15.07.2014 Views

Multifolded torus chaotic attractors: Design and implementation

Multifolded torus chaotic attractors: Design and implementation

Multifolded torus chaotic attractors: Design and implementation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAOS 17, 013118 2007<br />

<strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>: <strong>Design</strong> <strong>and</strong> <strong>implementation</strong><br />

Simin Yu<br />

College of Automation, Guangdong University of Technology, Guangzhou 510090, China<br />

Jinhu Lu a<br />

Key Laboratory of Systems <strong>and</strong> Control, Institute of Systems Science, Academy of Mathematics<br />

<strong>and</strong> Systems Science, Chinese Academy of Sciences, Beijing 100080, China; State Key Laboratory<br />

of Software Engineering, Wuhan University, Wuhan 430072, China; <strong>and</strong> Department of Ecology<br />

<strong>and</strong> Evolutionary Biology, Princeton University, Princeton, New Jersey 08544<br />

Guanrong Chen b<br />

Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China<br />

Received 31 October 2006; accepted 9 January 2007; published online 22 March 2007<br />

This paper proposes a systematic methodology for creating multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> from<br />

a simple three-dimensional piecewise-linear system. Theoretical analysis shows that the multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> can be generated via alternative switchings between two basic linear systems.<br />

The theoretical design principle <strong>and</strong> the underlying dynamic mechanism are then further<br />

investigated by analyzing the emerging bifurcation <strong>and</strong> the stable <strong>and</strong> unstable subspaces of the two<br />

basic linear systems. A novel block circuit diagram is also designed for hardware <strong>implementation</strong> of<br />

3-, 5-, 7-, 9-folded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> via switching the corresponding switches. This is the first<br />

time a 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor generated by an analog circuit has been verified experimentally.<br />

Furthermore, some recursive formulas of system parameters are rigorously derived, which is<br />

useful for improving hardware <strong>implementation</strong>. © 2007 American Institute of Physics.<br />

DOI: 10.1063/1.2559173<br />

Chua’s circuit, as the first <strong>chaotic</strong> circuit, has been intensively<br />

investigated as a platform for engineering applications<br />

over the past three decades. Since Chua’s circuit has<br />

a typical double-scroll <strong>chaotic</strong> attractor, a natural question<br />

to ask is, can we design various complex multiscroll<br />

<strong>chaotic</strong> <strong>attractors</strong> via some simple electronic circuits? After<br />

the rapid development over the past three decades,<br />

multiscroll chaos generation now has seen promising advances<br />

<strong>and</strong> has become an active research field in chaos.<br />

This is the case not only in deeper <strong>and</strong> wider theoretical<br />

studies but also in many newly found real-world applications.<br />

This paper introduces a systematic methodology<br />

for generating complex multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong><br />

from a simple three-dimensional piecewise-linear<br />

system. The theoretical design principle <strong>and</strong> the underlying<br />

dynamic mechanism are then studied further by analyzing<br />

the emerging bifurcation <strong>and</strong> the stable <strong>and</strong> unstable<br />

subspaces of the two basic generators. In addition,<br />

a block circuit diagram is designed for experimental verification<br />

of 3-, 5-, 7-, 9-folded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. It<br />

should be especially pointed out that this is the first time<br />

a 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor has been realized physically<br />

by an analog circuit.<br />

I. INTRODUCTION<br />

Nowadays, theoretical design <strong>and</strong> circuit <strong>implementation</strong><br />

of <strong>chaotic</strong> oscillators have been an increasingly interesting<br />

a Electronic mail: jhlu@iss.ac.cn<br />

b Electronic mail: eegchen@cityu.edu.hk<br />

subject for research due to their real applications in various<br />

information systems <strong>and</strong> chaos-based technologies. 1–27 Although<br />

there are many techniques reported for generating<br />

various multiscroll <strong>chaotic</strong> <strong>attractors</strong>, 2,9–27 to the best of our<br />

knowledge, there are very few publications on designing<br />

complex multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. Torus breakdown<br />

was observed <strong>and</strong> confirmed in many real physical<br />

systems. 9,10 However, theoretical design <strong>and</strong> circuit <strong>implementation</strong><br />

of multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> are still<br />

needed, which remains a technical challenge to both physicists<br />

<strong>and</strong> engineers today.<br />

Historically, Suykens <strong>and</strong> V<strong>and</strong>ewalle introduced a family<br />

of n-double-scroll <strong>chaotic</strong> <strong>attractors</strong>. 11 Aziz-Alaoui studied<br />

multispiral <strong>attractors</strong> in both autonomous <strong>and</strong> nonautonomous<br />

systems. 13 Yalcin et al. also proposed a family of<br />

hyper<strong>chaotic</strong> systems that have n-scroll <strong>attractors</strong>. 14 The essence<br />

of these methods lies in adding breakpoints into the<br />

piecewise-linear PWL characteristic function of the nonlinear<br />

resistor in Chua’s circuit. Later, Tang et al. developed a<br />

sine-function approach for creating n-scroll <strong>chaotic</strong><br />

<strong>attractors</strong>. 15 Lu et al. introduced a switching manifold approach<br />

for creating <strong>chaotic</strong> <strong>attractors</strong> with multiple-merged<br />

basins of attraction. 1,17 Recently, Lu et al. developed hysteresis<br />

<strong>and</strong> saturated function series approaches for creating<br />

scroll-grid <strong>attractors</strong>, with rigorous mathematical proofs <strong>and</strong><br />

physical circuit verifications for the <strong>chaotic</strong> behaviors. 20–23<br />

As a detailed survey, Lu <strong>and</strong> Chen reviewed the recent advances<br />

in multiscroll <strong>chaotic</strong> attractor generation, including<br />

theories, methods, <strong>and</strong> applications. 10<br />

1054-1500/2007/171/013118/12/$23.00<br />

17, 013118-1<br />

© 2007 American Institute of Physics<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-2 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

Chua <strong>and</strong> his colleagues proposed a simple third-order<br />

autonomous circuit, 9,10,14 called a folded <strong>torus</strong> circuit, which<br />

can generate a double-folded <strong>torus</strong> <strong>chaotic</strong> attractor. Later,<br />

many researchers studied further the <strong>torus</strong> breakdown in a<br />

PWL forced van der Pol oscillator <strong>and</strong> a forced Rayleigh<br />

oscillator. As far as we know, previous works on <strong>torus</strong> breakdown<br />

only focused on laboratory measurement <strong>and</strong> numerical<br />

simulation for a <strong>torus</strong> or a folded <strong>torus</strong>. 9,10 Therefore, it is<br />

very interesting to ask whether the folded <strong>torus</strong> circuit can be<br />

slightly modified so as to generate multifolded <strong>torus</strong> <strong>chaotic</strong><br />

<strong>attractors</strong>. This paper gives a positive answer to this<br />

question.<br />

More precisely, this paper reports our studies of constructing<br />

a general PWL characteristic function to replace the<br />

characteristic function used in the folded <strong>torus</strong> circuit,<br />

thereby generating multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. In<br />

particular, our theoretical analysis reveals that these multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> can be generated via alternative<br />

switchings of two basic linear systems. The theoretical<br />

design principle <strong>and</strong> the underlying dynamic mechanism are<br />

then further investigated by analyzing the emerging bifurcation<br />

<strong>and</strong> the stable <strong>and</strong> unstable subspaces of the two linear<br />

systems. Moreover, a novel block circuit diagram is designed<br />

for hardware <strong>implementation</strong> of 3-, 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong><br />

<strong>chaotic</strong> <strong>attractors</strong>. Recursive formulas for system parameters<br />

