15.07.2014 Views

Download PDF - Calgary Pump Symposium

Download PDF - Calgary Pump Symposium

Download PDF - Calgary Pump Symposium

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Weir Minerals North America<br />

Presentation to:<br />

<strong>Calgary</strong> <strong>Pump</strong> <strong>Symposium</strong><br />

November 2009<br />

Prepared by:<br />

Michael Bootle<br />

Senior Design Engineer<br />

Excellent<br />

Minerals<br />

Solutions<br />

Wear in Rotodynamic<br />

(Centrifugal)<br />

Slurry <strong>Pump</strong>s


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Modes of Wear in Slurry <strong>Pump</strong>s<br />

•Abrasion<br />

•Corrosion<br />

•Erosion<br />

2


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Wear Locations<br />

• Fully Lined <strong>Pump</strong><br />

3


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Wear Locations<br />

• Unlined <strong>Pump</strong><br />

4


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Abrasion


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Abrasion<br />

• Forcing of hard particles against a wear surface<br />

6


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Abrasion<br />

• Locations within a<br />

slurry pump:<br />

• between shaft<br />

sleeve and packing<br />

• between impeller<br />

and suction side<br />

liner at tight<br />

clearance area<br />

adjacent to impeller<br />

wear ring/dam near<br />

impeller eye<br />

7


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Abrasion<br />

• Worn Sleeve: Hourglass wear within 12 hours of seal water failure<br />

8


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• Abrasion resistant white irons used in slurry<br />

pumps consist of hard carbides in a ferrous<br />

matrix.<br />

• The M 7 C 3 carbides are electrochemically<br />

passive and essentially protected from<br />

corrosion.<br />

• The corrosion resistance of the material is<br />

therefore a function of the corrosion resistance<br />

of matrix, which in turn is a function of the<br />

chromium content with in the matrix.<br />

• Corrosion of the supporting ferrous matrix can<br />

lead to premature fracture and spalling of the<br />

carbides.<br />

Chromium carbides in<br />

supporting ferrous matrix<br />

10


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• Inter-phase corrosion can occur at the interface between the M 7 C 3<br />

carbides and the ferrous matrix resulting in intergranular corrosion:<br />

11


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• Corrosion pitting from<br />

low pH flue gas<br />

entering a scrubber<br />

pump during shut-down<br />

12


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• Above water line<br />

corrosion on 27%<br />

high chrome iron<br />

material<br />

13


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• Depth of Corrosion<br />

Pitting can be substantial<br />

14


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion<br />

• 30% Potash Tailings in<br />

brine solution<br />

• Corrosion on<br />

unsubmerged portion<br />

of high chrome impeller<br />

• Severe imbalance due<br />

to uneven weight loss<br />

15


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 8 inch Froth <strong>Pump</strong>:<br />

Cyclone Feed Service<br />

in concentrate flotation<br />

regrind circuit at a<br />

Nickel Mine<br />

• Large inlet<br />

• Progressive reduction in<br />

corrosion from aerated<br />

inlet to pump discharge<br />

16


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 8 inch Froth <strong>Pump</strong> on Cyclone<br />

Feed service in concentrate<br />

flotation regrind circuit at a Nickel<br />

Mine<br />

• Severe corrosion to throatbush<br />

on aerated inlet side of the pump<br />

17


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 8 inch Froth <strong>Pump</strong> at Nickel Mine:<br />

• Less corrosion on impeller<br />

18


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 8 inch Froth <strong>Pump</strong> at Nickel Mine:<br />

• Slightly less corrosion on volute and frameplate liner insert<br />

19


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 10/8 AH on Heavy Media<br />

circuit in Potash Mine:<br />

• Magnetite, potash,<br />

brine solution<br />

• “Dry running” centrifugal<br />

shaft seal<br />

• Progressive reduction in<br />

corrosion from aerated<br />

seal area to pump<br />

discharge<br />

20


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 10/8 AH on Heavy Media<br />

circuit in Potash Mine:<br />

• Magnetite, potash, brine<br />

solution<br />

• Expeller ring/stuffing box<br />

• Note slurry/air interface<br />

21


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 10/8 AH Expeller on Heavy Media circuit in Potash Mine:<br />

