11.07.2014 Views

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

Tutorial Answers - School of Physics - The University of New South ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE UNIVERSITY OF NEW SOUTH WALES<br />

SCHOOL OF PHYSICS<br />

PHYS3050 NUCLEAR PHYSICS<br />

TUTORIAL PROBLEMS<br />

1. Using the r α A 1/3 observation, estimate the average mass density <strong>of</strong> a nucleus.<br />

ρ<br />

M<br />

A×<br />

u<br />

A×<br />

1.66×<br />

10<br />

3×<br />

1.66 × 10<br />

−27<br />

−27<br />

17 −3<br />

= = =<br />

2.3 10<br />

4 3<br />

1<br />

=<br />

= × kg m<br />

4<br />

3 3<br />

−15<br />

3<br />

V π r<br />

4 (1.2 10 )<br />

3<br />

π ( R A ) × ×<br />

3 o<br />

π<br />

It is interesting to compare this value with the highest ‘atomic’ density found in the Periodic Table<br />

which is ~ 22600 kg m -3 for the metals Osmium and Iridium, a factor <strong>of</strong> 10 billion times smaller !<br />

2. [Ashby & Miller 13.3]. Estimate the rest energy <strong>of</strong> 1 Å 3 <strong>of</strong> nuclear matter.<br />

2 2<br />

17 −30<br />

16<br />

E = mc = ρ Vc = 2.3×<br />

10 × 10 × 9 × 10 = 20. 7 kJ<br />

3. [A&M 13.8]. Calculate the distance <strong>of</strong> closest approach <strong>of</strong> a 12 MeV deuteron to a Silver<br />

nucleus.<br />

E = 12 × 10<br />

6<br />

× 1.6×<br />

10<br />

−19<br />

q qAg<br />

9 × 10<br />

J = =<br />

4πε<br />

r<br />

o<br />

× 1×<br />

47 × (1.6 × 10<br />

r<br />

9<br />

−19<br />

2<br />

d −15<br />

4. [Krane 3.9]. Calculate the binding energy per nucleon <strong>of</strong> (a) 7 Li and (b) 56 Fe.<br />

)<br />

∴r<br />

= 5.64 × 10<br />

m<br />

7<br />

B(<br />

Li)<br />

=<br />

= 39.246MeV<br />

B(<br />

56<br />

Fe)<br />

=<br />

1<br />

7 2<br />

[ 3m(<br />

H ) + 4mn<br />

− m(<br />

Li)<br />

] c = [ 3(1.00782504u<br />

) + 4(1.008665u<br />

) − 7.016003u]<br />

∴<br />

B / A = 39.246 / 7 = 5.607MeV<br />

1<br />

56<br />

[ 26m(<br />

H ) + 30mn<br />

− m(<br />

Fe)<br />

]<br />

= 492.262MeV<br />

∴ B / A = 492.262 /56 = 8.790MeV<br />

c<br />

2<br />

(931.5 MeV / u)<br />

5. [K 3.11]. Calculate the mass defect <strong>of</strong> 238 U.<br />

∆ =<br />

238<br />

[ m(<br />

U ) − 238]<br />

= 47.306MeV<br />

6. [K 3.13]. Calculate the neutron separation energy <strong>of</strong> 91 Zr.<br />

S<br />

n<br />

=<br />

90<br />

91<br />

[ m(<br />

Zr)<br />

− m(<br />

Zr)<br />

+ mn<br />

]<br />

= 7.195MeV<br />

c<br />

2<br />

c<br />

2<br />

= (238.050785 − 238) × 931.5 MeV / u<br />

7. [K 3.13]. Calculate the proton separation energy <strong>of</strong> 197 Au.<br />

