15.07.2014 Views

Download PDF - Calgary Pump Symposium

Download PDF - Calgary Pump Symposium

Download PDF - Calgary Pump Symposium

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Design and Testing<br />

of a<br />

New Centrifugal <strong>Pump</strong> Design<br />

for<br />

Bitumen Froth Applications<br />

Presentation for the <strong>Calgary</strong> <strong>Pump</strong> <strong>Symposium</strong>, Nov. 13, 2009<br />

R. Visintainer / Nov-2009<br />

© 2009 GIW Industries Inc.


Froth and Viscous<br />

Losses<br />

s<br />

2 © 2009 GIW Industries<br />

R. Visintainer


Bitumen Froth Losses – Head (Pressure)<br />

Summary of the primary<br />

losses in viscous froth and<br />

the factors affecting them.<br />

Clear water: pump<br />

design & speed.<br />

Viscosity effect:<br />

bitumen properties,<br />

temperature.<br />

Density effect: % air.<br />

Airlock: % air, viscosity,<br />

froth properties, flowrate,<br />

system & pump design.<br />

3 © 2009 GIW Industries<br />

R. Visintainer


Bitumen Froth Losses – NPSHR<br />

Summary of the primary<br />

losses in viscous froth and<br />

the factors affecting them.<br />

Clear water: pump<br />

design & speed.<br />

Viscosity effect:<br />

bitumen properties,<br />

temperature.<br />

Density effect: % air.<br />

Airlock: % air, viscosity,<br />

froth properties, flowrate,<br />

system & pump design.<br />

4 © 2009 GIW Industries<br />

R. Visintainer


Strategies for Improving Froth <strong>Pump</strong> Performance<br />

Improve suction inlet conditions:<br />

<br />

Increase NPSHA<br />

<br />

Decrease % air<br />

<br />

Increase pump inlet diameter<br />

Increase pump head without increasing speed:<br />

<br />

Increase impeller diameter<br />

<br />

High head impeller design<br />

Control airlock:<br />

<br />

Adjust froth properties<br />

<br />

Prevent (or delay) airlock formation<br />

<br />

Airlock venting<br />

Focus of this research project.<br />

5 © 2009 GIW Industries<br />

R. Visintainer


Test Setup<br />

6 © 2009 GIW Industries<br />

R. Visintainer


Froth Test Rig – GIW Hydraulic Lab<br />

7 © 2009 GIW Industries<br />

R. Visintainer


Froth Test Rig – Sparger Design<br />

8 © 2009 GIW Industries<br />

R. Visintainer


Froth Test Rig – Clear Suction Spool<br />

9 © 2009 GIW Industries<br />

R. Visintainer


Froth Test Rig – Testing Parameters<br />

• Viscosity:<br />

o<br />

o<br />

1 cSt (water)<br />

500 to 10,000 cSt (corn syrup)<br />

• Air: 0% to 30%<br />

• Flow: 1000<br />

– 3000 m 3 /hr<br />

• Head: 10 to 60 m<br />

• Speed: 300 to 800 rpm<br />

• Suction pressure: 0.0 to 1.0 atm<br />

10 © 2009 GIW Industries<br />

R. Visintainer


Airlock<br />

11 © 2009 GIW Industries<br />

R. Visintainer


Airlock – Low Re Number (laminar)<br />

Airlock forms as elongated<br />

bubble in suction piping.<br />

12 © 2009 GIW Industries<br />

R. Visintainer


Airlock – High Re Number (turbulent)<br />

Notice density difference<br />

between froth in impeller<br />

passages and casing.<br />

Also formation of airlock<br />

bubble in suction.<br />

13 © 2009 GIW Industries<br />

R. Visintainer


Airlock – Some Typical Results<br />

airlock<br />

14 © 2009 GIW Industries<br />

R. Visintainer


Airlock – Some Typical Results<br />

15 © 2009 GIW Industries<br />

R. Visintainer


Airlock – Some Typical Results<br />

16 © 2009 GIW Industries<br />

R. Visintainer


Airlock – Some Typical Results<br />

17 © 2009 GIW Industries<br />

R. Visintainer


“Excess Air” Concept – Suction Inlet Coalescence<br />

Onset of airlock coincides with<br />

appearance of coalesced air in<br />

suction piping.<br />

18 © 2009 GIW Industries<br />

R. Visintainer


Strategies for Controlling Airlock<br />

Adjust froth properties:<br />

<br />

Decrease % air in the process<br />

<br />

Increase suction inlet velocity (works against improved<br />

NPSHR)<br />

<br />

Prevent “excess” air from reaching the suction inlet<br />

(improved design of sumps and launders)<br />

Prevent (or delay) airlock formation:<br />

<br />

Airlock disturbance (open shrouded designs)<br />

<br />

Improved NPSHR performance<br />

<br />

High head impeller design<br />

Focus of this research project.<br />

Airlock venting:<br />

<br />

Suction inlet venting (removes coalesced air)<br />

<br />

Internal pump venting<br />

19 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System<br />

20 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System<br />

excess air<br />

P SUCTION > P VENT<br />

froth<br />

Suction pressure must exceed vent pressure<br />

(usually atmospheric) by at least 10 kPa<br />

excess air<br />

froth<br />

21 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System<br />

Vent pipe: Use hard pipe with heat<br />

strips in bitumen applications.<br />

22 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System – Some Typical Results<br />

vent closed,<br />

typical airlock losses<br />

vent opened,<br />

airlock losses controlled<br />

23 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System – Some Typical Results<br />

24 © 2009 GIW Industries<br />

R. Visintainer


Airlock Venting System – Viscous Froth<br />

OPERATION OF AIR VENT - AIR LOCK REMOVAL<br />

500-700 rpm, 3000 m3/hr, corn syrup at approx 3,000 cSt, 15% air plus 5% excess air added at sparger<br />

