16.07.2014 Views

Parabolic implosion - from discontinuity to renormalization

Parabolic implosion - from discontinuity to renormalization

Parabolic implosion - from discontinuity to renormalization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Parabolic</strong> <strong>implosion</strong><br />

<strong>from</strong> <strong>discontinuity</strong> <strong>to</strong> <strong>renormalization</strong><br />

Mitsuhiro Shishikura<br />

Congrès à la mémoire d'Adrien Douady<br />

Institut Henri Poincaré, Paris, May 26-30, 2008<br />

Discontinuity of Julia sets<br />

“Periodicity’ in parameter space


Plan<br />

Bifurcation of parabolic periodic points -- parabolic <strong>implosion</strong><br />

(saddle-node, intermittent chaos, periodic pts that bifurcate)<br />

Local change of dynamics (“egg beater”) => Global effects<br />

Main example: f 0 (z) =z + z 2 (∼ z 2 + 1 4<br />

) and its perturbation<br />

Discontinuity of Julia sets<br />

Richness of bifurcated Julia sets<br />

when perturbed <strong>to</strong> “wild direction’’<br />

“Periodicity’’ in parameter space<br />

Tools by Douady-Hubbard:<br />

Fa<strong>to</strong>u coordinates, Ecalle-Voronin cylinders, horn map, phase<br />

<strong>Parabolic</strong>/Near-parabolic <strong>renormalization</strong>:<br />

study of irrationally indifferent periodic points


Basic definitions<br />

f<br />

polynomial (or just holomorphic mapping for local problems)<br />

fixed point<br />

f(z 0 )=z 0 multiplier λ = f ′ (z 0 )<br />

attracting<br />

|λ| < 1<br />

indifferent<br />

|λ| =1<br />

parabolic<br />

α ∈ Q<br />

λ = e 2πiα<br />

irrationally indifferent<br />

α ∈ R Q<br />

repelling<br />

|λ| > 1<br />

filled-in Julia set<br />

K f = {z ∈ C : {f n (z)} ∞ n=0<br />

is bounded}<br />

Julia set<br />

(chaotic part)<br />

J f = ∂K f = closure of {repelling periodic points}<br />

We consider the bifurcation of a parabolic<br />

fixed point and its global effect.


Tame and Wild directions<br />

f ε (z) =z + z 2 + ... + ε<br />

0 is parabolic for f 0<br />

with λ 0 =1<br />

Tame direction<br />

safe side<br />

Wild direction<br />

rich side<br />

narrow chance <strong>to</strong> be rich<br />

Continuous change<br />

when restricted <strong>to</strong> tame direction<br />

for example, f(z) =e 2πiα z + ...<br />

α ∈ R


Egg beater or Douady-Hubbard’s get-rich-quick scheme<br />

<br />

f 0<br />

<br />

perturbed in<strong>to</strong> wild direction<br />

<br />

Orbits <strong>from</strong> the left tend <strong>to</strong><br />

the fixed point<br />

Imagine that a point in the box on the right<br />

is: escaping point<br />

(inverse image of) repelling periodic point<br />

inverse image of critical point


Theorem (discontinity of Julia sets)<br />

Let f ε (z) =z + z 2 + ε. Then<br />

int K(f 0 )={z : f n → 0 uniformly in a neighborhood of z}<br />

(parabolic basin).<br />

Let {ε n } be a sequence such that ε n → 0 and { √ π<br />

εn<br />

} converges<br />

modulo Z, i.e. for some integers k n ∈ Z,<br />

( ) π<br />

√ − k n = −β<br />

εn<br />

lim<br />

n→∞<br />

(for example, ε n =<br />

Then<br />

π2<br />

(n−β)<br />

). 2<br />

J(f 0 ) J(< f 0 ,g β >) ⊂ lim inf<br />

n→∞ J(f ε n<br />

)<br />

⊂ lim sup<br />

n→∞<br />

K(f εn ) ⊂ K(< f 0 ,g β >) K(f 0 )<br />

where g β = lim n→∞ f k n<br />

ε n<br />

in int K(f 0 ), and<br />

= “two genera<strong>to</strong>r dynamics” generated by f 0 and g β .