196<br />

197<br />

1<br />

[ m(<br />

Pt)<br />

− m(<br />

Au)<br />

+ m(<br />

H )]<br />

S p =<br />

= 5. 783MeV<br />

= (89.904703u<br />

− 90.905644u<br />

+ 1.008665u)<br />

× 931.5 MeV / u<br />

c<br />

2<br />

= (195.964926u<br />

−196.966543u<br />

+ 1.007825u)<br />

× 931.5 MeV / u<br />

8. [A&M 14.7] A π o meson decays into two gamma-rays. If the π o is at rest, calculate the<br />

energy <strong>of</strong> each gamma-ray.<br />

E 1 2 1<br />

m o c = × 134.9745 MeV = 67. 4872MeV<br />

γ =<br />

2 π<br />

2


9. [K 4.1]. Calculate the minimum photon energy necessary to dissociate the deuteron i.e.<br />

γ + d → p + n. Take the deuteron binding energy to be 2.224589 MeV and use a nonrelativistic<br />

approach.<br />

Conserve energy and linear momentum:<br />

p<br />

γ<br />

→ E<br />

= p<br />

γ<br />

p<br />

+ p<br />

= [ m<br />

p<br />

n<br />

&<br />

+ m ] c<br />

n<br />

E<br />

2<br />

γ<br />

+ m<br />

⎪⎧<br />

⋅ ⎨1<br />

−<br />

⎪⎩<br />

d<br />

c<br />

2<br />

= m<br />

2md<br />

m + m<br />

p<br />

p<br />

c<br />

n<br />

2<br />

+ K<br />

p<br />

+ m c<br />

+ K<br />

⎪⎫<br />

−1⎬<br />

= 2.226219MeV<br />

⎪⎭<br />

10. [A&M 14.11]. On the basis <strong>of</strong> tabulated masses, which <strong>of</strong> the isobars, 17 N, 17 O and 17 F, would<br />

you expect to be the most stable ? Atomic masses are:<br />

17<br />

17<br />

17<br />

M ( N)<br />

= 17.008450 u,<br />

M ( O)<br />

= 16.999131u,<br />

M ( F)<br />

= 17.002095 u,<br />

17 O has the lowest mass and therefore the highest binding energy.<br />

11. [K 5.1] Give the expected shell-model spin and parity assignments for the ground states <strong>of</strong> (a)<br />

7 Li; (b) 11 B; (c) 15 C; (d) 17 F; (e) 31 P and (f) 141 Pr. [(a) 3/2 and –1; (b) 3/2 and –1; (c) 5/2 and +1;<br />

(d) 5/2 and +1; (e) 1/2 and +1; (f) 5/2 and +1]. See left-hand side <strong>of</strong> figure 5.6, p123.<br />

n<br />

2<br />

n<br />

( a)<br />

( b)<br />

( c)<br />

( d)<br />

( e)<br />

( f )<br />

Li,<br />

Z = 3, N = 4. p in 1p<br />

7<br />

11<br />

15<br />

31<br />

B,<br />

Z = 5, N = 6. p in 1p<br />

C,<br />

Z = 6, N = 9.<br />

17<br />

F,<br />

Z = 9, N = 8. p in 1d<br />

P,<br />

Z = 15, N = 16. p in 2s<br />

141<br />

n in 1d<br />

3<br />

2<br />

3<br />

2<br />

5<br />

2<br />

5<br />

2<br />

1<br />

2<br />

Pr, Z = 59, N = 82. p in 2d<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 3/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

∴ I = 1/ 2, π = ( −1)<br />

5<br />

2<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

= ( −1)<br />

∴ I = 5/ 2, π = ( −1)<br />

l<br />

l<br />

l<br />

l<br />

l<br />

1<br />

1<br />

2<br />

2<br />

= ( −1)<br />

l<br />

= −1∴<br />

I<br />

= −1∴<br />

I<br />

= + 1∴<br />

I<br />

= + 1∴<br />

I<br />

0<br />

= ( −1)<br />

= + 1∴<br />

I<br />

2<br />

π<br />

π<br />

π<br />

π<br />

=<br />

=<br />

=<br />

π<br />

=<br />

3 −<br />

2<br />

3 −<br />

2<br />

5 +<br />

2<br />

= + 1∴<br />

I<br />

5 +<br />

2<br />

=<br />

1 +<br />

2<br />

π<br />

=<br />

5 +<br />

2<br />

12. [K5.7] Calculate the shell-model quadrupole moment <strong>of</strong> 209 Bi (I = 9/2 – ). (Experimental value =<br />

