11.07.2014 Views

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE UNIVERSITY OF NEW SOUTH WALES<br />

SCHOOL OF PHYSICS<br />

PHYS3050 NUCLEAR PHYSICS<br />

TUTORIAL PROBLEMS<br />

1. Using the r α A 1/3 observation, estimate the average mass density <strong>of</strong> a nucleus.<br />

ρ<br />

M<br />

A×<br />

u<br />

A×<br />

1.66×<br />

10<br />

3×<br />

1.66 × 10<br />

−27<br />

−27<br />

17 −3<br />

= = =<br />

2.3 10<br />

4 3<br />

1<br />

=<br />

= × kg m<br />

4<br />

3 3<br />

−15<br />

3<br />

V π r<br />

4 (1.2 10 )<br />

3<br />

π ( R A ) × ×<br />

3 o<br />

π<br />

It is interesting to compare this value with the highest ‘atomic’ density found in the Periodic Table<br />

which is ~ 22600 kg m -3 for the metals Osmium and Iridium, a factor <strong>of</strong> 10 billion times smaller !<br />

2. [Ashby & Miller 13.3]. Estimate the rest energy <strong>of</strong> 1 Å 3 <strong>of</strong> nuclear matter.<br />

2 2<br />

17 −30<br />

16<br />

E = mc = ρ Vc = 2.3×<br />

10 × 10 × 9 × 10 = 20. 7 kJ<br />

3. [A&M 13.8]. Calculate the distance <strong>of</strong> closest approach <strong>of</strong> a 12 MeV deuteron to a Silver<br />

nucleus.<br />

E = 12 × 10<br />

6<br />

× 1.6×<br />

10<br />

−19<br />

q qAg<br />

9 × 10<br />

J = =<br />

4πε<br />

r<br />

o<br />

× 1×<br />

47 × (1.6 × 10<br />

r<br />

9<br />

−19<br />

2<br />

d −15<br />

4. [Krane 3.9]. Calculate the binding energy per nucleon <strong>of</strong> (a) 7 Li and (b) 56 Fe.<br />

)<br />

∴r<br />

= 5.64 × 10<br />

m<br />

7<br />

B(<br />

Li)<br />

=<br />

= 39.246MeV<br />

B(<br />

56<br />

Fe)<br />

=<br />

1<br />

7 2<br />

[ 3m(<br />

H ) + 4mn<br />

− m(<br />

Li)<br />

] c = [ 3(1.00782504u<br />

) + 4(1.008665u<br />

) − 7.016003u]<br />

∴<br />

B / A = 39.246 / 7 = 5.607MeV<br />

1<br />

56<br />

[ 26m(<br />

H ) + 30mn<br />

− m(<br />

Fe)<br />

]<br />

= 492.262MeV<br />

∴ B / A = 492.262 /56 = 8.790MeV<br />

c<br />

2<br />

(931.5 MeV / u)<br />

5. [K 3.11]. Calculate the mass defect <strong>of</strong> 238 U.<br />

∆ =<br />

238<br />

[ m(<br />

U ) − 238]<br />

= 47.306MeV<br />

6. [K 3.13]. Calculate the neutron separation energy <strong>of</strong> 91 Zr.<br />

S<br />

n<br />

=<br />

90<br />

91<br />

[ m(<br />

Zr)<br />

− m(<br />

Zr)<br />

+ mn<br />

]<br />

= 7.195MeV<br />

c<br />

2<br />

c<br />

2<br />

= (238.050785 − 238) × 931.5 MeV / u<br />

7. [K 3.13]. Calculate the proton separation energy <strong>of</strong> 197 Au.<br />