Airlock venting<br />

25 © 2009 GIW Industries<br />

R. Visintainer


High Head<br />

Impeller Design<br />

26 © 2009 GIW Industries<br />

R. Visintainer


High Head vs. Conventional Designs<br />

Summary of the primary<br />

losses in viscous froth and<br />

the factors affecting them.<br />

Clear water: pump<br />

design & speed.<br />

Viscosity effect:<br />

bitumen properties,<br />

temperature.<br />

Conventional design<br />

(without venting)<br />

Density effect: % air.<br />

Airlock: % air, viscosity,<br />

froth properties, flowrate,<br />

system & pump design.<br />

27 © 2009 GIW Industries<br />

R. Visintainer


High Head vs. Conventional Designs<br />

Advantage of High Head<br />

design operating at same<br />

speed and NPSHR.<br />

High Head design<br />

(with venting)<br />

High Head design<br />

(without venting)<br />

Clear water: pump<br />

design & speed.<br />

Viscosity effect:<br />

bitumen properties,<br />

temperature.<br />

Density effect: % air.<br />

Airlock: % air, viscosity,<br />

froth properties, flowrate,<br />

system & pump design.<br />

28 © 2009 GIW Industries<br />

R. Visintainer


High Head Impeller Design – CFD Analysis<br />

CFD analysis used to<br />

optimize NPSHR<br />

performance.<br />

HIGH SUCTION SIDE VELOCITY<br />

@ SHOCKLESS DESIGN FLOWRATE ENTRY<br />

NEGATIVE NPSHR IMPACT<br />

29 © 2009 GIW Industries<br />

R. Visintainer


High Head Impeller Design – CFD Analysis<br />

Turbulence<br />

helps to disturb<br />

airlock formation<br />

Conventional Closed Shroud Design<br />

Expanded, Open Shrouded Design<br />

30 © 2009 GIW Industries<br />

R. Visintainer


High Head Impeller Design – CFD Analysis<br />

Higher head = more<br />

gas compression<br />

Conventional Closed Shroud Design<br />

Expanded, Open Shrouded Design<br />

31 © 2009 GIW Industries<br />

R. Visintainer


High Head vs. Conventional Designs<br />

Some sacrifice in Efficiency<br />

Increased Head<br />

Improved NPSHR<br />

at higher flows<br />

32 © 2009 GIW Industries<br />

R. Visintainer


High Head vs. Conventional Designs<br />

33 © 2009 GIW Industries<br />

R. Visintainer


High Head Impeller NPSHR Performance<br />

Variable speed NPSHR testing<br />

ti<br />

Water froth - 0.03% soap<br />

100% BEPQ<br />

600 - 810 rpm<br />

34 © 2009 GIW Industries<br />

R. Visintainer


Viscous<br />

Effects<br />

35 © 2009 GIW Industries<br />

R. Visintainer


Viscous Froth Simulation<br />

Corn syrup at 3,000 cSt<br />

36 © 2009 GIW Industries<br />

R. Visintainer


Viscous Froth Simulation<br />

Corn syrup froth at 15% air<br />

and 3,000 cSt<br />

37 © 2009 GIW Industries<br />

R. Visintainer


Viscous Testing and Analysis – Typical Results<br />

Viscosity<br />

Correlations<br />

HEAD<br />

1,000 to 10,000000 cSt<br />

10-15% air<br />

0% excess air<br />

0.05 to 0.1 atm Ps<br />

scaled to 700 rpm<br />

38 © 2009 GIW Industries<br />

R. Visintainer


Viscous Testing and Analysis – Typical Results<br />

Viscosity<br />

Correlations<br />

FLOW<br />

1,000 to 10,000000 cSt<br />

10-15% air<br />

0% excess air<br />

0.05 to 0.1 atm Ps<br />

scaled to 700 rpm<br />

39 © 2009 GIW Industries<br />

R. Visintainer


Viscous Testing and Analysis – Typical Results<br />

Viscosity<br />

Correlations<br />

EFFICIENCY<br />

1,000 to 10,000000 cSt<br />

10-15% air<br />

0% excess air<br />

0.05 to 0.1 atm Ps<br />

scaled to 700 rpm<br />

40 © 2009 GIW Industries<br />

R. Visintainer


Viscous Testing and Analysis – Typical Results<br />

Viscosity<br />

Correlations<br />

POWER<br />

1,000 to 10,000000 cSt<br />

10-15% air<br />

0% excess air<br />

0.05 to 0.1 atm Ps<br />

scaled to 700 rpm<br />

41 © 2009 GIW Industries<br />

R. Visintainer


Key<br />

Learnings<br />

42 © 2009 GIW Industries<br />

R. Visintainer


Key Learnings<br />

• Given enough air, the pump will airlock.<br />

• The “Excess Air” concept:<br />

‣ Airlock occurs when the liquid is carrying more air than it can hold.<br />

‣ For conventional designs in clear water: 3% to 5%.<br />

‣ Depending on composition of froth, can increase to 40% or more.<br />

• Airlock can be delayed by…<br />

‣ … airlock venting systems (requires suction pressure > atmospheric).<br />

‣ … high head impeller designs adjusted for good NPSHR performance.<br />

• High head impeller design can improve froth pump performance by…<br />

‣ … reducing operating speed thus improving NPSHR performance.<br />

‣ … more airlock disturbance.<br />

‣ … better air compression within the impeller.<br />

43 © 2009 GIW Industries<br />

R. Visintainer


Questions<br />

&<br />

Discussion<br />

44 © 2009 GIW Industries<br />

R. Visintainer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!