Pick a point w in the box on the right<br />

which is escaping.<br />

If a point z in the box on the left<br />

arrives at this point, i.e. f k n<br />

ε n<br />

(z) =w,<br />

then z ∈ int K(f 0 ) K(f εn ).<br />

Hence int K(f 0 ) lim sup<br />

n→∞<br />

K(f εn ) ≠ ∅.<br />

Pick a point w in the box on the right<br />

which is an inverse image of a repelling<br />

periodic point.<br />

If a point z in the box on the left<br />

arrives at this point, i.e. f k n<br />

ε n<br />

(z) =w,<br />

then z ∈ J(f εn ) J(f 0 ).<br />

Hence lim inf<br />

n→∞ J(f ε n<br />

) J(f 0 ) ≠ ∅.<br />

The behavior of the critical point changes periodically. (“phase parameter”)<br />

=⇒ the “periodicity” in the parameter space ( π √ ε<br />

modulo Z matters).


Tools <strong>to</strong> analyze Egg beater dynamics<br />

Difficulty: effects of perturbation on unboundedly high iterates of the map<br />

Work in Fa<strong>to</strong>u coordinates, which conjugate f <strong>to</strong> T : z ↦→ z +1<br />

Take a croissant-shaped fundamental strip, which is bounded<br />

by a curve l and its image f(l).<br />

Glue l and f(l) by f <strong>to</strong> obtain a Riemann surface which is<br />

isomorphic <strong>to</strong> C/Z.<br />

Lift of the map <strong>to</strong> C/Z is a Fa<strong>to</strong>u coordinate.<br />

f<br />

This part of dynamics is represented by<br />

a horn map E f which is<br />

– partially defined, non-linear<br />

– continuous under perturbation.<br />

Φ∞ attr<br />

T Φ(w) rep<br />

= w C/Z + 1 CΦ attr Φ rep C/Z C<br />

This part of dynamics is represented by<br />

an identification between attracting and<br />

repelling Fa<strong>to</strong>u coordinates which is<br />

– an isomorphism<br />

– sensitive wrt perturbation.


α z + . . .<br />

e 2πiα z + λ . f(z) f. = 0 .<br />

e e q z a 2 z + . . . a<br />

Fa<strong>to</strong>u coordinates ,<br />

i ∈ N a<br />

and Horn<br />

i ≥ N<br />

T (w) T (w) 2πi = qe = w 2πiα λ z = + 1O(z a<br />

w + 1 1 2 ) 2 ≠ 0<br />

α ∈ C {0} small<br />

Φand Φ<br />

| arg α|<br />

map<br />

a i ∈ N attr a attr Φ< i ≥ N rep π Φ rep C/Z C/Z mod CZ C E<br />

= e 2πiα z + O(z 2 4<br />

f0<br />

α z + O(z 2 )<br />

)<br />

e 2πiα 0 (z) z + a 2 z 2 + . . .<br />

F 0 (w) = w + 1 + o(1) w = − c f 0 (z) z + holomorphic f(z) O(z f ′ (0) 2 = ) = αe near 2πiα ∈e 2πiα R0 z , + Q<br />

f (0) = 0 f ′ 0<br />

α. (z) . . small holomorphic 0 (0) = near λ 0 f 0 (0) = 0 f 0 ′(0) = w<br />

near 0 near mod Z E<br />

λ = e 2πi ∞ p T (w) F 0 (w) w = 1w Φ1 + o(1) attr Φ w = rep C/Z − c λ<br />

) iα = , fα 0<br />

e(z) 2πiα small =<br />

,<br />

λz<br />

α+ asmall<br />

2 z 2 + . . . f 0 (z) = λz + a 2 z 2 + . . .<br />

f0<br />

w Cnear 0 near ∞ T<br />

e f<br />

q λ = mod 1 Za 2 ≠E0<br />

0 R 0 f 0 R 0 f<br />

2πiα , αf(z) αsmall<br />

∈= a<br />

C e {0} small and | arg α| < π i 2πiα ∈ Nz +<br />

a i O(z<br />

≥ N 2 )<br />

f0<br />

f f 0 R 0 f 0 R 0 f 0 (z) = z + O(z 2 0 (z) = e 2πi p q z + a 2 z 2 + . . . f<br />