–0.37 b).<br />

Q<br />

=<br />

Q<br />

sp<br />

2 j −1<br />

= −<br />

2( j + 1)<br />

⎛<br />

9<br />

2 ⋅ −1⎞<br />

2<br />

3 2<br />

= −⎜<br />

⎟<br />

× × 1.2 × 209<br />

11<br />

2<br />

⎝ ⋅ 5<br />

2 ⎠<br />

r<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

2<br />

3<br />

= −22.13<br />

fm<br />

2<br />

2<br />

2 j −1<br />

3<br />

= − ⋅ R<br />

2( j + 1) 5<br />

= −0.22b<br />

13. [K5.2] <strong>The</strong> low-lying energy levels <strong>of</strong> 13 C are: Ground state (1/2–); 3.09 MeV (1/2+); 3.68<br />

MeV (3/2–) and 3.85 MeV (5/2+). Interpret these states according to the shell-model.<br />

13<br />

C , Z = 6, N = 7.<br />

Protons are paired; the energy states <strong>of</strong> 13 C are determined by the unpaired (7 th ) neutron.<br />

2<br />

0<br />

A<br />

2<br />

3


2s (1/2)<br />

1d (5/2)<br />

1p (1/2)<br />

1p (3/2)<br />

1s (1/2)<br />

1<br />

<strong>The</strong>refore, the energy states are (L to R):<br />

2<br />

−<br />

1<br />

,<br />

2<br />

+<br />

3<br />

,<br />

2<br />

−<br />

5<br />

,<br />

2<br />

+<br />

14. [K10.7]. A certain decay process leads to final states in an even-Z, even-N nucleus and gives<br />

only three γ rays <strong>of</strong> energies 100, 200 and 300 keV, whose multipolarities are E1, E2 and E3,<br />

respectively. Construct two possible level schemes for this nucleus and label the states with their<br />

most likely spin-parity assignments.<br />

<strong>The</strong> parity <strong>of</strong> the En γ-ray is (-1) n so E1 and E3 involve a change in parity between the two<br />

nuclear levels involved. E2 involves no such change. Furthermore, the ground state <strong>of</strong> the even-even<br />

nucleus is 0 + . <strong>The</strong> ‘n’ in En gives the change in nuclear spin.<br />

E1 E2 E3 E1 E2 E3<br />

3 – 300 keV 3 – 300 keV<br />

2 +<br />

200 keV<br />

1 –<br />

100 keV<br />

0 +<br />

0 keV<br />

0 +<br />

0 keV


15. [Serway et al 15.17]. By considering the quark makeup <strong>of</strong> the various particles, deduce the<br />

identity <strong>of</strong> the unknown particle in the reaction<br />

Σ<br />

0<br />

+ p → Σ<br />

+<br />

+ γ + ?<br />

Σ<br />

u<br />

d<br />

0<br />

: 3<br />

= uds;<br />

p = uud;<br />

Σ<br />

: 2<br />

s :1 → 1<br />

Mystery particle has quark makeup udd i.e. neutron.<br />

16. [K9.9]. <strong>The</strong> complete processes are:<br />

3 3<br />

ν + He→<br />

H + e<br />

− 8 8<br />

e + B→<br />

Be + ν<br />

40<br />

K →ν<br />

+ e<br />

+<br />

+<br />

+<br />

40<br />

Ar<br />

→ 2 + ? ∴u<br />

→ 0∴<br />

dd<br />

6<br />

He→<br />

ν +<br />

40<br />

12<br />

+<br />

6<br />

C→<br />

= uus<br />

Li + e<br />

12<br />

−<br />

N + e<br />

−<br />

K →ν<br />

+ e +<br />

17. [K9.4]. <strong>The</strong> maximum kinetic energy <strong>of</strong> the positron spectrum emitted in the decay 11 C→<br />