• Magnetite, potash, brine solution<br />

22


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 10/8 AH Back Liner on Heavy Media circuit in Potash Mine:<br />

• Magnetite, potash, brine solution<br />

• Note demarcation line of level of wear just outboard of Back Liner ID.<br />

23


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• 10/8 AH Impeller and Volute on Heavy Media circuit in Potash Mine:<br />

• Magnetite, potash, brine solution<br />

• Note further reductions in level of corrosion on Impeller and Volute.<br />

24


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Corrosion/Erosion<br />

• Corrosion/Erosion with Erosion being a large contributing factor:<br />

25


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Three primary modes of erosion:<br />

• Deformation wear: Direct impact to the leading edge of the impeller vanes,<br />

the back shroud of the impeller and the “protruding” cutwater of the volute.<br />

• Random impingement: Random impacts to the impeller shroud and trailing<br />

edge of the main pumping vanes<br />

• Low angle impact: Wear from the tangential or near tangential movement of<br />

particles against the volute casing or vane surface<br />

27


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Factors affecting erosion:<br />

• Contact conditions<br />

• Kinetic energy of particle:<br />

Particle mass (specific gravity) and<br />

velocity<br />

• Particle size<br />

• Particle shape:<br />

Sharp particles have small contact<br />

area and high local stress<br />

• Particle hardness<br />

• Slurry concentration:<br />

A higher percentage of solids<br />

results in more impacts for a given<br />

flow<br />

• Material properties<br />

28


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Fine particle slurries eat away at the softer matrix leaving the hard<br />

carbides vulnerable to spalling and flaking off.<br />

29


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Fine particles tend to follow fluid flow streamlines<br />

• Large particles tend to travel straight<br />

30


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Effect of Particle Size on Wear:<br />

D85 = 650 micron particle<br />

D85 = 6000 micron particle<br />

31


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Large particle wear to back<br />

side of impeller<br />

• Copper mine ball mill<br />

discharge<br />

• 400+ micron d50 particle<br />

size<br />

• Operation near best<br />

efficiency flow<br />

• 1848 hours<br />

32


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Large particle wear to back side of impeller: copper ball mill discharge<br />

33


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Zinc Tailings application:<br />

• 55 to 65% C w<br />

• 3.79 sg of dry solids<br />

• 25 micron d50<br />

• 11 to 12 pH<br />

• 3/2 DHH High Head <strong>Pump</strong>:<br />

• 70 m3/hr @ 44.8 to 75.6 m<br />

• 1052 to 1350 rpm<br />

• 54 to 69% of BEP<br />

• Fine particle “eddy current”<br />

wear<br />

• Minimal wear to leading<br />

edge of main pumping vanes<br />

34


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Fine Particle Zinc<br />

Tailings Application<br />

• 54 to 69% of best<br />

efficiency flow<br />

• Low flow suction liner<br />

wear<br />

• Fine particles follow<br />

eddy currents<br />

• Vortex/Rat Holing type<br />

wear<br />

35


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Fine Particle Zinc Tailings<br />

Application<br />

• 54 to 69% of best efficiency<br />

flow<br />

• Low flow volute liner wear<br />

• Eddy current wear beyond<br />

“cutwater”<br />

• Leading edge of cutwater in<br />

reasonably good shape<br />

36


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Effect of Operation Below BEP:<br />

(throatbush)<br />

37


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Wear on Casing Liner and Throatbush as a Result of Low Flow:<br />

38


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Copper Mine Ball Mill Discharge Cyclone<br />

Feed <strong>Pump</strong><br />

• High Efficiency Volute Design:<br />

• True volute<br />

• Tight impeller to cutwater clearance<br />

• Severe low flow large particle wear<br />

beyond cutwater<br />

• d50 = 250 microns<br />

39


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Erosion<br />

• Copper Mine Ball Mill<br />

Discharge Cyclone Feed<br />

<strong>Pump</strong><br />

• Severe erosion at wear<br />

dam area adjacent to<br />

impeller eye<br />

• d50 = 250 microns<br />

40


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Solutions


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Solutions<br />

•Materials<br />

•Geometry<br />

•Application/Process<br />

42


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Duplex Stainless Steels<br />