C {0} small and | arg α| < π 0 (z) = e 2πi p q z + a 2 z 2 + . . .<br />

} small and | arg α| < π 4<br />

)<br />

{0} small f αf(z) ′ F 0<br />

(0) ∈and R= e | 2πiα (w) = w + 1 2πiα arg4α| z + < f. 0<br />

. π + o(1) w = − c near 0 near ∞ T (w) = w + 1 Φ attr<br />

Q , α small . 4<br />

z<br />

f R 0 f 0 R 0 f 0 (z) = z + O(z 2 0 (z) = z + a 2 z 2 + mod . . . Z Ef 0 (z) = z + a 2 z 2 f0<br />

4<br />

E f + . . .<br />

)<br />

R Q<br />

f Rf<br />

fRf(z) Rf<br />

= e 2πiβ z<br />

Rf(z)<br />

+ O(z 2 )<br />

λ = e f(z) = e 2πiα z + O(z 2 )<br />

Z<br />

2πi p q<br />

β = − 1 λ = 1 2 ≠ λ = e 2πi p q<br />

Q αa ∈ i ∈C N f {0} a i ≥small N and λ | arg 1 α| a 2 < π 0 R 0 f 0 R 0 f 0 (z) = z + O(z ≠ 2 0)<br />

α<br />

mod Z f Rf Rf(z) 4= e 2πiβ z + O(z 2 ) β = − 1 ≥ N<br />

α mod Z<br />

N f(z) a i = ≥e 2πiα N<br />

f ′ z + . . .<br />

(0) e 2πiα f(z) = e 2πiα z + . . .<br />

f Φ attr (z)<br />

, α small<br />

Φ attr (z)<br />

attr (z)<br />

+ 1 f(z) + o(1) = e<br />

near 0 2πiα z w + = O(z− c Rf Rf(z) = e<br />

a i ≥ N αF ∈ 0 (w) R = Qw + 1 + o(1)<br />

2πiβ z + O(z<br />

w = − c 2 ) β = −<br />

near 0 1<br />

near ∞ 2 )<br />

) = w + 1 + o(1) w T (w) = − c α mod near Z ∞ T (w) = w + 1<br />

near f(z) = 0 e<br />

w 2πiα near z + O(z ∞<br />

+ near 1 0Φ 2 ) T w<br />

mod Z wE (w) = w + 1 Φ attr Φ rep C/Z C<br />

Φ f0 attr (f(z)) attr near<br />

α C {0} small and | arg α| < π Φ∞ rep Φ attr<br />

T (f(z)) C/Z (w) = Cw w<br />

+ attr<br />

1(z) Φ+ attr 1<br />

Φ rep rep (f(<br />

= f 0 w<br />

Z<br />

f ′ (0) + 1<br />

E= + e 2πiα o(1) , α small w = − c = Φ attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) = Φ ... (z) + 1<br />