11 B<br />

Q = K<br />

∴ m(<br />

11<br />

is 1.983±0.003 MeV. Use this information and the known mass <strong>of</strong> 11 B to calculate the mass <strong>of</strong><br />

11 C.<br />

max<br />

β<br />

= 1.983(3) MeV =<br />

⎛ Q ⎞<br />

C)<br />

= ⎜ + m(<br />

2<br />

⎟<br />

⎝ c ⎠<br />

11<br />

B)<br />

+ 2m<br />

11<br />

6<br />

C→<br />

11<br />

5<br />

+<br />

B + β + ν<br />

11<br />

11<br />

[ m(<br />

C)<br />

− m(<br />

B)<br />

− 2me<br />

]<br />

e<br />

c<br />

2<br />

e<br />

+ ν<br />

−<br />

40<br />

Ca<br />

⎧ 1.983(3) MeV ⎫<br />

= ⎨<br />

⎬ + 11.009305u<br />

+ 2(5.485803×<br />

10<br />

⎩931.502<br />

MeV / u ⎭<br />

−4<br />

) = 11.012531(3) u<br />

18. [Serway 45.59]. A by-product <strong>of</strong> some fission reactors is 239 Pu which is an α-emitter with a<br />

half-life <strong>of</strong> 24,120 years. Consider 1 kg <strong>of</strong> 239 Pu at t=0. (a) What is the number <strong>of</strong> 239 Pu nuclei at<br />

t=0 ? (b) What is the initial activity ? (c) For how long would you need to store the Plutonium<br />

until it had decayed to a safe activity level <strong>of</strong> 0.1 Bq ?<br />

( a)<br />

1 nucleus = 239 × 1.66×<br />

10<br />

( b)<br />

( c)<br />

R<br />

0<br />

= λN<br />

0<br />

ln 2<br />

= N<br />

t 1<br />

0.1 = 2.305×<br />

10<br />

2<br />

12<br />

e<br />

0<br />

−27<br />

= 2.305×<br />

10<br />

= 3.97 × 10<br />

12<br />

Bq<br />

∴t<br />

= 1.07 × 10<br />

−λt 6<br />

yrs<br />

−25<br />

kg ∴ N<br />

0<br />

= 1/(3.97 × 10<br />

−25<br />

) = 2.519 × 10<br />

24<br />

19. [A&M 15.14]. Calculate the Q value for the β – decay <strong>of</strong> 108 Ag.<br />

108<br />

47<br />

Ag→<br />

108<br />

48<br />

−<br />

Cd + β + ν<br />

2<br />

Q = ( M P − M D ) c = (107.905952 −107.904176)<br />

u × 931.5MeV<br />

/ u = 1. 65MeV<br />

20. [A&M 15.19]. On the basis <strong>of</strong> Q values, determine if the 98 Tc nucleus can decay by (a) β –<br />

(a)<br />

98<br />

43<br />

decay, (b) β + decay, (c) electron capture.<br />

Tc→<br />

98<br />

44<br />

−<br />

Ru + β + ν<br />

e<br />

2<br />

Q = ( M − M ) c = (97.907215 − 97.905287) u × 931.5MeV<br />

/ u = 1.796MeV<br />

i.<br />

e.<br />

> 0∴Yes<br />

P<br />

D<br />

e


(b)<br />

98<br />

43<br />

Tc→<br />

98<br />

42<br />

+<br />

Mo + β + ν<br />

e<br />

Q = ( M<br />

P<br />

− M<br />

D<br />

i.<br />

e.<br />

> 0∴Yes<br />

− 2m<br />

) c<br />

e<br />

2<br />

= (97.907215 − 97.905407 − 2 × 5.485803×<br />

10<br />

−4<br />

) u × 931.5MeV<br />

/ u = 0.662MeV<br />

(c)<br />

e<br />

+<br />

Tc→<br />

− 98 98<br />

43 42<br />

Mo + ν<br />

e<br />

2<br />

Q = ( M − M ) c = (97.907215 − 97.905407) u × 931.5MeV<br />

/ u = 1.684MeV<br />

i.<br />

e.<br />

> 0∴Yes<br />

P<br />

D<br />

21. [S 46.31]. A 2 MeV neutron is emitted in a fission reactor. If it loses half <strong>of</strong> its kinetic<br />