<strong>and</strong> for physical circuit parameters are also rigorously derived,<br />

useful for improving hardware <strong>implementation</strong>. It<br />

should be noted that this is the first experimental verification<br />

of a 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor.<br />

The rest of this paper is organized as follows. In Sec. II,<br />

a systematic theoretical design approach for generating multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> is proposed, <strong>and</strong> some recursive<br />

formulas for system parameters are rigorously derived.<br />

The underlying dynamic mechanism <strong>and</strong> emerging bifurcation<br />

are then discussed in Sec. III. In Sec. IV, a simple circuit<br />

diagram is constructed for experimentally verifying the multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. Conclusions are finally<br />

drawn in Sec. V.<br />

II. THEORETICAL DESIGN OF MULTIFOLDED TORUS<br />

CHAOTIC ATTRACTORS<br />

In this section, we construct a general PWL characteristic<br />

function to replace the characteristic function used in the<br />

fold <strong>torus</strong> circuit for generating multifolded <strong>torus</strong> <strong>chaotic</strong><br />

<strong>attractors</strong>.<br />

A. Double-folded <strong>torus</strong> <strong>chaotic</strong> attractor<br />

Chua <strong>and</strong> his colleagues proposed a double-folded <strong>torus</strong><br />

<strong>chaotic</strong> circuit, 9,10 called a folded <strong>torus</strong> circuit, described by<br />

where<br />

ẋ =−gy − x<br />

ẏ =−gy − x − z<br />

ż = y,<br />

1<br />

FIG. 1. Double-folded <strong>torus</strong> <strong>chaotic</strong> attractor.<br />

gy − x = m 1 y − x + m 0 − m 1<br />

y − x + x 1 − y − x − x 1 2<br />

2<br />

is a PWL odd function satisfying gx−y=−gy−x. When<br />

=15, =1, m 0 =0.1, m 1 =−0.07, <strong>and</strong> x 1 =1, system 1 has a<br />

double-folded <strong>torus</strong> <strong>chaotic</strong> attractor as shown in Fig. 1. The<br />

maximum Lyapunov exponent of this attractor is 0.0270.<br />

System 1 has three equilibrium points: O0,0,0<br />

<strong>and</strong> P ±<br />

±<br />

17<br />

7 ,0,0 . Linearizing system 1 at equilibrium point<br />

O gives the corresponding eigenvalues: O 1 1.4328<br />

<strong>and</strong> O 2,3 −0.0164±1.0231i, which have the corresponding<br />

eigenvectors 0.9985,0.0448,0.0312 T <strong>and</strong><br />

−0.41940.2829i,−0.6169,0.0097±0.6028i T , respectively.<br />

Thus, system 1 has a one-dimensional unstable<br />

eigenspace E U x<br />

O:<br />

9985 = y<br />

448 = z<br />

312 corresponding to 1 O <strong>and</strong> a<br />

two-dimensional stable eigenspace E S O:37186732x<br />

O<br />

−25007019y+17452101z=0 corresponding to 2,3 at the<br />

neighboring region of O.<br />

Similarly, linearizing system 1 at the equilibrium<br />

points P ± gets the following eigenvalues: P 1 −1.0145<br />

<strong>and</strong> P 2,3 0.0172±1.0172i, with the corresponding<br />

eigenvectors 0.9989,0.0338,−0.0333 T <strong>and</strong><br />

0.32780.3124i,0.6358,0.01060.6249i T , respectively.<br />

System 1 has a one-dimensional stable eigenspace<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-3 <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> Chaos 17, 013118 2007<br />

x<br />

9989 = y<br />

338 = z<br />

E S P<br />

P ± :<br />

−333<br />

corresponding to 1 <strong>and</strong> twodimensional<br />

unstable eigenspace E S P ± :−19865571x<br />

P<br />

+10076539y+9931196z=0 corresponding to 2,3 in the<br />

neighboring region of P ± .<br />

B. <strong>Design</strong> principles of system parameters<br />

Definition 1: An n-folded <strong>torus</strong> attractor is an attractor<br />

that is created via an n-<strong>torus</strong> breakdown route, where the<br />

n-<strong>torus</strong> is described as a quotient of R n under integral shifts<br />

in any coordinate with a zero Lyapunov number <strong>and</strong> an irrational<br />

rotation number. 8–10<br />

To generate multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> from the<br />

folded circuit 1, we introduce a new PWL odd function to<br />

replace the characteristic function 2, which is described by<br />

gy − x = m N−1 y − x<br />

N−1<br />

mi−1 − m<br />

+ <br />

i<br />

y − x + x i − y − x − x i , 3<br />

i=1 2<br />

where gx−y=−gy−x <strong>and</strong> , are real parameters.<br />

Note that the above PWL characteristic function gy−x<br />

can be recast as follows:<br />

y − x x 1 , m 0 y − x<br />

if x i y − x x i+1 , 1 i N −2,<br />

i<br />

gy − x =if<br />

m i y − x + m j−1 − m j sgny − xx j<br />

j=1<br />

N−1<br />

if y − x x n−1 , m N−1 y − x + m j−1 − m j sgny − xx j ,<br />

j=1<br />

4<br />

where m i 0iN−1 are the slopes of the segments, or<br />

radials in various piecewise subregions, <strong>and</strong> ±x i x i 0, 1<br />

iN−1 are the switching points. Since g· is an odd<br />

function, we only need to determine the positive switching<br />

points x i 1iN−1.<br />

Obviously, the equilibrium points of system 1 with 3<br />

are ±x i E ,0,0x i E 0,0iN−1, where ±x i E 0iN−1<br />

satisfies the following equation:<br />

gx i E =0, 0 i N −1. 5<br />

Substituting 4 into 5, <strong>and</strong> solving x E i 0iN−1 from<br />

5, yields the recursive formulas of x E i 0iN−1 as follows:<br />

= 0 i =0,<br />

x E i<br />

i j=1 m j − m j−1 x j<br />

6<br />

1 i N −1.<br />

m i<br />

Denote<br />

k i = x E<br />

i+1 − x i<br />

x E , 7<br />

i − x i<br />

E<br />

where 1iN−2. Let k i =1 for 1iN−2, thus x i<br />

= 1 2 x i+x i+1 for 1iN−2. That is, all internal equilibrium<br />

points x E i 0iN−2 are the midpoints of two neighboring<br />

switching points. According to 6, we have the recursive<br />

formulas of the positive switching points x i 2iN−1 as<br />

follows:<br />

x i+1 = 2 i<br />

j=1m j − m j−1 x j<br />

− x i , 8<br />

m i<br />

where 1iN−2.<br />

C. <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong><br />

Numerical simulation shows that system 1 with 3 has<br />

a large parameter region for chaos generation. Here, assume<br />

that =14.5, =1.25, <strong>and</strong> x 1 =0.75. Then, we can calculate<br />

all other switching points x i 2iN−1 from the recursive<br />

formulas 8.<br />

In the following, two typical cases are first discussed:<br />

N=2 <strong>and</strong> N=5. When N=2, we have gy−x=m 1 y−x<br />

+ 1 2 m 0−m 1 y−x+x 1 −y−x−x 1 . Let m 0 =0.15 <strong>and</strong> m 1<br />

=−0.17. Figure 2a shows the PWL characteristic function<br />

gx with N=2. For the above set of parameters, system 1<br />

with 3 has a 3-folded <strong>torus</strong> <strong>chaotic</strong> attractor, as shown in<br />