a i ∈ N a i ≥ Nf ′ (0) = near e<br />

(z)) = Φ f0<br />

rep (z) 2πiα , 0α small near ∞ T (w) = w + 1 Φ attr Φ rep C<br />

Φnear rep ∞C/Z T (w) C = w + 1 Φ attr<br />

w Φ rep attr (f(z)) C/Z C= Φ attr (z) 4 + Φ rep (f(z)) = Φ rep (z) + 1<br />

E E f (z) = Φ attr attr Φ(f(z)) = Φ<br />

R −1<br />

f0<br />

f 0 R<br />

rep<br />

att<br />

α ∈ C {0} small and | argα α| ∈< C π<br />

R α ∈ R Q 4<br />

1 0 f 0 R 0 f 0 (z) = z + O(z E 2 {0} small and | arg<br />

f (z) ) = Φ attr ◦ Φ −1<br />

α| < π 0 f 0 (z) = z + E 0 f 0 R<br />

O(z 2 0 f 0 (z) = z + O(z 2 )<br />

)<br />

F 0 (w) = w + 1 + o(1) w = − c f0 (z) = Φ attr ◦ Φ −1<br />

rep χ f χ f (z) = z − 1 Rf = χ f ◦ E f<br />

near40α<br />

near ∞ T (w) = w + 1 Φ<br />

w rep<br />

0f 0 α ∈ R 0 mod<br />

Q<br />

α ∈ R Q<br />

Rf(z) = e f P ◦ ϕ<br />

E −1<br />

1<br />

f = P ◦ ϕ −1<br />

f (z) = Φ attr ◦ Φ<br />

Rf β = − 1 2πiβ f 0 (z) Z= z + O(z 2 )<br />

z +<br />

Rf f = EP O(z 2 )<br />

Rf(z)<br />

β =<br />

=<br />

−<br />

e 12πiβ a<br />

α<br />

mod Z<br />

i ∈ NRf(z) a i ≥ N= e 2πiβ z + O(z 2 ) β = − 1 α<br />

mod Z<br />

α mod z + Z O(z 2 ) β = − 1 f0 ◦ ϕ −1<br />

α mod Z<br />

a<br />

α mod 1<br />

=<br />

f Z<br />

i ∈ N a i ≥ N<br />

f= ΦRf(z) f Q ◦ ϕ −1<br />

attr Φ+ = 1e 2πiβ Φ rep<br />

z + (f(z)) O(z 2 = ) where a i ∈ N<br />

F f Q ◦ ϕ −1 0 (w) w + 1 + o(1) w = F− c Φ rep<br />

β (z) = − 1 0 Rf + α1 mod Φ(f(z)) Z<br />

attr (f(z)) 0 f= Q ◦ 0 Rϕ −1<br />

= Φ 0 f 0 (z) = z + O(z<br />

attr (z) + 1 Φ 2 )<br />

rep 0 (w) = near w + 01 + near o(1) ∞w = T (w) − c = Φ(z) Φ rep + (z) 1 + 1 Φ ... (f 0 (z)) = Φ ... (<br />

0 ∞ (−∞, = w near + 0 1Φnear attr ∞Φ rep T (w) C/Z = = Φ a 1 ±<br />

0 ∞ f (−∞, 1 −1] P ◦ ϕ −1 w + C1 Φ attr<br />

r(f(z)) = rep Φ(z) 1 Φ(f(z)) w −1]<br />

Φ(z) 1<br />

mod Z<br />

attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + w1 Φ(f(z)) = Φ(z) + 1<br />

f0<br />

mod Z E f0<br />

rep(z) (z)) ttr ◦ + Φ= 1<br />

−1<br />

rep Φ attr<br />

fE f0 (z) (z) Rf + = 1 ΦRf(z) attr Φ rep<br />

◦(f(z)) Φ= −1 e 2πiβ rep = z Φ+ rep<br />

O(z (z) 2 + ) 1 β = Φ<br />

a ...<br />

− 1 (f<br />

2 ± α 0 (z)) mod = Z Φ ... (z) + 1<br />

C R Z Q D H R Q C/Z C ∗ D ∗ C C D (−∞, −1]


}<br />

f(z) = e z + O(z )<br />

πi p small and<br />

q z + a 2 z 2 | arg α| α< ∈ π C {0} small and | arg α| <<br />

+<br />

Perturbation<br />

.<br />

f(z) = e 2πiα . .<br />

4<br />

4<br />

z + O(z 2 α ∈f R ′ (0) Q<br />

) = e 2πiα , α small | arg α| < π 4<br />

f ′ (0) = e 2πiα , α small<br />

ff(z) = e 2πiα z + O(z 2 0 <br />

|<br />

R<br />

arg 0 f<br />

α| 0 <<br />

R π 0 f 0 (z))<br />

= z + O(z 2 (wild direction)<br />

)<br />

α ∈ R Q<br />

4<br />

+ a 2 z 2 +<br />

f 0 ′ . . .<br />

(0) = e 2πiα a<br />

, α small i ∈α N∈ Ca i ≥{0} Nf<br />

small and | arg α| < π 4<br />

α ∈ C {0} smallf and ′ (0) Rf | = arg e 2πiα α| Rf(z) , < α π small | arg α| < π<br />

