<br />

( )<br />

i.e.,<br />

B.C. ( ) <br />

19


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

20<br />

Momentum equation:<br />

( )<br />

[ ( ) ]<br />

( )<br />

[ ( ) ]<br />

( )<br />

[ ( ) ]<br />

or<br />

(1)<br />

(2)<br />

[ ( )] (3)<br />

where,<br />

Equations (1) and (2) can be integrated to give<br />

( ) ( ) ( )<br />

pressure is hydrostatic and ⁄ is not a function<br />

of or<br />

20


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

21<br />

Equation (3) can be written in the from<br />

( )<br />

and integrated (using the fact that ⁄ = constant) to<br />

give<br />

( )<br />

Integrating again we obtain<br />

( )<br />

B.C.<br />

( ) <br />

( ) ( )<br />

( ) ( )<br />

at any cross section the velocity distribution is parabolic<br />

21


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

22<br />

1) Flow rate :<br />

∫ ∫ ( )<br />

where, ( )<br />

If the pressure drops over a length :<br />

2) Mean velocity :<br />

( ) ( )<br />

3) Maximum velocity :<br />

( ) ( )<br />

<br />

( )<br />

22


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

23<br />

4) Wall shear stress ( ) :<br />

( )<br />

where<br />

⏟ ( )<br />

Thus, at the wall (i.e., ),<br />

( )<br />

and with ,<br />

|( ) |<br />

Note: Only valid for laminar flows. In general, the flow<br />

remains laminar for Reynolds numbers, Re = ( ) ⁄ ,<br />

below 2100. Turbulent flow in tubes is considered in <strong>Chapter</strong><br />

8.<br />

23


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

24<br />

Differential Analysis of Fluid Flow<br />

We now discuss a couple of exact solutions to the Navier-<br />

Stokes equations. Although all known exact solutions<br />

(about 80) are for highly simplified geometries and flow<br />

conditions, they are very valuable as an aid to our understanding<br />

of the character of the NS equations and their solutions.<br />

Actually the examples to be discussed are for internal<br />

flow (<strong>Chapter</strong> 8) and open channel flow (<strong>Chapter</strong><br />