Fig. 3a. The maximum Lyapunov exponent of this 3-folded<br />

<strong>torus</strong> <strong>chaotic</strong> attractor is 0.1018. It is clear that there are three<br />

tori folded in the <strong>chaotic</strong> attractor, as shown in Fig. 3a.<br />

Obviously, system 1 with 3 for N=2 has three equilibrium<br />

points: O0,0,0 <strong>and</strong> P ± ±1.4118,0,0 denoted by “,”<br />

as shown in Fig. 3a. Also, the two switching points are<br />

denoted by “,” as shown in Fig. 3a.<br />

When N=5, we have<br />

gy − x = m 4 y − x<br />

4<br />

+ 2<br />

1 m i−1 − m i y − x + x i − y − x − x i .<br />

i=1<br />

Let m 0 =−0.17, m 1 =0.15, m 2 =−0.17, m 3 =0.15, <strong>and</strong> m 4 =<br />

−0.17. From 8, we have x 2 =2.45, x 3 =3.95, <strong>and</strong> x 4 =5.65.<br />

Figure 2b shows the PWL characteristic function gx for<br />

N=5. Here, system 1 with 3 has a 9-folded <strong>torus</strong> <strong>chaotic</strong><br />

attractor, as shown in Fig. 3b. The maximum Lyapunov<br />

exponent of this 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor is 0.0730. It<br />

is clear that there are nine tori folded in the <strong>chaotic</strong> attractor,<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-4 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

FIG. 2. PWL characteristic function gx. a Three segments;<br />

b nine segments.<br />

as shown in Fig. 3b. System 1 with 3 for N=5 has nine<br />

equilibrium points: O0,0,0, P ± 91 ±1.6,0,0,<br />

P ± 92 ±3.2,0,0, P ± 93 ±4.8,0,0, <strong>and</strong> P ± 94 ±6.4,0,0 denoted<br />

by “,” as shown in Fig. 3b. The eight switching points are<br />

denoted by “,” as shown in Fig. 3b.<br />

Similarly, system 1 with 3 has a 5-folded <strong>torus</strong> <strong>chaotic</strong><br />

attractor with maximum Lyapunov exponent 0.1151 for<br />

parameters N=3, m 0 =−0.17, m 1 =0.15, m 2 =−0.17, <strong>and</strong> x 2<br />

=2.45. Also, system 1 with 3 has a 7-folded <strong>torus</strong> <strong>chaotic</strong><br />

attractor with maximum Lyapunov exponent 0.0901 for parameters<br />

N=4, m 0 =0.15, m 1 =−0.17, m 2 =0.15, m 3 =−0.17,<br />

x 2 =2.0735, <strong>and</strong> x 3 =3.5735. Obviously, system 1 with 3<br />

can create a maximum 2N−1-folded <strong>torus</strong> <strong>chaotic</strong> attractor<br />

for N1, where every <strong>torus</strong> corresponds to a unique segment<br />

or radial of the PWL characteristic function gx. Furthermore,<br />

theoretical analysis <strong>and</strong> numerical simulation both<br />

show that the slopes of the two radials of the PWL characteristic<br />

function gx must be negative, as depicted in Fig. 2.<br />

III. DYNAMICAL BEHAVIORS OF MULTIFOLDED<br />

TORUS CHAOTIC SYSTEMS<br />

In this section, the dynamical behaviors of multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> systems are further investigated, including<br />

symmetry, bifurcation, eigenspaces, approximation solutions,<br />

<strong>and</strong> system trajectory.<br />

A. Symmetry <strong>and</strong> bifurcation of 3-folded <strong>torus</strong><br />

<strong>chaotic</strong> system<br />

Denote S + =x,y,zy=x−x 1 , S − =x,y,zy=x+x 1 ,<br />

V 0 =x,y,zy−x x 1 , V + =x,y,zy−x−x 1 , <strong>and</strong> V −<br />

=x,y,zy−xx 1 .<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-5 <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> Chaos 17, 013118 2007<br />

FIG. 3. <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. a 3-folded <strong>torus</strong>; b 9-folded<br />

<strong>torus</strong>.<br />

FIG. 4. Bifurcation diagram of 3-folded <strong>torus</strong> system 1 with 3 for N<br />

=2, m 0 =0.15, <strong>and</strong> m 1 =−0.17. a Parameter =1.25; b parameter <br />

=14.5.<br />

Note that system 1 is invariant under the transformation<br />

x,y,z→−x,−y,−z; that is, system 1 is symmetric<br />

about the origin. The symmetry persists for all values of the<br />

system parameters. Moreover,<br />

V = ẋ<br />

x + ẏ<br />

y + ż<br />

<br />

2 = m 0 −1 x,y,z V 0<br />

m 1 −1 x,y,z V ± ,<br />

where V is the unit volume of the flow of system 1. Therefore,<br />

system 1 with 3 for N=2 is dissipative in V 0 for<br />

m 0 −10 <strong>and</strong> in V ± for m 1 −10.<br />

Assume that m 0 0 <strong>and</strong> m 1 0. Then V changes its<br />

sign at =1;<br />

=<br />

that is,<br />

0 x,y,z V 0<br />

1<br />

0 x,y,z V ±<br />

V 0 =1<br />

0 x,y,z V 0<br />

1.<br />

0 x,y,z V ±<br />

Theoretical analysis shows that system 1 with 3 for N<br />

=2 has a periodic repeller, which coexists with an attracting<br />

<strong>torus</strong> for 1. However, system 1 with 3 for N=2 has a<br />

periodic attractor, which coexists with a repelling <strong>torus</strong> for<br />

1. When =1, neither repeller nor attractor is observed<br />

as expected. Instead, a Hopf bifurcation occurs at =1. 8<br />

System 1 with 3 for N=2, m 0 =0.15, <strong>and</strong> m 1 =−0.17<br />

has a wide parameter region for a 3-folded <strong>torus</strong> <strong>chaotic</strong><br />

attractor. Figures 4a <strong>and</strong> 4b show the bifurcation diagrams<br />

of parameters with =1.25 <strong>and</strong> with =14.5,<br />

respectively. According to the bifurcation diagrams in Fig. 4,<br />

it is clear that system 1 with 3 for N=2 has three different<br />

tori folded in a <strong>chaotic</strong> attractor.<br />

B. Dynamical behaviors of a 3-folded <strong>torus</strong> <strong>chaotic</strong><br />

system<br />

From the discussion in Sec. II C, system 1 with 3 for<br />

N=2 has three equilibriums: O0,0,0 <strong>and</strong><br />

P ± ±1.4118,0,0. Linearizing system 1 with 3 for N=2<br />

at equilibrium point O gives<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-6 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