• Duplex stainless steels:<br />

• CD4MCu<br />

• Ferrallium 255<br />

• Two phase structure of ferritic and austenitic stainless steel<br />

• Good resistance to stress corrosion cracking<br />

• Nominal hardness of 250 HBN better than austenitic stainless steels<br />

but far poorer than high chrome irons (400 - 800 BHN)<br />

• Therefore, relatively poor erosion resistance for slurry service<br />

43


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons<br />

• Consist of hard carbides within a supporting ferrous matrix<br />

• Carbide types:<br />

• Iron Carbide:<br />

• Chromium Carbide (M 7<br />

C 3<br />

):<br />

• Matrix types:<br />

• Ferrite:<br />

• Austenite:<br />

• Martensite:<br />

850 to 1000 HV<br />

1200 to 1500 HV<br />

150 to 250 HV<br />

300 to 500 HV<br />

500 to 1000 HV<br />

• Bulk hardness dependent upon carbide and matrix type and the<br />

volume of carbides in the matrix<br />

• Typical hardness of silica sand:<br />

1200 HV<br />

44


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons<br />

• Medium to large particle applications:<br />

• Bulk hardness important<br />

• Small particle applications:<br />

• Fine carbide microstructure with smaller inter-carbide spacing important<br />

to minimize erosion of the softer matrix<br />

• Very large particle applications:<br />

• Fracture toughness of the matrix most important<br />

• Corrosive applications:<br />

• Corrosion resistance of the matrix most important<br />

45


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons (Conventional)<br />

40<br />

Chemistry of White Cast Irons<br />

Chromium<br />

30<br />

20<br />

10<br />

ISO 21988 AS 2027<br />

HBW555XCr26<br />

HBW555XCr21<br />

HBW555XCr16<br />

HBW555<br />

27Cr<br />

20Cr-2Mo<br />

15Cr-3Mo<br />

Ni-hard 4<br />

ASTM A532<br />

Class IIIA<br />

Class II D<br />

Class II B<br />

Class I D<br />

HBW510<br />

Ni-Hard 1<br />

Class I A<br />

2 3 4 5<br />

Carbon<br />

46


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons (Conventional)<br />

• Approximately the same carbon content:<br />

• 3% carbon<br />

• Therefore, similar microstructure for Class II & III :<br />

• 20 to 25 volume % of hard chromium carbides in a<br />

ferrous matrix.<br />

• 27% Cr developed and patented in 1917. Cr-Mo<br />

& Ni-Hard quickly followed.<br />

47


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons (Conventional)<br />

Microanalysis of White Cast Irons<br />

Cr27<br />

Fe-27Cr-3.0C<br />

Phase Vol% Cr C<br />

• Carbide 25 55 8.8<br />

• Matrix 75 18 1.1<br />

• Total 100 27 3.0<br />

(Fe,Cr) 7 C 3<br />

27%Cr is essentially an 18%Cr - 1.1%C tool steel<br />

containing 25 volume% chromium carbides<br />

48


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: White Cast Irons (Conventional)<br />

Microanalysis of White Cast Irons<br />

15Cr-3Mo<br />

Fe-15Cr-3.0C<br />

Phase Vol% Cr C<br />

• Carbide 20 47 8.7<br />

• Matrix 80 7.0 1.6<br />

• Total 100 15.0 3.0<br />

(Fe,Cr) 7 C 3<br />

15Cr-3Mo is essentially a 7%Cr - 1.6%C tool steel<br />

containing 20 volume% chromium carbides<br />

49


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: 27% Cr versus 15 Cr–3 Mo<br />