10), but they serve to underscore and display viscous flow.<br />

Finally, the derivations to follow utilize differential analysis.<br />

See the text for derivations using CV analysis.<br />

Couette Flow<br />

boundary conditions<br />

First, consider flow due to the relative motion of two parallel<br />

plates<br />

u Continuity 0<br />

x<br />

d u<br />

Momentum 0 <br />

2<br />

dy<br />

2<br />

u = u(y)<br />

v = o<br />

p<br />

p<br />

<br />

x<br />

y<br />

0<br />

or by CV continuity and momentum equations:<br />

24


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

25<br />

u y<br />

u<br />

2<br />

u 1 = u 2<br />

1 <br />

y<br />

<br />

Fx<br />

uV<br />

dA<br />

Q u2<br />

u1<br />

0<br />

dp d<br />

<br />

py<br />

p<br />

xy<br />

x<br />

dyx<br />

= 0<br />

dx dy <br />

d<br />

0<br />

dy<br />

d du <br />

i.e. 0<br />

dy dy <br />

2<br />

d u<br />

0<br />

2<br />

dy<br />

from momentum equation<br />

<br />

du C<br />

dy<br />

C<br />

u y <br />

<br />

D<br />

u(0) = 0 D = 0<br />

U<br />

u y<br />

t<br />

du<br />

<br />

dy<br />

u(t) = U C =<br />

U<br />

<br />

t<br />

U<br />

<br />

t<br />

constant<br />

25


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

26<br />

Generalization for inclined flow with a constant pressure<br />

gradient<br />

u Continutity 0<br />

x<br />

d u<br />

0 p z<br />

<br />

x<br />

dy<br />

Momentum <br />

2<br />

2<br />

u = u(y)<br />

v = o<br />

p<br />

0<br />

y<br />

i.e.,<br />

2<br />

d u dh<br />

h = p/ +z = constant<br />

2<br />

dy dx<br />

which can be integrated twice to yield<br />

<br />

du<br />

dy<br />

u <br />

<br />

dh<br />

dx<br />

dh<br />

dx<br />

y<br />

2<br />

y A<br />

2<br />

Ay B<br />

dz<br />

plates horizontal 0<br />

dx<br />

dz<br />

plates vertical =-1 dx<br />

26


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

27<br />

now apply boundary conditions to determine A and B<br />

u(y = 0) = 0 B = 0<br />

u(y = t) = U<br />

U<br />

<br />

dh<br />

dx<br />

2<br />

t<br />

2<br />

At<br />

A<br />

<br />

U<br />

t<br />

<br />

dh<br />

dx<br />

t<br />

2<br />

dh y<br />

u(y) <br />

dx 2<br />

dh<br />

<br />

2<br />

dx<br />

2<br />

1 U<br />

<br />

<br />

<br />

t<br />

U<br />

ty y<br />

2 <br />

t<br />

dh<br />

dx<br />

= y<br />

This equation can be put in non-dimensional form:<br />

2<br />

u t<br />

dh y y y<br />

1<br />

<br />

U 2U<br />

dx t t t<br />

t<br />

2<br />

<br />

<br />

<br />

define: P = non-dimensional pressure gradient<br />

t 2 dh<br />

p<br />

= h z<br />

2U<br />

dx<br />

<br />

Y = y/t<br />

u<br />

PY(1<br />

Y) Y<br />

U<br />

parabolic velocity profile<br />

1 dp<br />

<br />

2U<br />

<br />

<br />

dx<br />

z 2<br />

<br />

dz<br />

dx<br />

<br />

<br />

27


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

28<br />

u<br />

U<br />

<br />

2<br />

Py Py<br />

<br />

2<br />

t t<br />

<br />

y<br />

t<br />

q<br />

u<br />

t<br />

udy<br />

<br />

0<br />

q<br />

t<br />

t<br />

<br />

U<br />

0<br />

<br />

t<br />

<br />

dy<br />

tu<br />

U<br />

t 0<br />

P<br />

<br />

y <br />

t<br />

P 2 y<br />

y <br />

2 <br />

dy<br />

t t <br />

=<br />

Pt<br />

2<br />

<br />

Pt<br />

3<br />

<br />

t<br />

2<br />

u<br />

U<br />

<br />

P<br />

6<br />

<br />

1<br />

2<br />

u<br />

2<br />

t <br />

<br />

12<br />

<br />

dh <br />

<br />

dx <br />

U<br />

2<br />

ut<br />

For laminar flow 1000<br />

<br />

Re crit 1000<br />

28


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

29<br />

The maximum velocity occurs at the value of y for which:<br />