196<br />

197<br />

1<br />

[ m(<br />

Pt)<br />

− m(<br />

Au)<br />

+ m(<br />

H )]<br />

S p =<br />

= 5. 783MeV<br />

= (89.904703u<br />

− 90.905644u<br />

+ 1.008665u)<br />

× 931.5 MeV / u<br />

c<br />

2<br />

= (195.964926u<br />

−196.966543u<br />

+ 1.007825u)<br />

× 931.5 MeV / u<br />

8. [A&M 14.7] A π o meson decays into two gamma-rays. If the π o is at rest, calculate the<br />

energy <strong>of</strong> each gamma-ray.<br />

E 1 2 1<br />

m o c = × 134.9745 MeV = 67. 4872MeV<br />

γ =<br />

2 π<br />

2


9. [K 4.1]. Calculate the minimum photon energy necessary to dissociate the deuteron i.e.<br />

γ + d → p + n. Take the deuteron binding energy to be 2.224589 MeV and use a nonrelativistic<br />

approach.<br />

Conserve energy and linear momentum:<br />

p<br />

γ<br />

→ E<br />

= p<br />

γ<br />

p<br />

+ p<br />

= [ m<br />

p<br />

n<br />

&<br />

+ m ] c<br />

n<br />

E<br />

2<br />

γ<br />

+ m<br />

⎪⎧<br />

⋅ ⎨1<br />

−<br />

⎪⎩<br />

d<br />

c<br />

2<br />

= m<br />

2md<br />

m + m<br />

p<br />

p<br />

c<br />

n<br />

2<br />

+ K<br />

p<br />

+ m c<br />

+ K<br />

⎪⎫<br />

−1⎬<br />

= 2.226219MeV<br />

⎪⎭<br />

10. [A&M 14.11]. On the basis <strong>of</strong> tabulated masses, which <strong>of</strong> the isobars, 17 N, 17 O and 17 F, would<br />

you expect to be the most stable ? Atomic masses are:<br />

17<br />

17<br />

17<br />

M ( N)<br />

= 17.008450 u,<br />

M ( O)<br />

= 16.999131u,<br />

M ( F)<br />

= 17.002095 u,<br />

17 O has the lowest mass and therefore the highest binding energy.<br />

11. [K 5.1] Give the expected shell-model spin and parity assignments for the ground states <strong>of</strong> (a)<br />

7 Li; (b) 11 B; (c) 15 C; (d) 17 F; (e) 31 P and (f) 141 Pr. [(a) 3/2 and –1; (b) 3/2 and –1; (c) 5/2 and +1;<br />

(d) 5/2 and +1; (e) 1/2 and +1; (f) 5/2 and +1]. See left-hand side <strong>of</strong> figure 5.6, p123.<br />

n<br />

2<br />

n<br />

( a)<br />

( b)<br />

( c)<br />

( d)<br />

( e)<br />

( f )<br />

Li,<br />

Z = 3, N = 4. p in 1p<br />

7<br />

11<br />

15<br />

31<br />

B,<br />

Z = 5, N = 6. p in 1p<br />

C,<br />

Z = 6, N = 9.<br />

17<br />

F,<br />

Z = 9, N = 8. p in 1d<br />

P,<br />

Z = 15, N = 16. p in 2s<br />

141<br />

n in 1d<br />

3<br />

2<br />

3<br />

2<br />

5<br />

2<br />

5<br />

2<br />

1<br />

2<br />

Pr, Z = 59, N = 82. p in 2d<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 1/ 2, π = ( −1)<br />

5<br />

2<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

l<br />

l<br />

l<br />

l<br />

l<br />

1<br />

1<br />

2<br />

2<br />

= ( −1)<br />

l<br />

= −1∴<br />

I<br />

= −1∴<br />

I<br />

= + 1∴<br />

I<br />

= + 1∴<br />

I<br />

0<br />

= ( −1)<br />

= + 1∴<br />

I<br />

2<br />

π<br />

π<br />

π<br />

π<br />

=<br />

=<br />

=<br />

π<br />

=<br />

3 −<br />

2<br />

3 −<br />

2<br />

5 +<br />

2<br />

= + 1∴<br />

I<br />

5 +<br />

2<br />

=<br />

1 +<br />

2<br />

π<br />

=<br />

5 +<br />

2<br />

12. [K5.7] Calculate the shell-model quadrupole moment <strong>of</strong> 209 Bi (I = 9/2 – ). (Experimental value =<br />