energy in each collision with a moderator atom, how many collisions must it undergo to achieve<br />

thermal energy (0.039 eV) ?<br />

2<br />

n<br />

6<br />

2 × 10<br />

7<br />

= = 5.13×<br />

10 ∴ n = 25.6 → 26<br />

0.039<br />

22. [S 46.37]. Assume a deuteron and a triton are at rest when they fuse according to<br />

d + t → α + n . This reaction has a Q value <strong>of</strong> 17.6 MeV. Determine the kinetic energies<br />

acquired by the α and the n.<br />

p<br />

2 2<br />

pα<br />

pn<br />

pn & + = 17.6MeV<br />

= Kα<br />

+ K n → K = 3.5MeV<br />

& K n = 14. 1MeV<br />

2m<br />

2m<br />

α = α<br />

α n<br />

23. [Rohlf 11.15]. If the activity <strong>of</strong> a substance drops by a factor <strong>of</strong> 32 in 5 seconds, what is its<br />

half-life ? 32 5<br />

= 2 ∴5s = 5×<br />

t 1 ∴t<br />

1 = 1s<br />

2 2<br />

24. [R 11.26]. Show that the decay n → p + e cannot conserve angular momentum.<br />

All particles have spin 1/2. Two spin-1/2s cannot be combined to yield s=1/2.<br />

25. [R 17.16]. Which <strong>of</strong> the following strong interactions are allowed ? If a process is<br />

forbidden, state the reason.<br />

0<br />

p + p → π<br />

−<br />

π + p → K<br />

+<br />

p + p → π<br />

0<br />

p + p → π<br />

K<br />

−<br />

+ n<br />

0<br />

+ p → π + Λ<br />

0<br />

+ n<br />

+ n + n<br />

+<br />

+ π<br />

−<br />

+ π<br />

0<br />

−<br />

Electric Charge Baryon # Strangeness<br />

Yes No Yes<br />

Yes Yes No<br />

No Yes Yes<br />

Yes Yes Yes<br />

Yes Yes Yes


26. [K 18.6]. Analyse the following decays or reactions for possible violations <strong>of</strong> the basic<br />

conservation laws. In each case, state which conservation laws, if any, are violated and through<br />

which interaction the process will most likely proceed (if at all):<br />

( a)<br />

+<br />

π + p → p + p + n<br />

( e)<br />

K<br />

+<br />

→ π<br />

+<br />

+ π<br />

+<br />

0<br />

+ π + π<br />

−<br />

( b)<br />

( c)<br />

Σ<br />

K<br />

+<br />

+<br />

→ n + e<br />

→ π<br />

+<br />

+<br />

+ e<br />

+ ν<br />

+<br />

e<br />

+ e<br />

−<br />

( f )<br />

( g)<br />

K<br />

+<br />

0<br />

→ π<br />

+<br />

+ e<br />

+<br />

Λ + p → Σ<br />

+<br />

+ µ<br />

+ n<br />

−<br />

( d)<br />

−<br />

π + p → Λ + Σ<br />

0<br />

0<br />

( h)<br />

Λ<br />

0<br />

→ p + K<br />

−<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

(h)<br />

conserves B, L e , L µ , S, Q, T & T 3 ; proceeds via the strong interaction<br />

violates S; proceeds via the weak interaction<br />

violates S; proceeds via the weak interaction<br />

violates B, S, T & T 3 ; forbidden due to B-violation<br />

violates conservation <strong>of</strong> energy so forbidden<br />

violates L e & L µ and is forbidden<br />

conserves B, L e , L µ , S, Q, T & T 3 ; proceeds via the strong interaction<br />

violates conservation <strong>of</strong> energy so forbidden<br />

27. [K 18.7]. Analyse the following decays according to their quark content:<br />