4<br />

= e 2πiβ z + O(z 2 ) 4 β = − 1 ≥ N<br />

a i ∈ N a i ≥ N<br />

α ∈ C {0} small and | arg<br />

α ∈<br />

α|<br />

R<br />

<<br />

π α<br />

λ = 1 a 2 ≠ 0<br />

F 0 (w) = w + Q1 + o(1) w = − c near 0 near ∞<br />

α ∈ R Q α ∈ C<br />

4<br />

{0} small and w| arg α| < π 4<br />

+ iα 1 + o(1) w = −F c 0 (w) near = mod w 0+ 1 Znear + Φo(1)<br />

attr E∞ f0 (f(z)) w ET (w) f = −Φ = c attr w (z) + near 1+ 10 Φ attr<br />

Φnear rep (f(z)) Φ∞ rep<br />

= T C/Z (w) Φ rep = (<br />

z + . . .<br />

z<br />

z<br />

a i ∈ N a i ≥ N<br />

f 0<br />

Eα f<br />

mod Z E<br />

∈ R Q<br />

f0 E<br />

α f<br />

a i ∈ N a i ≥ ∈ R Q<br />

f N E iα z + O(z 2 f0 (z) = Φ attr ◦ Φ −1<br />

0 R 0 f 0 R 0 f 0 (z) = z rep + O(z 2 )<br />

)<br />

R F 0 (w) = w + 1 + o(1) w = − c 0 f near 0 near<br />

a 0 i<br />

(z) ∈ N= z a+ i F<br />

≥O(z f<br />

N 0 2 ) R 0 f 0 R 0 f<br />

a 0 (z) = z + O(z<br />

i ∈ N a i ≥ N<br />

0 (w) = w + 1 + w<br />

mod<br />

o(1)<br />

Z<br />

w<br />

E<br />

= − c 2 )<br />

near 0 near ∞ T (w) = w<br />

πiα f0<br />

, α small | arg<br />

F 0 (w) = w + 1 + o(1) w = −F c w<br />

mod α| < Z π f Rf<br />

f =<br />

Rf(z)<br />

P ◦ ϕ −1<br />

= e 2πiβ z + O(z 2 ) β<br />

E f0 E f<br />

0 (w) near = w 0 1 + near o(1) ∞ w T = (w)<br />

f 0 wR 0 f 0 R 0 f 0 (z) = z + O(z 2 − = c = − 1<br />

4<br />

α mod Z<br />

Rf(z) = e 2πiβ z + O(z f 2 ) Rfβ = Rf(z) − 1 w + near 1 0Φ att n<br />

) w<br />

0} small modand Z | arg Ef f0 0<br />

α| < R π α f mod = e 2πiβ Q Z z<br />

◦ ϕ −1 + O(z 2 ) β = − 1 α mod Z<br />

Φ<br />

0 4f attr (f(z))<br />

0 R 0 f 0 (z) mod= ZΦ z + attr<br />

O(z E(z) 2 f0<br />

+<br />

) E1 f<br />

Φ rep (f(z)) = Φ rep (z) + 1<br />

= Φ attr (z) + 1 Φ rep<br />

Φ attr (f(z)) (f(z)) = Φ= rep<br />

Φ(z) attr 0<br />

(z) + ∞ 1+ 1Φ (−∞, ... (f Φ rep 0 (z)) −1]<br />

(f(z)) = Φ =<br />

f f Rf Rf(z) = e 2πiβ ... (z) Φ rep + (z) 1 +<br />

z + O(z 2 ) β = − 1 α mo<br />

0 R 0 f 0 R 0 f 0 (z) = z + O(z f 2 0 )<br />

R 0 f 0 R 0 f 0 (z) = z + O(z 2 )<br />

f Rf Rf(z)<br />

E e 2πiβ z + O(z 2 ) β = − 1 f0 (z) = Φ attr ◦ Φ −1<br />

rep χ f χ f (z) =<br />

C R Z Q<br />

f Rf Rf(z) = e 2πiβ z<br />

Φ<br />

+ attr O(z f<br />

(f(z))<br />

2 ) Rf<br />

=<br />

β =<br />

Φ<br />

Rf(z) attr − 1 D H α R mod z − 1 1 Φ ... (f 0 (<br />

Q Z Rf = χ<br />

α<br />

C/Z C ∗<br />

attr ◦ Φ −1<br />

rep χ f χ f<br />

E(z) = z − 1 f0 (z) = Φ attr ◦Rf Φ −1<br />

rep= χ f<br />

χ f ◦ E f<br />

χ f (z) ≃ = z − 1 ˜Rf = χ f ◦ E f<br />

i ≥ N<br />

α<br />

(z) + 1 Φ rep (f(z)) = Φ rep (z) +<br />

α mod = e 2πiβ Z α<br />

z + O(z 2 ) β = − 1 Φ attr (f(z)) =<br />

f =<br />

Φ<br />

P ◦ attr (z)<br />

ϕ −1<br />

first return map<br />