–0.37 b).<br />

Q<br />

=<br />

Q<br />

sp<br />

2 j −1<br />

= −<br />

2( j + 1)<br />

⎛<br />

9<br />

2 ⋅ −1⎞<br />

2<br />

3 2<br />

= −⎜<br />

⎟<br />

× × 1.2 × 209<br />

11<br />

2<br />

⎝ ⋅ 5<br />

2 ⎠<br />

r<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

2<br />

3<br />

= −22.13<br />

fm<br />

2<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

= −0.22b<br />

13. [K5.2] <strong>The</strong> low-lying energy levels <strong>of</strong> 13 C are: Ground state (1/2–); 3.09 MeV (1/2+); 3.68<br />

MeV (3/2–) and 3.85 MeV (5/2+). Interpret these states according to the shell-model.<br />

13<br />

C , Z = 6, N = 7.<br />

Protons are paired; the energy states <strong>of</strong> 13 C are determined by the unpaired (7 th ) neutron.<br />

2<br />

0<br />

A<br />

2<br />

3


2s (1/2)<br />

1d (5/2)<br />

1p (1/2)<br />

1p (3/2)<br />

1s (1/2)<br />

1<br />

<strong>The</strong>refore, the energy states are (L to R):<br />

2<br />

−<br />

1<br />

,<br />

2<br />

+<br />

3<br />

,<br />

2<br />

−<br />

5<br />

,<br />

2<br />

+<br />

14. [K10.7]. A certain decay process leads to final states in an even-Z, even-N nucleus and gives<br />

only three γ rays <strong>of</strong> energies 100, 200 and 300 keV, whose multipolarities are E1, E2 and E3,<br />

respectively. Construct two possible level schemes for this nucleus and label the states with their<br />

most likely spin-parity assignments.<br />

<strong>The</strong> parity <strong>of</strong> the En γ-ray is (-1) n so E1 and E3 involve a change in parity between the two<br />

nuclear levels involved. E2 involves no such change. Furthermore, the ground state <strong>of</strong> the even-even<br />

nucleus is 0 + . <strong>The</strong> ‘n’ in En gives the change in nuclear spin.<br />

E1 E2 E3 E1 E2 E3<br />

3 – 300 keV 3 – 300 keV<br />

2 +<br />

200 keV<br />

1 –<br />

100 keV<br />

0 +<br />

0 keV<br />

0 +<br />

0 keV


15. [Serway et al 15.17]. By considering the quark makeup <strong>of</strong> the various particles, deduce the<br />

identity <strong>of</strong> the unknown particle in the reaction<br />

Σ<br />

0<br />

+ p → Σ<br />

+<br />

+ γ + ?<br />

Σ<br />

u<br />

d<br />

0<br />

: 3<br />

= uds;<br />

p = uud;<br />

Σ<br />

: 2<br />

s :1 → 1<br />

Mystery particle has quark makeup udd i.e. neutron.<br />

16. [K9.9]. <strong>The</strong> complete processes are:<br />

3 3<br />

ν + He→<br />

H + e<br />

− 8 8<br />

e + B→<br />

Be + ν<br />

40<br />

K →ν<br />

+ e<br />

+<br />

+<br />

+<br />

40<br />

Ar<br />

→ 2 + ? ∴u<br />

→ 0∴<br />

dd<br />

6<br />

He→<br />

ν +<br />

40<br />

12<br />

+<br />

6<br />

C→<br />

= uus<br />

Li + e<br />

12<br />

−<br />

N + e<br />

−<br />

K →ν<br />

+ e +<br />

17. [K9.4]. <strong>The</strong> maximum kinetic energy <strong>of</strong> the positron spectrum emitted in the decay 11 C→<br />