du d u P 2P 1<br />

0 0 y <br />

2<br />

dy dy U t t t<br />

t t t<br />

y P<br />

1<br />

@ u max<br />

2P 2 2P<br />

for U = 0, y = t/2<br />

<br />

u<br />

max<br />

u<br />

<br />

y<br />

max<br />

<br />

<br />

UP<br />

4<br />

<br />

U<br />

2<br />

<br />

U<br />

4P<br />

note: if U = 0:<br />

u<br />

u<br />

max<br />

<br />

P<br />

6<br />

P<br />

4<br />

<br />

2<br />

3<br />

The shape of the velocity profile u(y) depends on P:<br />

dh<br />

1. If P > 0, i.e., 0 the pressure decreases in the<br />

dx<br />

direction of flow (favorable pressure gradient) and the<br />

velocity is positive over the entire width<br />

<br />

dh<br />

dx<br />

<br />

d<br />

dx<br />

<br />

<br />

<br />

p<br />

<br />

<br />

z<br />

<br />

<br />

dp<br />

dx<br />

sin<br />

<br />

dp<br />

a) 0<br />

dx<br />

dp<br />

b) sin<br />

<br />

dx<br />

29


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

30<br />

1. If P < 0, i.e., dh dx 0 the pressure increases in the direction<br />

of flow (adverse pressure gradient) and the velocity<br />

over a portion of the width can become negative<br />

(backflow) near the stationary wall. In this case the<br />

dragging action of the faster layers exerted on the fluid<br />

particles near the stationary wall is insufficient to overcome<br />

the influence of the adverse pressure gradient.<br />

dp<br />

dx<br />

dp<br />

sin<br />

0<br />

sin<br />

<br />

dx<br />

or<br />

sin <br />

dp<br />

dx<br />

dh<br />

2. If P = 0, i.e., 0 the velocity profile is linear<br />

dx<br />

U<br />

u y<br />

t<br />

dp<br />

a) 0 and = 0 Note: we derived<br />

dx<br />

this special case<br />

dp<br />

b) sin<br />

<br />

dx<br />

u<br />

For U = 0 the form PY1<br />

Y<br />

Y is not appropriate<br />

U<br />

u = UPY(1-Y)+UY<br />

t 2 dh<br />

= Y1<br />

Y<br />

UY<br />

2<br />

dx<br />

t<br />

2<br />

dh<br />

dx<br />

Now let U = 0: u Y1<br />

Y<br />

2<br />

30


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

31<br />

3. Shear stress distribution<br />

Non-dimensional velocity distribution<br />

where<br />

u<br />

U<br />

2<br />

t dh<br />

P <br />

2U dx<br />

y<br />

Y <br />

t<br />

* u<br />

Shear stress<br />

u<br />

U<br />

*<br />

u PY 1Y Y<br />

is the non-dimensional velocity,<br />

<br />

<br />

is the non-dimensional pressure gradient<br />

is the non-dimensional coordinate.<br />

du<br />

<br />

dy<br />

In order to see the effect of pressure gradient on shear<br />

stress using the non-dimensional velocity distribution, we<br />

define the non-dimensional shear stress:<br />

Then<br />

where<br />

*<br />

<br />

*<br />

<br />

<br />

1<br />

<br />

2 U<br />

2<br />

<br />

<br />

<br />

<br />

1 Ud u U 2<br />

du<br />

<br />

1 2<br />

U<br />

td y t Ut dY<br />

2<br />

2<br />

2PY<br />

P 1<br />

Ut<br />

2<br />

2PY<br />

P 1<br />

Ut<br />

<br />

A 2PY P 1<br />

2<br />

A 0 is a positive constant.<br />

Ut<br />

So the shear stress always varies linearly with Y across any<br />

section.<br />

<br />

*<br />

31


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

32<br />

At the lower wall Y 0<br />

:<br />

At the upper wall <br />

<br />

*<br />

1<br />

lw<br />

A P<br />

1<br />

<br />

*<br />

1<br />

<br />

Y :<br />

uw<br />

A P<br />

For favorable pressure gradient, the lower wall shear stress<br />

is always positive:<br />

1. For small favorable pressure gradient 0P<br />

1<br />

:<br />

*<br />

0 and 0<br />

*<br />

lw<br />

2. For large favorable pressure gradient 1<br />

*<br />

lw<br />

uw<br />

0 and 0<br />