• Comparison of 27% Cr & 15% Cr–3% Mo<br />

Worn Impellers at Mexican Copper Mine<br />

50


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Hyperchrome Chemistry<br />

Chromium<br />

40<br />

30<br />

20<br />

10<br />

ISO designation<br />

HBW600XCr35<br />

HBW555XCr26<br />

HBW555XCr21<br />

HBW555XCr16<br />

HBW555<br />

27Cr<br />

35C<br />

Hyperchrome<br />

r<br />

20Cr-2Mo<br />

15Cr-3Mo<br />

Nihard 4<br />

35Cr<br />

AS designation<br />

HBW510<br />

Nihard 1<br />

2 3 4 5<br />

Carbon<br />

51


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Hyperchrome<br />

Microanalysis of WCI-4.5%C<br />

Fe-31Cr-4.5C<br />

Phase Vol% Cr C<br />

• Carbide 48 52 8.7<br />

• Matrix 52 12 0.6<br />

• Total 100 31 4.5<br />

(Fe,Cr) 7 C 3<br />

WCI-4.5%C has a Hypereutectic microstructure<br />

with a high M 7 C 3 carbide content and a ferrous<br />

matrix containing 12 wt% chromium.<br />

52


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: 27% Cr versus Hyperchrome<br />

Effect of Carbide Content on Wear Resistance<br />

60<br />

55<br />

27% Cr<br />

W eight Loss (m illigram s)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

31Cr- 4.5 C<br />

Hyperchrome<br />

w/60% carbides<br />

20<br />

20 30 40 50 60 70 80<br />

Total Carbide Content (Volume %)<br />

53


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: 27% Cr versus Hyperchrome<br />

• Oilsands Tailings <strong>Pump</strong> Suction Side Liner:<br />

27% Cr: 1790 hours holed through<br />

Hyperchrome: 1748 hours 50% worn<br />

54


Weir Minerals North America<br />

Materials: High Cr, Low C White Irons<br />

Excellent<br />

Minerals<br />

Solutions<br />

40<br />

Patent Protected<br />

Chromium<br />

30<br />

20<br />

10<br />

27 Cr<br />

Corrosion Resistant White Cast Irons<br />

2 3 4 5<br />

Carbon<br />

55


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: High Cr, Low C White Irons<br />

• 28% Chromium, Low Carbon White Iron:<br />

• Iron and chromium carbides in austenite matrix<br />

• 320 BHN minimum<br />

• Suitable for pH 3 to 14<br />

• Corrosion resistance similar to 300 series austenitic stainless steel<br />

• 30+% Chromium, Low Carbon White Iron (Ultrachrome-Patented):<br />

• Eutectic carbides in a duplex stainless steel matrix<br />

• 380 BHN minimum<br />

• Suitable for phosphoric acid duties, high chloride FGD duties, sulphuric<br />

acid duties and other moderately corrosive applications<br />

• Corrosion resistance similar to a duplex stainless steel<br />

56


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: 27% Cr versus High Cr-Low C<br />

27% Cr High Cr-Low C<br />

57


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Elastomers<br />

• Natural Rubber versus 27% Cr in Nickel Application<br />

58


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Elastomers<br />

450<br />

400<br />

Wear Coefficient (m 3 /J)*10 -17<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Particle Diameter (Microns)<br />

Hi-Cr Hyper-Cr Elastomer Ceramic<br />

Chart 12.28 from ANSI/HI 12.1-12.6 slurry pump standard<br />

59


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Elastomers<br />

• Utilize resilience and tear strength to combat wear<br />

• Resilience:<br />

• A measure of how high a ball of the material will drop as a percentage of<br />