+ 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) α<br />

+ 1 + o(1) w = − c z ↦→ e 2πiz z ↦→ exp(2πiz)<br />

+ o(1) (Im z → +∞) E f0 (z) = z + o(1) (Im z → +∞)<br />

near 0E f0 near (z) = ∞Φ attr T ◦(w) Φ −1<br />

rep = w + 1<br />

Φ attr (f(z)) Φw<br />

attr (z) + 1 Φ rep Φ attr (f(z)) = = Φ rep Φ attr (z) (z) + 1+ 1Φ ... Φ(f rep 0 (z)) (f(z)) = Φ = ... Φ(z) rep + (<br />

depends Econtinuously f0 (z) = Φ attr ◦on<br />

Φ −1<br />

rep χ f χ f (z) = z − Φ attr Φ rep C/Z<br />

f = Q ◦ ϕ −1<br />

E f0 E f f Rf R 0 f R α f Rf Rf = χ f ◦ E f<br />

e 2πiz Π : C/Z −→ ≃ Π C ∗ Π(z) = e<br />

f 2πiz Π<br />

= P ◦ ϕ −1 : C/Z −→ ≃ C ∗ αR 0 f 0 = Π ◦ E f0 ◦ Π −1<br />

(after a suitable normalization)<br />

−1<br />

−1<br />

−1


morphic near 0 f 0 (0) = 0 f ′ 0 (0) = λ<br />

z + a 2 z 2 + . . .<br />

πi p q z + a 2 z 2 + . . .<br />

+ a 2 z 2 + . . .<br />

λ = 1 a 2 ≠ 0<br />

f 0<br />

Lavaurs map<br />

Lavaurs map<br />

g β (z) =Φ −1<br />

rep (Φ attr(z)+β)<br />

describes how the orbits entering<br />

attracting fundamental strip go out<br />

<strong>from</strong> repelling fundamental strip.<br />

πiα z + . . .<br />

1near Φ attr ∞ T Φ(w) rep = C/Z w + 1 C Φ attr Φ rep C/Z C<br />

πiα , α small<br />

0} small and | arg α| < π 4z ↦→ z + β<br />

or<br />

1<br />

α<br />

mod Z<br />

i ≥ N<br />

∞+ 1 o(1)<br />

rep(z) + T (w) 1+ = 1 w + = Φ(f(z)) 1− c Φ attr<br />

w = ΦΦ(z) rep C/Z + 1 C<br />

E f0<br />

πiα z + O(z 2 )<br />

g β = lim<br />

n→∞ f k n<br />

near 0 near ∞ T (w) = w + 1 Φ attr Φ rep C/Z C<br />

n in int K(f 0)<br />

if f n (z) =e 2πiα n<br />

( z + ...,<br />

1<br />

)<br />

− k n = −β,<br />

lim<br />

n→∞<br />

α n<br />

if f n (z) ( =z + z 2 + ε n ,<br />

π<br />

)<br />

− k n = −β.<br />

lim<br />

n→∞<br />

√<br />

εn


Limit dynamics<br />

f 0 ◦ g β = g β ◦ f 0 = g β+1<br />

in K f0<br />

〈f 0 ,g β 〉 = {f0 n ◦ gm β<br />

: (m = 0 and n ≥ 0) or (m >0 and n ∈ Z)}<br />

(when m>0, each element is defined in an open subset of C)<br />

K(〈f 0 ,g β 〉)=C {z : ∃h = f n 0 ◦ gm β ∈〈f 0,g β 〉,h(z) ∈ C K f0 }<br />

J(〈f 0 ,g β 〉) = closure of {repelling fixed points of h = f n 0 ◦ gm β ∈〈f 0,g β 〉}<br />

J(f 0 ) J(〈f 0 ,g β 〉) ⊂ lim inf<br />

n→∞ J(f n)<br />

⊂ lim sup<br />

n→∞<br />

K(〈f 0 ,g β 〉)=J(〈f 0 ,g β 〉) =⇒<br />

K(f n ) ⊂ K(〈f 0 ,g β 〉) K(f 0 )<br />

lim K(f n) = lim J(f n)=J(〈f 0 ,g β 〉)<br />

n→∞ n→∞<br />

∃h = f n 0 ◦ g m β (∈ 〈f 0 ,g β 〉) has an attracting fixed point<br />

=⇒ lim<br />

n→∞ K(f n)=K(〈f 0 ,g β 〉) and<br />

lim J(f n)=J(〈f 0 ,g β 〉)<br />

n→∞


Further results<br />

Discontinuity of straightening of polynomial-like mappings<br />

(Douady-Hubbard, first published account on parabolic <strong>implosion</strong>)<br />