11 B<br />

Q = K<br />

∴ m(<br />

11<br />

is 1.983±0.003 MeV. Use this information and the known mass <strong>of</strong> 11 B to calculate the mass <strong>of</strong><br />

11 C.<br />

max<br />

β<br />

= 1.983(3) MeV =<br />

⎛ Q ⎞<br />

C)<br />

= ⎜ + m(<br />

2<br />

⎟<br />

⎝ c ⎠<br />

11<br />

B)<br />

+ 2m<br />

11<br />

6<br />

C→<br />

11<br />

5<br />

+<br />

B + β + ν<br />

11<br />

11<br />

[ m(<br />

C)<br />

− m(<br />

B)<br />

− 2me<br />

]<br />

e<br />

c<br />

2<br />

e<br />

+ ν<br />

−<br />

40<br />

Ca<br />

⎧ 1.983(3) MeV ⎫<br />

= ⎨<br />

⎬ + 11.009305u<br />

+ 2(5.485803×<br />

10<br />

⎩931.502<br />

MeV / u ⎭<br />

−4<br />

) = 11.012531(3) u<br />

18. [Serway 45.59]. A by-product <strong>of</strong> some fission reactors is 239 Pu which is an α-emitter with a<br />

half-life <strong>of</strong> 24,120 years. Consider 1 kg <strong>of</strong> 239 Pu at t=0. (a) What is the number <strong>of</strong> 239 Pu nuclei at<br />

t=0 ? (b) What is the initial activity ? (c) For how long would you need to store the Plutonium<br />

until it had decayed to a safe activity level <strong>of</strong> 0.1 Bq ?<br />

( a)<br />

1 nucleus = 239 × 1.66×<br />

10<br />

( b)<br />

( c)<br />

R<br />

0<br />

= λN<br />

0<br />

ln 2<br />

= N<br />

t 1<br />

0.1 = 2.305×<br />

10<br />

2<br />

12<br />

e<br />

0<br />

−27<br />

= 2.305×<br />

10<br />

= 3.97 × 10<br />

12<br />

Bq<br />

∴t<br />

= 1.07 × 10<br />

−λt 6<br />

yrs<br />

−25<br />

kg ∴ N<br />

0<br />

= 1/(3.97 × 10<br />

−25<br />

) = 2.519 × 10<br />

24<br />

19. [A&M 15.14]. Calculate the Q value for the β – decay <strong>of</strong> 108 Ag.<br />

108<br />

47<br />

Ag→<br />

108<br />

48<br />

−<br />

Cd + β + ν<br />

2<br />

Q = ( M P − M D ) c = (107.905952 −107.904176)<br />

u × 931.5MeV<br />

/ u = 1. 65MeV<br />

20. [A&M 15.19]. On the basis <strong>of</strong> Q values, determine if the 98 Tc nucleus can decay by (a) β –<br />

(a)<br />

98<br />

43<br />

decay, (b) β + decay, (c) electron capture.<br />

Tc→<br />

98<br />

44<br />

−<br />

Ru + β + ν<br />

e<br />

2<br />

Q = ( M − M ) c = (97.907215 − 97.905287) u × 931.5MeV<br />

/ u = 1.796MeV<br />

i.<br />

e.<br />

> 0∴Yes<br />

P<br />

D<br />

e


(b)<br />

98<br />

43<br />

Tc→<br />

98<br />

42<br />

+<br />

Mo + β + ν<br />

e<br />

Q = ( M<br />

P<br />

− M<br />

D<br />

i.<br />

e.<br />

> 0∴Yes<br />

− 2m<br />

) c<br />

e<br />

2<br />

= (97.907215 − 97.905407 − 2 × 5.485803×<br />

10<br />

−4<br />

) u × 931.5MeV<br />

/ u = 0.662MeV<br />

(c)<br />

e<br />

+<br />

Tc→<br />

− 98 98<br />

43 42<br />

Mo + ν<br />

e<br />

2<br />

Q = ( M − M ) c = (97.907215 − 97.905407) u × 931.5MeV<br />

/ u = 1.684MeV<br />

i.<br />

e.<br />

> 0∴Yes<br />

P<br />

D<br />

21. [S 46.31]. A 2 MeV neutron is emitted in a fission reactor. If it loses half <strong>of</strong> its kinetic<br />

