15.07.2014 Views

Multifolded torus chaotic attractors: Design and implementation

Multifolded torus chaotic attractors: Design and implementation

Multifolded torus chaotic attractors: Design and implementation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

013118-6 Yu, Lu, <strong>and</strong> Chen Chaos 17, 013118 2007<br />

TABLE I. Parameters a ij , b ij ,<strong>and</strong>c ij 1i, j3.<br />

a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33<br />

1.0299 −0.7954 0.3863 0.0549 −0.0424 0.0206 0.0333 −0.0257 0.0125<br />

b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33<br />

−0.0299 0.7954 −0.3863 −0.0549 1.0424 −0.0206 −0.0333 0.0257 0.9875<br />

c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33<br />

−0.0469 0.4557 0.6980 −0.0315 0.0391 0.9075 0.0602 −1.1345 0.0078<br />

Ẋ = m 0 − m 0 0<br />

m 0 − m 0 −1<br />

0 0<br />

x y<br />

z A 0X,<br />

where X=x,y,z T . The corresponding characteristic equation<br />

of O is<br />

3 + m 0 1− 2 + − m 0 =0.<br />

9<br />

10<br />

Let =14.5, =1.25, m 0 =0.15, <strong>and</strong> m 1 =−0.17. Solving<br />

10 gives 1 2.0592, 2,3 −0.0171±1.1489i, <strong>and</strong> the corresponding<br />

eigenvectors are v 1 0.9981,0.0532,0.0323 T<br />

<strong>and</strong><br />

Denote<br />

0.2440<br />

v 2 = w 2 ± w 3 i 0.0086<br />

− 0.6328 − 0.4492<br />

± − 0.5816 i.<br />

0<br />

= m 1 − m 1 0<br />

x<br />

z<br />

Ẋ m 1 − m 1 −1 y A 1X,<br />

0 0<br />

11<br />

where X=x,y,z T , <strong>and</strong> its corresponding eigenvalues are<br />

¯ 1−2.3269, ¯ 2,30.0159±1.1506i. The corresponding<br />

eigenvectors are<br />

<strong>and</strong><br />

Denote<br />

v¯1 0.9980,0.0559,− 0.03<br />

0.2258<br />

v¯2 = w¯ 2 ± w¯ 3i 0.0080<br />

0.6279 0.4696<br />

± 0.5780 i.<br />

0<br />

0.9981 0.2440 − 0.4492<br />

P = v 1 ,w 1 ,w 2 0.0532 0.0086 − 0.5816<br />

.<br />

0.0323 − 0.6328 0<br />

Thus, the solution of linear system 9 with initial value X 0 is<br />

XtP s 11 0 0<br />

<br />

0 s 22 − s 32 P−1 X 0<br />

0 s 32 s 22<br />

t 11 t 12 t 13<br />

t 21 t 22 t 23<br />

t 31 t 32 t 33 X 0,<br />

where s 11 =e 2.0592t , s 22 =e −0.0171t cos1.1489t, s 32<br />

=e −0.0171t sin1.1489t, <strong>and</strong> t ij =a ij e 2.0592t +b ij e −0.0171t<br />

cos1.1489t+c ij e −0.0171t sin1.1489t1i, j3, in<br />

which a ij ,b ij ,c ij 1i, j3 are given in Table I.<br />

Therefore, the unstable <strong>and</strong> stable subspaces of system<br />

9 are E U =Spanv 1 <strong>and</strong> E S =Spanw 2 ,w 3 , respectively.<br />

Figure 5a shows the stable <strong>and</strong> unstable subspaces of linear<br />

system 9. Note that system 9 is the linearized system of<br />

the 3-folded <strong>torus</strong> system 1 with 3 <strong>and</strong> N=2 at equilibrium<br />

point O. The unstable <strong>and</strong> stable eigenspaces of system<br />

x<br />

9981 = y<br />

532 = z<br />

323<br />

1 with 3 <strong>and</strong> N=2 corresponding to O are<br />

<strong>and</strong> 4600456x−3553172y+1725591z=0, respectively.<br />

Linearizing system 1 with 3 at equilibrium points P ±<br />

gives<br />

FIG. 5. Stable <strong>and</strong> unstable subspaces E S <strong>and</strong> E U of the PWL system 1<br />

with 3 for N=2. a In V 0 ; b in V ± .<br />

Downloaded 22 Mar 2007 to 144.214.40.14. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!