( a)<br />

( b)<br />

Ω<br />

K<br />

−<br />

+<br />

→ π<br />

0<br />

→ Λ + K<br />

+<br />

+ π<br />

−<br />

0<br />

( c)<br />

( d)<br />

Ξ<br />

−<br />

0<br />

→ Λ + π<br />

+<br />

−<br />

Λc → p + K<br />

0<br />

( a)<br />

s → u + W<br />

( b)<br />

( c)<br />

Ω<br />

K<br />

Ξ<br />

−<br />

−<br />

−<br />

= sss;<br />

Λ<br />

−<br />

& W<br />

+<br />

0<br />

= us;<br />

π = ud ; π<br />

= dss;<br />

Λ<br />

0<br />

0<br />

= uds;<br />

K<br />

−<br />

−<br />

→ u + d<br />

−<br />

= uds;<br />

π<br />

= us sss → uds + us ∴ s → d & a uu pair created<br />

= uu + dd ; us → ud + ( uu + dd );<br />

= ud dss → uds + ud<br />

s → u + W<br />

∴ s → u + W<br />

→ u + d<br />

+<br />

0<br />

+<br />

+<br />

( d)<br />

Λ c = udc;<br />

p = uud;<br />

K = ds udc → uud + ds ∴c<br />

→ s + W & W → u + d<br />

−<br />

+<br />

&<br />

&<br />

W<br />

−<br />

W<br />

+<br />

→ u + d


28. [K 18.8]. Analyse the following reactions according to their quark content:<br />

( a)<br />

( b)<br />

K<br />

−<br />

+ p → Ω<br />

−<br />

+ K<br />

+<br />

+<br />

+ K<br />

0<br />

0<br />

0<br />

( c)<br />

+ p → Ξ<br />

+ K<br />

p + p → p + π + Λ + K<br />

( d)<br />

π + n → ∆ + π<br />

K<br />

−<br />

−<br />

−<br />

−<br />

+<br />

0<br />

( a)<br />

us + uud → sss + us + ds ∴ uu → ss + ss<br />

( b)<br />

uud + uud → uud + ud + uds + ds ∴ create dd<br />

−<br />

− +<br />

( c)<br />

K + p → Ξ + K<br />

us + uud → dss + us ∴ uu → ss<br />

( d)<br />

K<br />

−<br />

+ p → Ω<br />

+ K<br />

+<br />

p + p → p + π + Λ<br />

−<br />

−<br />

π + n → ∆<br />

−<br />

0<br />

+ π<br />

+ K<br />

+ K<br />

ud + udd → ddd + ( uu + dd ) ∴ create dd<br />

+<br />

0<br />

0<br />

0<br />

+ ss<br />

29. [K 17.4]. Find which <strong>of</strong> the following reactions are forbidden by one or more<br />

conservation laws. Give all violated laws in each case.<br />

+<br />

( a)<br />

K + n → Σ + π<br />

( b)<br />

−<br />

+ 0<br />

π + n → K + Λ<br />

( c)<br />

−<br />

0<br />

K + p → n + Λ<br />

+<br />

0<br />

( d)<br />

( e)<br />

π<br />

−<br />

π<br />

+ p → Σ<br />

+ p → Ξ<br />

( f ) d + d →α<br />

+ π<br />

−<br />

+<br />

+ K<br />

−<br />

0<br />

−<br />

+ K<br />

+<br />

+ K<br />

0<br />

(a) S; (b) Q & T 3 ; (c) T & T 3 ; (d) S & T 3 ; (e) S & T 3 and (f) T

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!