energy in each collision with a moderator atom, how many collisions must it undergo to achieve<br />

thermal energy (0.039 eV) ?<br />

2<br />

n<br />

6<br />

2 × 10<br />

7<br />

= = 5.13×<br />

10 ∴ n = 25.6 → 26<br />

0.039<br />

22. [S 46.37]. Assume a deuteron and a triton are at rest when they fuse according to<br />

d + t → α + n . This reaction has a Q value <strong>of</strong> 17.6 MeV. Determine the kinetic energies<br />

acquired by the α and the n.<br />

p<br />

2 2<br />

pα<br />

pn<br />

pn & + = 17.6MeV<br />

= Kα<br />

+ K n → K = 3.5MeV<br />

& K n = 14. 1MeV<br />

2m<br />

2m<br />

α = α<br />

α n<br />

23. [Rohlf 11.15]. If the activity <strong>of</strong> a substance drops by a factor <strong>of</strong> 32 in 5 seconds, what is its<br />

half-life ? 32 5<br />

= 2 ∴5s = 5×<br />

t 1 ∴t<br />

1 = 1s<br />

2 2<br />

24. [R 11.26]. Show that the decay n → p + e cannot conserve angular momentum.<br />

All particles have spin 1/2. Two spin-1/2s cannot be combined to yield s=1/2.<br />

25. [R 17.16]. Which <strong>of</strong> the following strong interactions are allowed ? If a process is<br />

forbidden, state the reason.<br />

0<br />

p + p → π<br />

−<br />

π + p → K<br />

+<br />

p + p → π<br />

0<br />

p + p → π<br />

K<br />

−<br />

+ n<br />

0<br />

+ p → π + Λ<br />

0<br />

+ n<br />

+ n + n<br />

+<br />

+ π<br />

−<br />

+ π<br />

0<br />

−<br />

Electric Charge Baryon # Strangeness<br />

Yes No Yes<br />

Yes Yes No<br />

No Yes Yes<br />

Yes Yes Yes<br />

Yes Yes Yes


26. [K 18.6]. Analyse the following decays or reactions for possible violations <strong>of</strong> the basic<br />

conservation laws. In each case, state which conservation laws, if any, are violated and through<br />

which interaction the process will most likely proceed (if at all):<br />

( a)<br />

+<br />

π + p → p + p + n<br />

( e)<br />

K<br />

+<br />

→ π<br />

+<br />

+ π<br />

+<br />

0<br />

+ π + π<br />

−<br />

( b)<br />

( c)<br />

Σ<br />

K<br />

+<br />

+<br />

→ n + e<br />

→ π<br />

+<br />

+<br />

+ e<br />

+ ν<br />

+<br />

e<br />

+ e<br />

−<br />

( f )<br />

( g)<br />

K<br />

+<br />

0<br />

→ π<br />

+<br />

+ e<br />

+<br />

Λ + p → Σ<br />

+<br />

+ µ<br />

+ n<br />

−<br />

( d)<br />

−<br />

π + p → Λ + Σ<br />

0<br />

0<br />

( h)<br />

Λ<br />

0<br />

→ p + K<br />

−<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

(h)<br />

conserves B, L e , L µ , S, Q, T & T 3 ; proceeds via the strong interaction<br />

violates S; proceeds via the weak interaction<br />

violates S; proceeds via the weak interaction<br />

violates B, S, T & T 3 ; forbidden due to B-violation<br />

violates conservation <strong>of</strong> energy so forbidden<br />

violates L e & L µ and is forbidden<br />

conserves B, L e , L µ , S, Q, T & T 3 ; proceeds via the strong interaction<br />

violates conservation <strong>of</strong> energy so forbidden<br />

27. [K 18.7]. Analyse the following decays according to their quark content:<br />