the original drop height<br />

• Typically, 65 to 90 percent dependent upon the rubber blend<br />

• Softer rubber tends to have higher resilience<br />

• Tear strength (actually tear initiation resistance):<br />

• 30 to 110 N/mm for natural rubber dependent upon blend<br />

• Harder rubber tends to have higher tear resistance<br />

• Resilience important for fine particles ( 300 microns)<br />

60


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Synthetic Elastomers<br />

• Used in applications where natural rubber would be subject to<br />

chemical attack, causing swelling, hardening or reversion<br />

• Common synthetic elastomers:<br />

• Nitrile: Fats, oils and waxes. Moderate erosion resistance.<br />

• Butyl: Hydrochloric acid, phosphoric acid, and sodium hydroxide.<br />

• Hypalon: Acid conditions<br />

• Neoprene: Moderate resistance to oils, fats, grease, some hydrocarbons<br />

and moderate oxidizing acids. Highest resilience of the synthetic<br />

elastomers (58%). Widely used in oilsands.<br />

• Polyurethane: Used in applications where there is a good chance of<br />

large particle, “tramp” damage. High tear strength (50 to 100 N/mm).<br />

May be subject to hydrolysis at elevated temperature.<br />

61


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Elastomers<br />

• Can be used in large particle applications where not subject to direct<br />

impact: Oilsands Hydrotransport Suction Side Liner<br />

27% Cr: 2 to 3 month life<br />

Hyperchrome: 4 month life<br />

Neoprene: 12 to 18 month life<br />

62


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Tip Speed Limits<br />

• Tip Speed and Head Generation<br />

Head at BEP:<br />

<br />

(0.5)( tip speed)<br />

( g)<br />

2<br />

Where: tip speed:<br />

impeller peripheral speed in m/sec<br />

g: acceleration due to gravity (9.8 m/sec2)<br />

63


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Conservative Tip Speed Limits<br />

• Tip Speed/Head Generation Limits<br />

Wear resistant soft natural rubber: 25.0 m/sec 32 m head<br />

Typical natural rubber: 27.5 m/sec 39 m head<br />

Anti-thermal breakdown rubber 30.0 m/sec 46 m head<br />

Nitrile 27.0 m/sec 37 m head<br />

Neoprene 27.5 m/sec 39 m head<br />

Butyl and Hypalon 30.0 m/sec 46 m head<br />

Polyurethane 30.0 m/sec 46 m head<br />

Hard metal (impellers) 38.0 m/sec 74 m head<br />

64


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Tip Speed Limits<br />

• Neoprene Suction Liner on Oil Sands Tailings Service<br />

437 rpm gear box & max speed<br />

33.1 m/sec adjacent tip speed<br />

454 rpm gearbox, 480 rpm overspeed<br />

36.4 m/sec adjacent tip speed<br />

65


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Tip Speed Limits<br />

Reversion of Neoprene Suction Liner @ 36 m/sec Peripheral Speed<br />

Compromised material properties<br />

Area with softened,<br />

“gummy” consistency<br />

Area with hard,<br />

charcoal like consistency<br />

66


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Materials: Ceramics<br />

• Ceramic Wear Coatings:<br />

• Aluminum-titanium dioxide<br />

• Chrome oxide<br />

• Tungsten carbide/cobalt<br />

• Tungsten carbide/chromium/nickel<br />

• Application:<br />

• HVOF – bond strength?<br />

• Plasma - lower bond strength, prone to spalling<br />

• Laser etched - metallurigical bond, resistant to spalling<br />

• Brazed – high bond strength, resistant to spalling<br />

• High bulk hardness: 1400 to 1700 HV<br />

67


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Geometry: Casing Types<br />

• Casing Types, Radial Load and Recommended Operating Ranges:<br />

a) True/near volute<br />

80 to 120 % of BEP<br />

b) Semi volute<br />

60 to 110 % of BEP<br />

c) Circular/annular volute<br />

40 to 100 % of BEP<br />

68


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Geometry: Impeller Types<br />

• Differences between Heavy<br />

Duty and High Efficiency<br />

Impeller styles.<br />

• Heavy duty impellers are<br />

preferred for large particle<br />

slurries (d50 > 150 microns)<br />

• High efficiency impellers are<br />

preferred for fine particle<br />

slurries (d50 < 150 microns)<br />

69


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Geometry: Impeller Type<br />

• Effect of Particle Size on Impeller Wear<br />

Reference: Warman Technical Bulletin 24, Figure 6<br />

70


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Geometry: Impeller Type<br />