Limit parameter space for z 2 1<br />

+ c around c 0 =1/4 (wrt √ )<br />

c−1/4<br />

versus parameter space of 〈f 0 ,g β 〉 (Lavaurs)<br />

Non-local connectivity of connectedness locus for real/complex cubic<br />

polynomials (Lavaurs)<br />

. . . . .<br />

<strong>Parabolic</strong>/near-parabolic <strong>renormalization</strong><br />

Renormalization for germs holomorphic functions with parabolic or<br />

near-parabolic fixed points (in wild direction)<br />

S. with H. Inou: an invariant class of maps for the <strong>renormalization</strong>.<br />

=> control on irrationally indifferent fixed points when<br />

the continued fraction of the rotation number has large coefficients.<br />

=> Buff-Cheritat’s result on quadratic Julia sets with positive area.


Return map and Renormalization<br />

f<br />

g<br />

Rf<br />

Renormalization<br />

f Rf = first return map f (after rescaling)<br />

If f is infinitely renormalizable, ...<br />

f 0 = f f 1 = Rf 0 f 2 = Rf 1<br />

h 0<br />

g 0 g 1<br />

h 1 h 2<br />

˜g 0 ˜g 1<br />

f Rf<br />

as a “meta dynamical system”<br />

on a space of dynamical systems<br />

Often one expects a hyperbolic<br />

f ↔ (α, f<br />

dynamics 0 ) Rf(z) = e −2πi 1 α R α f 0 (z) R : (α,<br />

f 0 α α ↦→ − 1 α mod Z R 0 R<br />

R 0 contracting? R hyperbolic? (R α contrac<br />

f = P ◦ ϕ −1<br />

˜f 0 = ˜f ˜f1 = R ˜f 0<br />

˜f2 = R ˜f 1<br />

rigidity: weak conj. upgraded <strong>to</strong> nicer one<br />

f = Q ◦ ϕ −1<br />

0 ∞ (−∞, −1]


Near-parabolic Renormalization (cylinder renorm.)<br />

(1) w = − c z<br />

f<br />

(z) = z + O(z 2 )<br />

χ f<br />

mod Z E f0 E f<br />

near 0 near ∞ T (w) = w + 1 Φ attr Φ rep C/Z C<br />

e 2πiβ z + O(z 2 ) β = − 1 Φα mod Z<br />

attr (f(z)) = Φ attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ..<br />

(z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) = Φ ... (z) + 1<br />

E f0 The (z) following = Φ attr ◦text Φ −1<br />

rep is drawn χ f inχwhite.<br />

f (z) = z − 1 α<br />

1<br />

ep χ f χ f (z) E f<br />

= z − 1 Φ˜Rf attr χR f1 = ◦ E239<br />

f<br />

˜Rf Rf = χf ◦ E f ≃<br />

αE f0 (z) = z + o(1) (Im z → +∞)<br />

(Im z → +∞)<br />

Π : C/Z<br />

≃<br />

F 0 (w) = w + 1 + o(1) w = − z<br />

near 0 near ∞ T (<br />

f 0 R 0 f 0 R 0 f 0 (z) = z + O(z 2 )<br />

f Rf Rf(z) = e 2πiβ z + O(z 2 ) β = − 1 α mod Z<br />

first return map<br />

e −2π = 0.00186 . . .<br />

h<br />

−→ 1 =<br />

C ∗ Exp ♯ ◦ E e 2πiα h ◦ ( Exp ♯) −1<br />

Exp ♯ Exp ♯ (z) = e 2πiz Exp ♯ = R<br />

: C/Z −→ ≃ α h<br />

C ∗<br />

Π Π(z) = e 2πiz Π : C/Z ≃<br />

−→ C ∗ R 0 fR 0 = Π ◦ E f0 ◦ Π −1 R 0 f 0 Π ◦ E f0 ◦ −1 0 f 0 = Π ◦ E f0 ◦ Π −1 Rf = Π ◦ ˜Rf ◦ Π −1 = RΠ 0 f◦ 0 χ=<br />

