11.07.2014 Views

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9. [K 4.1]. Calculate the minimum photon energy necessary to dissociate the deuteron i.e.<br />

γ + d → p + n. Take the deuteron binding energy to be 2.224589 MeV and use a nonrelativistic<br />

approach.<br />

Conserve energy and linear momentum:<br />

p<br />

γ<br />

→ E<br />

= p<br />

γ<br />

p<br />

+ p<br />

= [ m<br />

p<br />

n<br />

&<br />

+ m ] c<br />

n<br />

E<br />

2<br />

γ<br />

+ m<br />

⎪⎧<br />

⋅ ⎨1<br />

−<br />

⎪⎩<br />

d<br />

c<br />

2<br />

= m<br />

2md<br />

m + m<br />

p<br />

p<br />

c<br />

n<br />

2<br />

+ K<br />

p<br />

+ m c<br />

+ K<br />

⎪⎫<br />

−1⎬<br />

= 2.226219MeV<br />

⎪⎭<br />

10. [A&M 14.11]. On the basis <strong>of</strong> tabulated masses, which <strong>of</strong> the isobars, 17 N, 17 O and 17 F, would<br />

you expect to be the most stable ? Atomic masses are:<br />

17<br />

17<br />

17<br />

M ( N)<br />

= 17.008450 u,<br />

M ( O)<br />

= 16.999131u,<br />

M ( F)<br />

= 17.002095 u,<br />

17 O has the lowest mass and therefore the highest binding energy.<br />

11. [K 5.1] Give the expected shell-model spin and parity assignments for the ground states <strong>of</strong> (a)<br />

7 Li; (b) 11 B; (c) 15 C; (d) 17 F; (e) 31 P and (f) 141 Pr. [(a) 3/2 and –1; (b) 3/2 and –1; (c) 5/2 and +1;<br />

(d) 5/2 and +1; (e) 1/2 and +1; (f) 5/2 and +1]. See left-hand side <strong>of</strong> figure 5.6, p123.<br />

n<br />

2<br />

n<br />

( a)<br />

( b)<br />

( c)<br />

( d)<br />

( e)<br />

( f )<br />

Li,<br />

Z = 3, N = 4. p in 1p<br />

7<br />

11<br />

15<br />

31<br />

B,<br />

Z = 5, N = 6. p in 1p<br />

C,<br />

Z = 6, N = 9.<br />

17<br />

F,<br />

Z = 9, N = 8. p in 1d<br />

P,<br />

Z = 15, N = 16. p in 2s<br />

141<br />

n in 1d<br />

3<br />

2<br />

3<br />

2<br />

5<br />

2<br />

5<br />

2<br />

1<br />

2<br />

Pr, Z = 59, N = 82. p in 2d<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 1/ 2, π = ( −1)<br />

5<br />

2<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

l<br />

l<br />

l<br />

l<br />

l<br />

1<br />

1<br />

2<br />

2<br />

= ( −1)<br />

l<br />

= −1∴<br />

I<br />

= −1∴<br />

I<br />

= + 1∴<br />

I<br />

= + 1∴<br />

I<br />

0<br />

= ( −1)<br />

= + 1∴<br />

I<br />

2<br />

π<br />

π<br />

π<br />

π<br />

=<br />

=<br />

=<br />

π<br />

=<br />

3 −<br />

2<br />

3 −<br />

2<br />

5 +<br />

2<br />

= + 1∴<br />

I<br />

5 +<br />

2<br />

=<br />

1 +<br />

2<br />

π<br />

=<br />

5 +<br />

2<br />

12. [K5.7] Calculate the shell-model quadrupole moment <strong>of</strong> 209 Bi (I = 9/2 – ). (Experimental value =<br />

–0.37 b).<br />

Q<br />

=<br />

Q<br />

sp<br />

2 j −1<br />

= −<br />

2( j + 1)<br />

⎛<br />

9<br />

2 ⋅ −1⎞<br />

2<br />

3 2<br />

= −⎜<br />

⎟<br />

× × 1.2 × 209<br />

11<br />

2<br />

⎝ ⋅ 5<br />

2 ⎠<br />

r<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

2<br />

3<br />

= −22.13<br />

fm<br />

2<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

= −0.22b<br />

13. [K5.2] <strong>The</strong> low-lying energy levels <strong>of</strong> 13 C are: Ground state (1/2–); 3.09 MeV (1/2+); 3.68<br />

MeV (3/2–) and 3.85 MeV (5/2+). Interpret these states according to the shell-model.<br />

13<br />

C , Z = 6, N = 7.<br />

Protons are paired; the energy states <strong>of</strong> 13 C are determined by the unpaired (7 th ) neutron.<br />

2<br />

0<br />

A<br />

2<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!