TABLE I. Parameters a ij , b ij ,<strong>and</strong>c ij 1i, j3.<br />

a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33<br />

1.0299 −0.7954 0.3863 0.0549 −0.0424 0.0206 0.0333 −0.0257 0.0125<br />

b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33<br />

−0.0299 0.7954 −0.3863 −0.0549 1.0424 −0.0206 −0.0333 0.0257 0.9875<br />

c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33<br />

−0.0469 0.4557 0.6980 −0.0315 0.0391 0.9075 0.0602 −1.1345 0.0078<br />

Ẋ = m 0 − m 0 0<br />

m 0 − m 0 −1<br />

0 0<br />

x y<br />

z A 0X,<br />

where X=x,y,z T . The corresponding characteristic equation<br />

of O is<br />

3 + m 0 1− 2 + − m 0 =0.<br />

9<br />

10<br />

Let =14.5, =1.25, m 0 =0.15, <strong>and</strong> m 1 =−0.17. Solving<br />

10 gives 1 2.0592, 2,3 −0.0171±1.1489i, <strong>and</strong> the corresponding<br />

eigenvectors are v 1 0.9981,0.0532,0.0323 T<br />

<strong>and</strong><br />

Denote<br />

0.2440<br />

v 2 = w 2 ± w 3 i 0.0086<br />

− 0.6328 − 0.4492<br />

± − 0.5816 i.<br />

0<br />

= m 1 − m 1 0<br />

x<br />

z<br />

Ẋ m 1 − m 1 −1 y A 1X,<br />

0 0<br />

11<br />

where X=x,y,z T , <strong>and</strong> its corresponding eigenvalues are<br />

¯ 1−2.3269, ¯ 2,30.0159±1.1506i. The corresponding<br />

eigenvectors are<br />

<strong>and</strong><br />

Denote<br />

v¯1 0.9980,0.0559,− 0.03<br />

0.2258<br />

v¯2 = w¯ 2 ± w¯ 3i 0.0080<br />

0.6279 0.4696<br />

± 0.5780 i.<br />

0<br />

0.9981 0.2440 − 0.4492<br />

P = v 1 ,w 1 ,w 2 0.0532 0.0086 − 0.5816<br />

.<br />

0.0323 − 0.6328 0<br />

Thus, the solution of linear system 9 with initial value X 0 is<br />

XtP s 11 0 0<br />

<br />

0 s 22 − s 32 P−1 X 0<br />

0 s 32 s 22<br />

t 11 t 12 t 13<br />

t 21 t 22 t 23<br />

t 31 t 32 t 33 X 0,<br />

where s 11 =e 2.0592t , s 22 =e −0.0171t cos1.1489t, s 32<br />

=e −0.0171t sin1.1489t, <strong>and</strong> t ij =a ij e 2.0592t +b ij e −0.0171t<br />

cos1.1489t+c ij e −0.0171t sin1.1489t1i, j3, in<br />

which a ij ,b ij ,c ij 1i, j3 are given in Table I.<br />

Therefore, the unstable <strong>and</strong> stable subspaces of system<br />

9 are E U =Spanv 1 <strong>and</strong> E S =Spanw 2 ,w 3 , respectively.<br />

Figure 5a shows the stable <strong>and</strong> unstable subspaces of linear<br />

system 9. Note that system 9 is the linearized system of<br />

the 3-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=2 at equilibrium<br />

point O. The unstable <strong>and</strong> stable eigenspaces of system<br />

x<br />

9981 = y<br />

532 = z<br />

323<br />

1 with 3 <strong>and</strong> N=2 corresponding to O are<br />

<strong>and</strong> 4600456x−3553172y+1725591z=0, respectively.<br />

Linearizing system 1 with 3 at equilibrium points P ±<br />

gives<br />

FIG. 5. Stable <strong>and</strong> unstable subspaces E S <strong>and</strong> E U of the PWL system 1<br />

with 3 for N=2. a In V 0 ; b in V ± .<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-7 <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> Chaos 17, 013118 2007<br />

TABLE II. Parameters ā ij , b¯ij, <strong>and</strong> c¯ij 1i, j3.<br />

ā 11 ā 12 ā 13 ā 21 ā 22 ā 23 ā 31 ā 32 ā 33<br />

1.0363 −0.8419 −0.3619 0.0580 −0.0472 −0.0203 −0.0312 0.0253 0.0109<br />

b¯11 b¯12 b¯13 b¯21 b¯22 b¯23 b¯31 b¯32 b¯33<br />

−0.0363 0.8419 0.3619 −0.0580 1.0472 0.0203 0.03123 −0.0253 0.9891<br />

c¯11 c¯12 c¯13 c¯21 c¯22 c¯23 c¯31 c¯32 c¯33<br />

0.0461 −0.4281 0.7368 0.0295 −0.0378 0.9104 0.0635 −1.1379 −0.0083<br />

0.9980 0.2258 0.4696<br />

P¯ = v¯1,w¯ 1,w¯ 2 <br />

0.0559 0.0080 0.5780 .<br />

− 0.03 0.6279 0<br />

The solution of linear system 11 with initial value X 0 is<br />

XtP¯ s¯11 0 0<br />

<br />

t¯12 t¯13<br />

0 s¯22 − s¯32 P¯ −1 X 0 t¯11<br />

t¯21 t¯22 t¯23 0 ,<br />

0 s¯32 s¯22 t¯31 t¯32 t¯33X<br />

where s¯11 =e −2.3269t , s¯22 =e 0.0159t cos1.1506t, s¯32<br />

=e 0.0159t sin1.1506t, <strong>and</strong> t¯ij =ā ij e −2.3269t +b¯ije 0.0159t<br />

cos1.1506t+c¯ij e 0.0159t sin1.1506t1i, j3, in which<br />

ā ij ,b¯ij,c¯ij 1i, j3 are given in Table II.<br />

Moreover, the stable <strong>and</strong> unstable subspaces of system<br />

11 are E S =Spanv¯1 <strong>and</strong> E U =Spanw¯ 2,w¯ 3, respectively.<br />

Figure 5b shows the stable <strong>and</strong> unstable subspaces of linear<br />

system 11. Note that system 11 is the linearized system of<br />

the 3-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=2 at equilibrium<br />

point P ± . The stable <strong>and</strong> unstable eigenspaces of system<br />

x<br />

1 with 3 <strong>and</strong> N=2 corresponding to P ± are<br />

= z<br />

−300<br />

9980 = y<br />

559<br />

<strong>and</strong> −9073155x+7371546y+3168890z=0, respectively.<br />

According to 10 <strong>and</strong> the Routh-Hurwitz theorem, the<br />

equilibrium point O0,0,0 is stable if <strong>and</strong> only if<br />

m 0 1− 0, m 0 0, m 0 0.<br />

x<br />

Similarly, the equilibrium point P ±<br />

<br />

1 m 0 −m 1 <br />

<br />

m 1<br />

,0,0 is stable<br />

if <strong>and</strong> only if<br />

m 1 1− 0, m 1 0, m 1 0.<br />

Referring to 10, denote p=− m 0 2 1− 2<br />

3<br />

, q= 2m 0 3 1− 3<br />

27<br />

− m 01−<br />

3<br />

−m 0 , <strong>and</strong> =− m 0 4 1− 3<br />

27<br />

− m 0 2 2 1− 2<br />

108<br />

+ m 0 2 2 1−<br />

6<br />

+ 3<br />

27 + m 0 2 2 2<br />

4<br />

. Based on the classical formula of the solutions<br />

of cubic equations, solving 10 gives 1 =− m 01−<br />

+ 3 − q 2 + + 3 − q 2 − <strong>and</strong> 2,3 =− m 01−<br />

3<br />

− 1 2 3 − q 2 + <br />

+ 3 − q 2 − ±<br />

3<br />

2 i 3 − q 2 + − 3 − q 2 − 1 ± 2 i. Theoretical<br />

analysis <strong>and</strong> numerical simulations show that the PWL<br />

system 1 with 3 for N=2 can generate a 3-folded <strong>torus</strong><br />

<strong>chaotic</strong> attractor under the conditions of 1 0, 1 0, <strong>and</strong><br />