( a)<br />

( b)<br />

Ω<br />

K<br />

−<br />

+<br />

→ π<br />

0<br />

→ Λ + K<br />

+<br />

+ π<br />

−<br />

0<br />

( c)<br />

( d)<br />

Ξ<br />

−<br />

0<br />

→ Λ + π<br />

+<br />

−<br />

Λc → p + K<br />

0<br />

( a)<br />

s → u + W<br />

( b)<br />

( c)<br />

Ω<br />

K<br />

Ξ<br />

−<br />

−<br />

−<br />

= sss;<br />

Λ<br />

−<br />

& W<br />

+<br />

0<br />

= us;<br />

π = ud ; π<br />

= dss;<br />

Λ<br />

0<br />

0<br />

= uds;<br />

K<br />

−<br />

−<br />

→ u + d<br />

−<br />

= uds;<br />

π<br />

= us sss → uds + us ∴ s → d & a uu pair created<br />

= uu + dd ; us → ud + ( uu + dd );<br />

= ud dss → uds + ud<br />

s → u + W<br />

∴ s → u + W<br />

→ u + d<br />

+<br />

0<br />

+<br />

+<br />

( d)<br />

Λ c = udc;<br />

p = uud;<br />

K = ds udc → uud + ds ∴c<br />

→ s + W & W → u + d<br />

−<br />

+<br />

&<br />

&<br />

W<br />

−<br />

W<br />

+<br />

→ u + d


28. [K 18.8]. Analyse the following reactions according to their quark content:<br />

( a)<br />

( b)<br />

K<br />

−<br />

+ p → Ω<br />

−<br />

+ K<br />

+<br />

+<br />

+ K<br />

0<br />

0<br />

0<br />

( c)<br />

+ p → Ξ<br />

+ K<br />

p + p → p + π + Λ + K<br />

( d)<br />

π + n → ∆ + π<br />

K<br />

−<br />

−<br />

−<br />

−<br />

+<br />

0<br />

( a)<br />

us + uud → sss + us + ds ∴ uu → ss + ss<br />

( b)<br />

uud + uud → uud + ud + uds + ds ∴ create dd<br />

−<br />

− +<br />

( c)<br />

K + p → Ξ + K<br />

us + uud → dss + us ∴ uu → ss<br />

( d)<br />

K<br />

−<br />

+ p → Ω<br />

+ K<br />

+<br />

p + p → p + π + Λ<br />

−<br />

−<br />

π + n → ∆<br />

−<br />

0<br />

+ π<br />

+ K<br />

+ K<br />

ud + udd → ddd + ( uu + dd ) ∴ create dd<br />

+<br />

0<br />

0<br />

0<br />

+ ss<br />

29. [K 17.4]. Find which <strong>of</strong> the following reactions are forbidden by one or more<br />

conservation laws. Give all violated laws in each case.<br />

+<br />

( a)<br />

K + n → Σ + π<br />

( b)<br />

−<br />

+ 0<br />

π + n → K + Λ<br />

( c)<br />

−<br />

0<br />

K + p → n + Λ<br />

+<br />

0<br />

( d)<br />

( e)<br />

π<br />

−<br />

π<br />

+ p → Σ<br />

+ p → Ξ<br />

( f ) d + d →α<br />

+ π<br />

−<br />

+<br />

+ K<br />

−<br />

0<br />

−<br />

+ K<br />

+<br />

+ K<br />

0<br />

(a) S; (b) Q & T 3 ; (c) T & T 3 ; (d) S & T 3 ; (e) S & T 3 and (f) T

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!