*<br />

uw<br />

P :<br />

<br />

<br />

<br />

P<br />

<br />

P 1<br />

0 1<br />

For adverse pressure gradient, the upper wall shear stress is<br />

always positive:<br />

1. For small adverse pressure gradient 1 P 0:<br />

*<br />

0 and 0<br />

*<br />

lw<br />

2. For large adverse pressure gradient 1<br />

*<br />

lw<br />

uw<br />

*<br />

0 and 0<br />

uw<br />

P :<br />

32


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

33<br />

<br />

<br />

1 P 0<br />

P 1<br />

For U 0 , i.e., channel flow, the above non-dimensional<br />

form of velocity profile is not appropriate. Let’s use dimensional<br />

form:<br />

2<br />

t dh<br />

dh<br />

u <br />

<br />

Y Y y t y<br />

2<br />

dx<br />

2<br />

dx<br />

<br />

1<br />

<br />

Thus the fluid always flows in the direction of decreasing<br />

piezometric pressure or piezometric head because<br />

<br />

0, y 0<br />

2 and ty 0 . So if dh<br />

dx is negative, u is positive;<br />

if dh<br />

dx is positive, u is negative.<br />

Shear stress:<br />

du dh 1 <br />

t y <br />

dy 2 dx 2 <br />

Since<br />

1 <br />

t<br />

y0<br />

2 <br />

, the sign of shear stress is always opposite<br />

to the sign of piezometric pressure gradient dh<br />

, and the<br />

magnitude of is always maximum at both walls and zero<br />

at centerline of the channel.<br />

dx<br />

33


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

34<br />

dh<br />

For favorable pressure gradient, 0<br />

dx , 0<br />

For adverse pressure gradient, 0<br />

dx , 0<br />

dh<br />

Flow down an inclined plane<br />

dh<br />

0<br />

dx dh<br />

0<br />

dx <br />

uniform flow velocity and depth do not<br />

change in x-direction<br />

Continuity 0<br />

dx<br />

<br />

du <br />

<br />

34


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

35<br />

d u<br />

x-momentum 0 p<br />

z<br />

<br />

2<br />

x<br />

dy<br />

<br />

y-momentum p<br />

z<br />

y<br />

dp 0<br />

dx<br />

0 hydrostatic pressure variation<br />

2<br />

2<br />

d u<br />

<br />

2<br />

dy<br />

sin<br />

<br />

du<br />

dy<br />

<br />

<br />

<br />

sin y<br />

c<br />

u<br />

2<br />

y<br />

sin <br />

2<br />

Cy D<br />

du<br />

dy<br />

yd<br />

0<br />

<br />

<br />

<br />

sin d<br />

c c<br />

<br />

<br />

<br />

sin d<br />

u(0) = 0 D = 0<br />

u<br />

2<br />

y<br />

sin <br />

2<br />

<br />

<br />

sin dy<br />

<br />

<br />

2<br />

= sin y2d<br />

y<br />

35


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

36<br />

gsin <br />

2<br />

u(y) = y2d<br />

y<br />

q<br />

<br />

d<br />

3<br />

<br />

2 y<br />

udy sin dy<br />

<br />

0 2<br />

3<br />

= 1 <br />

d<br />

3 sin <br />

3 <br />

<br />

<br />

<br />

<br />

<br />

d<br />

0<br />

discharge per<br />

unit width<br />

V<br />

avg<br />

<br />

q<br />

d<br />

<br />

1<br />

3<br />

<br />

<br />

d<br />

2<br />

sin <br />

2<br />

gd<br />

3<br />

sin <br />

in terms of the slope S o = tan sin <br />

V<br />

<br />

2<br />

gd S<br />

3 <br />

o<br />

Exp. show Re crit 500, i.e., for Re > 500 the flow will become<br />

turbulent<br />

p<br />

y<br />

cos<br />

Re <br />

Vd<br />

crit 500<br />

<br />

p cos<br />

y C<br />

d<br />

p po cosd<br />

C<br />

36


57:020 Mechanics of Fluids and Transport Processes <strong>Chapter</strong> 6<br />

Professor Fred Stern Fall 2013<br />

37<br />

p cos<br />

d y<br />

p<br />

i.e., o<br />

* p(d) > p o<br />

* if = 0 p = (d y) + p o<br />

entire weight of fluid imposed<br />

if = /2<br />

p = p o<br />

no pressure change through the fluid<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!