2 0. That is, the equilibrium point O is a one-dimensional<br />

unstable saddle point.<br />

Similarly, denote p¯ =− m 1 2 1− 2<br />

3<br />

, q¯ = 2m 1 3 1− 3<br />

27<br />

− m 11−<br />

3<br />

−m 1 , <strong>and</strong> ¯ =− m 1 4 1− 3<br />

27<br />

− m 1 2 2 1− 2<br />

108<br />

+ m 1 2 2 1−<br />

6<br />

+ 3<br />

27<br />

3<br />

+ m 1 2 2 2<br />

4<br />

, <strong>and</strong> the eigenvalues are ¯ 1=− m 11−<br />

3<br />

+ 3 − q¯2 + ¯<br />

+ 3 − q¯2 − ¯ <strong>and</strong> ¯ 2,3=− m 11−<br />

3<br />

− 1 2 3 − q¯2 + ¯ <br />

+ 3 − q¯2 − ¯ ±<br />

3<br />

2 i 3 − q¯2 + ¯ − 3 − q¯2 − ¯ ¯ 1±¯ 2i.<br />

Theoretical<br />

analysis <strong>and</strong> numerical simulations show that the<br />

PWL system 1 with 3 <strong>and</strong> N=2 can create a 3-folded<br />

<strong>torus</strong> <strong>chaotic</strong> attractor under the conditions of ¯ 10, ¯ 1<br />

0, <strong>and</strong> ¯ 20. That is, the equilibrium points P ± are twodimensional<br />

unstable saddle points.<br />

Therefore, to generate a 3-folded <strong>torus</strong> <strong>chaotic</strong> attractor<br />

from 1 with 3 <strong>and</strong> N=2, one may assume that<br />

0, ¯ 0, 1 0,<br />

12<br />

¯ 1 0, 1 0, ¯ 1 0.<br />

Remark 1: The double-folded <strong>torus</strong> <strong>chaotic</strong> system 1<br />

with 2 <strong>and</strong> the 3-folded <strong>torus</strong> <strong>chaotic</strong> system 1 with 3<br />

have the same dynamical equation. The main difference lies<br />

in their different parameters , , m 0 , <strong>and</strong> m 1 . More importantly,<br />

different parameters correspond to different stable <strong>and</strong><br />

unstable subspaces, which finally lead to different dynamical<br />

behaviors. Furthermore, different parameters may have different<br />

intrinsic dynamic mechanisms. It is clear that the<br />

double-folded <strong>torus</strong> <strong>chaotic</strong> attractor is nonsymmetrical<br />

about the origin O, as shown in Fig. 1; however, the 3-folded<br />

<strong>torus</strong> <strong>chaotic</strong> attractor is symmetrical about the origin O, as<br />

shown in Fig. 3a.<br />

C. Dynamical behaviors of multifolded <strong>torus</strong><br />

<strong>chaotic</strong> systems<br />

The linear systems in the three domains V 0 <strong>and</strong> V ± of R 3<br />

are Ẋ=AX−E, where X=x,y,z T , A=A 0 , <strong>and</strong> E=O for X<br />

V 0 , <strong>and</strong> A=A 1 <strong>and</strong> E= P ± for XV ± . When XV ± , let<br />

X=X− P ± , so that Ẋ=A 1 X. Thus, the dynamical behaviors<br />

of the 3-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=2 are completely<br />

determined by the two basic linear systems 9 <strong>and</strong><br />

11. That is, the 3-folded <strong>torus</strong> <strong>chaotic</strong> attractor is generated<br />

via alternative switchings of the two basic linear systems 9<br />

<strong>and</strong> 11.<br />

Figure 5 shows the stable <strong>and</strong> unstable subspaces E S <strong>and</strong><br />

E U of the PWL system 1 with 3 <strong>and</strong> N=2. Figure 5a<br />

shows the stable <strong>and</strong> unstable eigenspaces of system 1 with<br />

3 <strong>and</strong> N=2 corresponding to O in V 0 , where the arrows<br />

denote the directions of the flow. Figure 5b shows the<br />

stable <strong>and</strong> unstable eigenspaces of system 1 with 3 <strong>and</strong><br />

N=2 corresponding to P ± in V ± , where the arrows denote the<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-8 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

For N2, we can transform the multifolded <strong>torus</strong> system<br />

1 with 3 into two basic linear systems 9 <strong>and</strong> 11 by<br />

using a simple linear transformation. In the following, we<br />

only select N=5 as an example to explain how to construct<br />

the linear transformation. When N=5, construct the following<br />

linear transformation:<br />

FIG. 6. Equilibrium points <strong>and</strong> their corresponding eigenspaces of system<br />

1 with 3 <strong>and</strong> N=2.<br />

directions of the flow. Let t be the flow generated by 1<br />

with 3 <strong>and</strong> N=2, <strong>and</strong> X 0 be the initial value that is near O<br />

above T 0 but not on l 0 , where T 0 <strong>and</strong> l 0 are the stable <strong>and</strong><br />

unstable eigenspaces of system 1 with 3 <strong>and</strong> N=2 corresponding<br />

to O, respectively. Because 1 0, t,X 0 moves<br />

forward with respect to the x axis while rotating clockwise<br />

around l 0 E U , as shown in Figs. 5a <strong>and</strong> 6. After long<br />

enough time, t,X 0 will hit S + <strong>and</strong> then enter V + . Due to<br />

the relative positions of P + <strong>and</strong> l + , t,X 0 continues to<br />

move forward while rotating around l + E S , as shown in Figs.<br />

5b <strong>and</strong> 6, where l + <strong>and</strong> T + are the stable <strong>and</strong> unstable<br />

eigenspaces of system 1 with 3 <strong>and</strong> N=2 corresponding<br />

to P + , respectively. Because ¯ 10, t,X 0 increases its<br />

magnitude of oscillation <strong>and</strong> eventually returns to V 0 . Then,<br />

t,X 0 moves backward around l 0 . After a long time, it<br />

eventually hits S − <strong>and</strong> then enters V − . Then, t,X 0 moves<br />

further backward while rotating around l − , which is the stable<br />

eigenspace of system 1 with 3 <strong>and</strong> N=2 corresponding to<br />

P − . Since ¯ 10, t,X 0 increases its magnitude of oscillation<br />

<strong>and</strong> finally returns to V 0 . Because 1 0, it decreases its<br />

magnitude of oscillation <strong>and</strong> returns to the original neighboring<br />

region of O. The trajectory t,X 0 is repeatedly<br />

stretched <strong>and</strong> folded for infinitely many times <strong>and</strong> finally<br />

forms a 3-folded <strong>torus</strong> <strong>chaotic</strong> attractor. Figure 6 shows the<br />

relative positions of all equilibrium points O, P ± <strong>and</strong> their<br />

eigenspaces l 0 , T 0 , l ± , <strong>and</strong> T ± . We can get the approximation<br />

formulas of the eigenspaces as follows:<br />

l 0 :<br />

x<br />

9981 = y<br />

532 = z<br />

323 ,<br />

T 0 : 4600456x − 3553172y + 1725591z =0,<br />

l ± : x 1.4118<br />

9980<br />

= y<br />

559 = z<br />

− 300 ,<br />

T ± : − 9073155x 1.4118 + 7371546y + 3168890z =0.<br />

Moreover, the flow t,X 0 is completely determined by<br />

the two basic linear systems 9 <strong>and</strong> 11. Therefore, the flow<br />

t,X 0 follows the approximation solution of 9 in V 0 <strong>and</strong><br />

the approximation solution of 11, as verified by using a<br />

linear transformation X=X− P ± in V ± . In particular, the vector<br />

field of system 1 with 3 <strong>and</strong> N=2 is symmetrical about<br />

the origin.<br />

94<br />

− P − x − y − x 4<br />

93<br />

X − P − − x 4 x − y − x 3<br />

92<br />

X − P − − x 3 x − y − x 2<br />

91<br />

X − P − − x 2 x − y − x 1<br />

X =X X x − y x 1<br />

91<br />

X − P + x 1 x − y x 2<br />

92<br />

X − P + x 2 x − y x 3<br />

93<br />

X − P + x 3 x − y x 4<br />

94<br />

X − P + x − y x 4 .<br />

13<br />

Since m 0 =−0.17, m 1 =0.15, m 2 =−0.17, m 3 =0.15, <strong>and</strong> m 4 =<br />