• Effect of Particle Size & Impeller Type on Suction Liner Wear<br />

Reference: Warman Technical Bulletin 24, Figure 7<br />

71


Weir Minerals North America<br />

Geometry: Liner Wear vs. Impeller Type<br />

Excellent<br />

Minerals<br />

Solutions<br />

• Suction Side Liner Wear vs. Impeller Type and Particle Size<br />

HE<br />

Style<br />

Impeller<br />

650 μ d 85<br />

270 μ d 85<br />

150 μ d 85<br />

_____________________________________________________<br />

Heavy<br />

Duty<br />

Impeller<br />

1200 μ d 85<br />

355 μ d85<br />

50 μ d 85<br />

72


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Slurry Factors<br />

• The kinetic energy of the particle:<br />

• Particle mass (specific gravity and size) and velocity<br />

• The particle shape:<br />

• Sharp particles have small contact area and high local stress, so wear is<br />

more severe than with rounded particles<br />

• The slurry concentration:<br />

• Higher percentages of solids result in more impacts for a given flow<br />

73


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Weir Slurry Classification<br />

• Heavy Duty<br />

• Medium Duty<br />

• Light Duty<br />

C w > 35%<br />

D85 > 400 μ m<br />

SG s > 2.0<br />

Sharp Particles<br />

20% < C w < 50%<br />

150 μm < D85 < 400 μm<br />

SG s > 1.4<br />

Angular Particles<br />

C w < 20%<br />

D85 1.4<br />

Rounded Particles<br />

74


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Weir Head Recommendations<br />

Recommended Tip Speed & Head Limits<br />

for Slurry Type<br />

• Heavy Duty:<br />

25 m/sec max. 32 m head @ BEP<br />

• Medium Duty:<br />

32 m/sec max. 52 m head @ BEP<br />

• Light Duty:<br />

38 m/sec max. 74 m head @ BEP<br />

75


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Impeller Type & Flow Range<br />

Recommended Impeller & Flow Range<br />

for Slurry Type<br />

• Heavy Duty:<br />

Heavy Duty Impeller @ 0.60 to 0.80 BEP<br />

• Medium Duty:<br />

Heavy Duty Impeller @ 0.70 to 0.90 BEP<br />

• Light Duty:<br />

High Efficiency Impeller @ 0.80 to 1.1 BEP<br />

76


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Proper <strong>Pump</strong> Selection<br />

• Copper Mine Ball Mill Discharge:<br />

• 400+ micron d50 particle size<br />

• Larger replacement pump:<br />

• Operation at 74% of BEP,<br />

instead of 95% of BEP<br />

• Severe, but even impeller wear<br />

• Longer life:<br />

• 2436 hours versus 1848 hours<br />

• > 30% improvement in life<br />

77


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Proper <strong>Pump</strong> Selection<br />

• Computer Generated Composite view of New and Worn Impeller:<br />

• Copper Mine Ball Mill Discharge Application<br />

78


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Specific Speed<br />

Impeller Geometry and Its Effect on Specific Speed<br />

• Values of Specific Speed, Ns, using m 3 /sec and meters<br />

Courtesy of Hydraulic Institute<br />

79


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Specific Speed<br />

Calculation of Specific Speed:<br />

N Q<br />

N s 3/ 4<br />

H<br />

Where:<br />

N = pump speed in rpm<br />

Q = capacity in m3/sec at BEP<br />

H = total head per stage in meters at BEP<br />

80


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: Specific Speed<br />

Specific Speed Recommendations<br />

Severe duty applications: Ns of 20 to 25<br />

Medium to heavy duty applications: Ns of 25 to 33<br />

Medium duty, less than 30 meters head: Ns of 42, OK<br />

*Maximum efficiency occurs at Ns = 42<br />

81


Weir Minerals North America<br />

Excellent<br />

Minerals<br />

Solutions<br />

Application: General Rules<br />

Slurry type: Heavy Duty Light Duty<br />

Particle size: large particle fine particle<br />

Head: minimize higher allowed<br />

Impeller type: heavy duty high efficiency<br />

Flow rate: below BEP (≈ 75%) near BEP<br />

Volute type: semi-volute true volute (if near BEP)<br />

Expelling vanes: aggressive smooth shrouds<br />

Specific speed: lower higher<br />

Impeller diameter: larger smaller<br />

<strong>Pump</strong> speed: low higher<br />

• Refer to presentation for more specific recommendations<br />

82

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!