−0.17, using the linear transformation 13, system 1 with<br />

3 <strong>and</strong> N=5 becomes<br />

=<br />

x − y x 1<br />

A 1 X or x 2 x − y x 3<br />

Ẋ or x − y x 4<br />

A 0 X x 1 x − y x 2<br />

or x 3 x − y x 4 .<br />

14<br />

Therefore, the 9-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=5 is<br />

also generated via alternative switchings of the two basic<br />

linear systems 9 <strong>and</strong> 11. Similarly, the underlying dynamic<br />

mechanism of the 9-folded <strong>torus</strong> system 1 with 3<br />

<strong>and</strong> N=5 is the same as that of the 3-folded <strong>torus</strong> system 1<br />

with 3 <strong>and</strong> N=2.<br />

In the following, we compare the dynamical mechanisms<br />

of the 3-folded <strong>torus</strong> system 1 with 3 for N=2 with that of<br />

Chua’s double-scroll system. 8–10<br />

It is noticed that the magnitude of the real part<br />

Re 2,3 0.0171 or Re¯ 2,30.0159 of the pair of<br />

complex eigenvalues of system 9 or system 11 is less<br />

than that of the imaginary part Im 2,3 1.1489 or<br />

Im¯ 2,31.1506 of the pair of complex eigenvalues of<br />

system 9 or system 11 by two quantity levels O10 2 .<br />

Moreover, the magnitude of the real part characterizes the<br />

increasing or damping speed of the amplitude of the oscillator.<br />

However, the magnitude of the imaginary part characterizes<br />

the frequency of the oscillation. For the 3-folded <strong>torus</strong><br />

system 1 with 3 <strong>and</strong> N=2, the increasing or damping<br />

speed of the amplitude of the oscillator is relatively much<br />

smaller than the frequency of the oscillator. Therefore, the<br />

3-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=2 can easily form<br />

increased or damped oscillations in every PWL region. That<br />

is, every PWL region can generate a <strong>torus</strong>.<br />

The familiar Chua’s circuit is described by 8<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-9 <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> Chaos 17, 013118 2007<br />

FIG. 7. Circuit diagram of multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>.<br />

ẋ = „y − fx…<br />

ẏ = x − y + z<br />

ż =−y,<br />

15<br />

where fx=m 1 x+ 1 2 m 0−m 1 x+x 1 −x−x 1 . When =10,<br />

=15, m 0 =− 1 7 , <strong>and</strong> m 1= 2 7<br />

, system 15 has a double-scroll<br />

attractor. 8<br />

Denote V¯ 0=x,y,zx x 1 , V¯ +=x,y,zxx 1 , <strong>and</strong><br />

V¯ −=x,y,zx−x 1 . When XV¯ 0, system 15 has a<br />

unique equilibrium point O <strong>and</strong> the corresponding eigenvalues<br />

are 1 2.4777, 2,3 −1.0246±2.7566i. When XV¯ +<br />

or XV¯ −, system 15 has a unique equilibrium point<br />

P¯ + m 1−m 0<br />

m 1<br />

x 1 ,0,− m 1−m 0<br />

m 1<br />

x 1<br />

or P¯ −− m 1−m 0<br />

m 1<br />

x 1 ,0, m 1−m 0<br />

m 1<br />

x 1<br />

<strong>and</strong> the<br />

corresponding eigenvalues are ¯ 1−4.3290,¯ 2,3 <br />

0.2359±3.1376i. Obviously, when XV¯ 0, the magnitudes<br />

of the real part Re 2,3 1.0246 <strong>and</strong> the imaginary part<br />

Im 2,3 2.7566 are in the same quantity level O1.<br />

Thus, the increasing or damping speed of the amplitude of<br />

the oscillator is relatively much bigger than the frequency of<br />

the oscillator. Hence, system 15 cannot create a scroll in<br />

V¯ 0. However, when XV¯ +or XV¯ −, the magnitude of the<br />

real part Re¯ 2,3 0.2359 is less than that of the imaginary<br />

part Im¯ 2,3 3.1376 by one quantity level O10. Thus,<br />

the increasing or damping speed of the amplitude of the oscillator<br />

is relatively much smaller than the frequency of the<br />

oscillator. Therefore, system 15 can generate a scroll in V¯ +<br />

or V¯ −.<br />

Remark 2: In conclusion, all multifolded <strong>torus</strong> <strong>chaotic</strong><br />

systems have the same dynamical mechanism; that is, all<br />

multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> are generated via alternative<br />

switchings between two basic linear systems 9 <strong>and</strong><br />

11. Moreover, all PWL regions of the characteristic function<br />

gx with a positive slope correspond to the linear system<br />

9, <strong>and</strong> the PWL regions of the characteristic function<br />

gx with a negative slope correspond to the linear system<br />

11. In particular, the two outer regions correspond to the<br />

negative slope. However, the dynamical mechanism of the<br />

multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> is very different from that<br />

of Chua’s double-scroll. 8<br />

IV. CIRCUIT IMPLEMENTATION FOR MULTI-FOLDED<br />

TORUS CHAOTIC ATTRACTORS<br />

This section designs a novel circuit to experimentally<br />

verify the multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>.<br />

A. Fundamental principle of circuit design<br />

Based on the above theoretical analysis, a block circuit<br />

diagram is designed for generating multifolded <strong>torus</strong> <strong>chaotic</strong><br />

<strong>attractors</strong>, as shown in Fig. 7. This circuit is described by<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-10 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

FIG. 8. Equivalent circuit of adjustable inductance <strong>and</strong><br />

capacitance.<br />

where<br />

dv<br />

C C1<br />

1 =−fv C2 − v C1 <br />

dt<br />

dv C2<br />

C 2 =−fv C2 − v C1 − i L<br />

dt<br />

L di L<br />

dt = v C2,<br />

N−1<br />

16<br />

fv C2 −v C1 =G N−1 v C2 −v C1 + 1 2 G i−1 −G i v C2 −v C1<br />

+E i −v C2 −v C1 −E i .<br />

According to 16, we have<br />

dv C1<br />

dt<br />

dv C2<br />

dt<br />

dRi L <br />

dt<br />

=− 1<br />

RC 2<br />

C 2<br />

C 1<br />

Rfv C2 − v C1 <br />

i=1<br />

=− 1<br />

RC 2<br />

Rfv C2 − v C1 + Ri L <br />

= 1<br />

RC 2<br />

R 2 C 2<br />

L v C2.<br />

17<br />

Comparing 1 with 17, we get the following equivalent<br />

relationships:<br />

0 = RC 2 , = t , = C 2<br />

= 14.5,<br />

t 0 C 1<br />

= R2 C 2<br />

L<br />

= 1.25, x = v C1<br />

, y = v C2<br />

, z = Ri L<br />

,<br />

V BP V BP V BP<br />

x i = E i<br />

, G = 1 18<br />

V BP R , G i = m i G0 i N −1,<br />

fv C2 − v C1 = 1 gy − x,<br />

R<br />

where V BP =1 V, <strong>and</strong> 1 0<br />

= 1<br />

RC 2<br />

is the time-scale transformation<br />

factor. Let R=1 k. From 18, we have C 1 =1.29 nF, C 2<br />

=18.75 nF, <strong>and</strong> L=15 mH.<br />

The subcircuitry N S in Fig. 7 is the subtraction generator<br />

<strong>and</strong> its output is v C2 −v C1 . The subcircuitry N R in Fig. 7 is<br />

the generator of the PWL characteristic function fv C2<br />

−v C1 <strong>and</strong> its input <strong>and</strong> output satisfy the condition I N<br />

= fv C2 −v C1 . Moreover, we can rigorously calculate the theoretical<br />

values of all resistors in N R by using the recursive<br />

formulas. 25 The operational amplifier is selected as type<br />

TL082, <strong>and</strong> the supply voltage of electrical source is ±E C<br />

=±15V. Thus, the saturating voltage of the operational amplifier<br />

is E sat =14.3V. In the following, we calculate the theoretical<br />

values of all resistors in N R for the experimental<br />

confirmation of the 3-, 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong> <strong>chaotic</strong><br />

<strong>attractors</strong>.<br />

To generate a 3-folded <strong>torus</strong> <strong>chaotic</strong> attractor, we rigorously<br />

calculate the theoretical values of the resistors in N R ,<br />

based on the given parameters in Sec. II, as follows:<br />

G 0 = m 0<br />

R = 0.15 mS, G 1 = m 1<br />

= − 0.17 mS,<br />

R<br />

E 1 = x 1 V BP , r 1 = R 12<br />

=−G 1 R 2 = 0.34,<br />

R 11<br />

r 2 = R 22<br />

= E sat<br />

− 1 = 18.07,<br />

R 21 E 1<br />

r 3 = R 32 1+r 2<br />

=−<br />

R 31 R 2 G 1 − G 0 − 1 = 28.79.<br />

19<br />

Similarly, we can rigorously calculate the theoretical values<br />

of the resistors in N R for the 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong><br />

<strong>chaotic</strong> <strong>attractors</strong> based on the given parameters in Sec. II, as<br />

follows: G 0 =−0.17 mS, G 1 =0.15 mS, G 2 =−0.17 mS, E i<br />

=x i V BP i=1,2, r 1 =0.34, r 2 =4.84, r 3 =8.12, r 4 =19.1, <strong>and</strong><br />

r 5 =28.79 for a 5-folded <strong>torus</strong> <strong>chaotic</strong> attractor; G 0<br />

=0.15 mS, G 1 =−0.17 mS, G 2 =0.15 mS, G 3 =−0.17 mS, E i<br />

=x i V BP i=1,2,3, r 1 =0.34, r 2 =3.00, r 3 =5.25, r 4 =6.90, r 5<br />

=9.78, r 6 =18.07, <strong>and</strong> r 7 =28.79 for a 7-folded <strong>torus</strong> <strong>chaotic</strong><br />

attractor; G 0 =−0.17 mS, G 1 =0.15 mS, G 2 =−0.17 mS, G 3<br />

=0.15 mS, G 4 =−0.17 mS, E i =x i V BP 1i4, r 1 =0.34, r 2<br />

TABLE III. Status of all switches, ratios of resistors r n = R n2<br />

R n1<br />

1n9, <strong>and</strong> number of folded tori.<br />

K 1 K 2 K 3 K 4 K 5 r 1 r 2 r 3 r 4 r 5 r 6 r 7 r 8 r 9 Number of tori<br />

on on off off off 0.34 18.1 28.8 3<br />

on on on off off 0.34 4.84 8.12 19.1 28.8 5<br />

on on on on off 0.34 3.00 5.25 6.90 9.78 18.1 28.8 7<br />

on on on on on 0.34 1.53 2.95 3.62 4.66 4.84 8.12 19.1 28.8 9<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-11 <strong>Multifolded</strong> <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> Chaos 17, 013118 2007<br />

TABLE IV. Status of switches, resistors R n2 =r n R n1 1n9, <strong>and</strong> number of folded tori.<br />

K 1 K 2 K 3 K 4 K 5 R 12 R 22 R 32 R 42 R 52 R 62 R 72 R 82 R 92 Number of tori<br />

on on off off off 3.4 181 28.8 3<br />

on on on off off 3.4 48.4 8.12 191 28.8 5<br />

on on on on off 3.4 30.0 5.25 69.0 9.78 181 28.8 7<br />

on on on on on 3.4 15.3 2.95 36.2 4.66 48.4 8.12 191 28.8 9<br />

=1.53, r 3 =2.95, r 4 =3.62, r 5 =4.66, r 6 =4.84, r 7 =8.12, r 8<br />

=19.1, <strong>and</strong> r 9 =28.79 for a 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor.<br />

B. Circuit <strong>implementation</strong><br />

In the circuit design, we select all operational amplifiers<br />

shown in Fig. 7 to be type TL082. The supply voltage of the<br />

electrical source is ±E C = ±15 V, <strong>and</strong> the saturating voltages<br />

of the operation amplifiers are E sat =14.3 V. Moreover, all<br />

resistors in Fig. 7 are exactly adjustable resistors or potentiometers.<br />

Note also that the capacitances C 1 , C 2 , <strong>and</strong> inductance<br />

L are adjustable, as shown in Fig. 8. Therefore, one can<br />

adjust the real parameter values of <strong>and</strong> by tuning the<br />

capacitances C 1 , C 2 , <strong>and</strong> inductance L.<br />

For the PWL function generator N R in Fig. 7, all<br />

unknown resistors R n2 1n9 can be rigorously calculated<br />

by using a formula similar to 19 as shown in Tables<br />

III <strong>and</strong> IV.<br />

FIG. 9. Experimental observations of the multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>. From left to right: a 3-folded <strong>torus</strong>, where x=0.86V/div <strong>and</strong> y=0.6V/div; b<br />

5-folded <strong>torus</strong>, where x=1.25V/div <strong>and</strong> y=0.64V/div; c 7-folded <strong>torus</strong>, where x=1.25V/div <strong>and</strong> y=0.64V/div; d 9-folded <strong>torus</strong>, where x=1.6V/div <strong>and</strong><br />

y=0.9V/div.<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


013118-12 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

Let R 1 =100 k, R 2 =2 k, R 31 =R 51 =R 71 =R 91 =1 k,<br />

<strong>and</strong> R 11 =R 21 =R 41 =R 61 =R 81 =10 k. According to a formula<br />

similar to 19 <strong>and</strong> R n2 =r n R n1 1n9, we can rigorously<br />

calculate all resistors in N R .<br />

Thus, the circuit diagram Fig. 7 can be controlled based<br />

on Tables III <strong>and</strong> IV, to generate 3-, 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong><br />

<strong>chaotic</strong> <strong>attractors</strong> via the switchings of the switches<br />

K i 1i5. Figure 9 shows the experimental observation<br />

results for 3-, 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>.<br />

Remark 3: The real measurement values of r n <strong>and</strong> R n2<br />

for 1n9 in the circuit experiment may have a small departure<br />

from the theoretically calculated values shown in<br />

Tables III <strong>and</strong> IV, due to the discrete nature of real circuit<br />

parameters <strong>and</strong> the measurement errors. These differences<br />

can be corrected via a small adjustment of the resistors R n2<br />

for 1n9 in the circuit experiment. Our experimental results<br />

show that it is technically very difficult to implement a<br />

<strong>chaotic</strong> attractor with more than nine tori by analog circuits<br />

because a circuit is highly sensitive to small variations of<br />

parameters with the increased number of tori. For example,<br />

the measurement precision of the switching points x 2<br />

=2.0735 <strong>and</strong> x 3 =3.5735 of the 7-folded <strong>torus</strong> attractor has to<br />

pinpoint to the fourth digit of the decimal. Here, our circuit<br />

can realize up to a maximum of 9-folded tori in the <strong>chaotic</strong><br />

attractor under the real experimental conditions.<br />

V. CONCLUDING REMARKS<br />

This paper has developed a systematic methodology for<br />

generating multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> from a simple<br />

three-dimensional autonomous circuit. Recursive formulas<br />

for system parameters have been rigorously derived, useful<br />

for improving hardware <strong>implementation</strong>. Dynamical behaviors<br />

of the multifolded <strong>torus</strong> system, including symmetry,<br />

bifurcation, eigenspaces, <strong>and</strong> conditions for chaos generation,<br />

have also been investigated. Our theoretical analysis<br />

shows that multifolded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> can be generated<br />

via alternative switchings between two linear systems. A<br />

simple circuit diagram has been designed for experimentally<br />

verifying 3-, 5-, 7-, <strong>and</strong> 9-folded <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>.<br />

This is the first time in the literature that an experimental<br />

realization of a 9-folded <strong>torus</strong> <strong>chaotic</strong> attractor has been reported.<br />

The circuit design method developed in this paper outperforms<br />

the existing methods, in the sense that all system<br />

design parameters <strong>and</strong> physical circuit parameters can be rigorously<br />

derived beforeh<strong>and</strong> by our new techniques. Although,<br />

as is well known, there are many technical reasons<br />

that cause difficulties in hardware <strong>implementation</strong> of multifolded<br />

<strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong>, our approach has been physically<br />

implemented via circuitry, which can generate up to<br />

9-fold <strong>torus</strong> <strong>chaotic</strong> <strong>attractors</strong> visible on the oscilloscope,<br />

showing the effectiveness <strong>and</strong> realizability of the proposed<br />

methodology.<br />

ACKNOWLEDGMENTS<br />

This work was supported by the National Natural Science<br />

Foundation of China under Grants No. 60304017, No.<br />

20336040, <strong>and</strong> No. 60572073, the National Key Basic Research<br />

<strong>and</strong> Development 973 Program of China under Grant<br />

2006CB708202, the Scientific Research Startup Special<br />

Foundation on Excellent Ph.D. Thesis <strong>and</strong> Presidential<br />

Award of Chinese Academy of Sciences, the Natural Science<br />

Foundation of Guangdong Province under Grants No. 32469<br />

<strong>and</strong> No. 5001818, the Science <strong>and</strong> Technology Program of<br />

Guangzhou City under Grant No. 2004J1-C0291, <strong>and</strong> the<br />

Strategic Research Grants of the City University of Hong<br />

Kong under Grant No. 7001702/EE.<br />

1 J. Lu, T. Zhou, G. Chen, <strong>and</strong> X. Yang, Chaos 12, 344 2002.<br />

2 S. M. Yu, J. Lu, W. K. S. Tang, <strong>and</strong> G. Chen, Chaos 16, 033126 2006.<br />

3 K. Murali <strong>and</strong> S. Sinha, Phys. Rev. E 68, 016210 2003.<br />

4 S. Sinha <strong>and</strong> D. Biswas, Phys. Rev. Lett. 71, 2010 1993.<br />

5 S. Sinha <strong>and</strong> W. L. Ditto, Phys. Rev. Lett. 81, 2156 1998.<br />

6 J. Lu <strong>and</strong> G. Chen, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 659<br />

2002.<br />

7 J. Lu, G. Chen, D. Cheng, <strong>and</strong> S. Čelikovský, Int. J. Bifurcation Chaos<br />

Appl. Sci. Eng. 12, 2917 2002.<br />

8 G. Chen <strong>and</strong> J. Lu, Dynamics of the Lorenz System Family: Analysis,<br />

Control <strong>and</strong> Synchronization Science Press, Beijing, 2003 in Chinese.<br />

9 M. E. Yalcin, J. A. K. Suykens, <strong>and</strong> J. P. L. V<strong>and</strong>ewalle, Cellular Neural<br />

Networks, Multi-Scroll Chaos <strong>and</strong> Synchronization World Scientific, Singapore,<br />

2005.<br />

10 J. Lu <strong>and</strong> G. Chen, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, 775<br />

2006.<br />

11 J. A. K. Suykens <strong>and</strong> J. P. L. V<strong>and</strong>ewalle, IEEE Trans. Circuits Syst., I:<br />

Fundam. Theory Appl. 40, 861 1993.<br />

12 J. A. K. Suykens <strong>and</strong> L. O. Chua, Int. J. Bifurcation Chaos Appl. Sci. Eng.<br />

7, 1873 1997.<br />

13 M. A. Aziz-Alaoui, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, 1009<br />

1999.<br />

14 M. E. Yalcin, J. A. K. Suykens, <strong>and</strong> J. P. L. V<strong>and</strong>ewalle, Proceedings of<br />

the IEEE Workshop on Nonlinear Dynamics of Electronic Systems, Catania,<br />

Italy IEEE, Piscataway, NJ, 2000, p.25.<br />

15 K. S. Tang, G. Q. Zhong, G. Chen, <strong>and</strong> K. F. Man, IEEE Trans. Circuits<br />

Syst., I: Fundam. Theory Appl. 48, 13692001.<br />

16 S. Ozoguz, A. S. Elwakil, <strong>and</strong> K. N. Salama, Electron. Lett. 38, 685<br />

2002.<br />

17 J. Lu, X. Yu, <strong>and</strong> G. Chen, IEEE Trans. Circuits Syst., I: Fundam. Theory<br />

Appl. 50, 198 2003.<br />

18 M. E. Yalcin, J. A. K. Suykens, J. P. L. V<strong>and</strong>ewalle, <strong>and</strong> S. Ozoguz, Int. J.<br />

Bifurcation Chaos Appl. Sci. Eng. 12, 232002.<br />

19 A. S. Elwakil <strong>and</strong> M. P. Kennedy, IEICE Trans. Fundamentals E82-A,<br />

1769 1999.<br />

20 J. Lu, S. M. Yu, <strong>and</strong> H. Leung, Dynam. Cont. Dis. Ser. B Sp.ISS.SI1,<br />

324 2005.<br />

21 J. Lu, F. Han, X. Yu, <strong>and</strong> G. Chen, Automatica 40, 1677 2004.<br />

22 J. Lu, G. Chen, X. Yu, <strong>and</strong> H. Leung, IEEE Trans. Circuits Syst., I:<br />

Fundam. Theory Appl. 51, 2476 2004.<br />

23 J. Lu, S. M. Yu, H. Leung, <strong>and</strong> G. Chen, IEEE Trans. Circuits Syst., I:<br />

Fundam. Theory Appl. 53, 149 2006.<br />

24 M. E. Yalcin, J. A. K. Suykens, <strong>and</strong> J. P. L. V<strong>and</strong>ewalle, IEEE Trans.<br />

Circuits Syst., I: Fundam. Theory Appl. 47, 4252000.<br />

25 S. M. Yu, Q. H. Lin, <strong>and</strong> S. S. Qiu, Acta Phys. Sin. 53, 2084 2004.<br />

26 S. M. Yu, J. Lu, H. Leung, <strong>and</strong> G. Chen, IEEE Trans. Circuits Syst., I:<br />

Fundam. Theory Appl. 52, 1459 2005.<br />

27 M. E. Yalcin, J. A. K. Suykens, <strong>and</strong> J. P. L. V<strong>and</strong>ewalle, IEEE Trans.<br />

Circuits Syst., I: Fundam. Theory Appl. 51, 1395 2004.<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!