f ◦ E f<br />

cylinders and Rf defined<br />

R 0 f 0 = Exp ♯ ◦E f0 ◦ (Exp ♯ ) −1 R 0 f 0 = Exp ♯ ◦E f0 ◦ (Exp ♯ ) −1<br />

where β = − 1 when 1 h ′′ (0) ≠ 0 and<br />

(mod Z) or α = α sufficiently (m ∈small<br />

N)<br />

α m − β<br />

f 0<br />

R −→ f1<br />

−1<br />

R −→ f2<br />

Exp ♯ : C/Z ≃ −→ C ∗ ,z↦→ e 2πiz<br />

Rf is conjugate <strong>to</strong> the return map<br />

on red croissant via repelling<br />

Fa<strong>to</strong>u coordinate and Exp ♯<br />

R −→ f3<br />

f = e 2πiα h, h = z + O(z 2 )<br />

f ↔ (α,h)<br />

R −→ . . .<br />

˜Rf = χ f ◦ E<br />

Rf = e −2πi 1 α h 1 , h 1 = z + O(z 2 )<br />

Rf ↔ (− 1 α ,h 1)<br />

R 0 f 0 = Π ◦ E f0 ◦ Π −


Theorem. (H. Inou and S.) There exists a class F 1 of maps<br />

with a parabolic fixed point (non-degenerate) (iv) f ↦→and R 0 f is a“holomorphic.”<br />

unique critical<br />

point and a large number N such that the near-parabolic<br />

<strong>renormalization</strong> R is defined on<br />

univalent = holomorphic and injective<br />

{e 2πiα h : α ∈ R, 0 < |α| ≤ 1 N ,h∈ F 1}<br />

and hyperbolic. In fact, R can be considered as<br />

R :(α,h) ↦→ (− 1 α mod Z, R αh),<br />

(iii) If we write R 0 f = P ◦ ψ −1 , then ψ can be e<br />

Theorem 2 The above statements hold for R α<br />

exists an N such that the above holds for<br />

α = 1<br />

m + β<br />

and α ↦→ − 1 α mod Z is expanding. The “fiber direction” F 1 is<br />

in one <strong>to</strong> one correspondence with the Teichmüller space of<br />

P (z) = z(1 + z) 2 and V , V ′<br />

the punctured disk and the fiber map R α is holomorphic and<br />

uniform contracting with respect <strong>to</strong> the Teichmüller distance.<br />

with m ∈ N, β ∈ C<br />

P (z) = z(1 + z) 2 P (0) = 0, P ′ (0) = 1<br />

critical points: − 1 3<br />

and −1; critical values: P (<br />

Invariant class F 1 is characterized by (partial covering property.<br />

η = 2<br />

4<br />

27 e2πη 4 27 e−2πη<br />

U 4−<br />

U 3+<br />

η = 2 P slit<br />

Dom(f)<br />

cp<br />

0<br />

U 2<br />

U 1<br />

V slightly smaller domain than V ′<br />

b<br />

cv<br />

f<br />

0<br />

c<br />

C slit<br />

f = P ◦ ϕ −1<br />

−1


Applications (work in progress)<br />

Theorem. Let f = e 2πiα h and ˆf = e 2πiα ĥ where h, ĥ ∈ F 1<br />

(or z + z 2 ) and α is of high type (continued fraction coeffs ≥ N).<br />

Then f and ˆf are quasiconformally conjugate on the closure of<br />

the critical orbit. Moreover the conjugacy is C 1+γ -conformal on<br />

the critical orbit with some γ > 0.<br />

Compare with McMullen’s result on bounded type Siegel disks<br />

Theorem. Let f = e 2πiα h where h ∈ F 1 (or z + z 2 ) and<br />

α is of high type (continued fraction coefficientss ≥ N).<br />

Then there exist open sets U n ∋ 0 and integers q n (n =0, 1,...)<br />

such that f q n<br />

is defined on U n and at most 3 <strong>to</strong> 1,<br />

⋂ ∞<br />

n=0 U n contains the critical orbit and consists of arcs (“hairs”)<br />

which are disjoint <strong>from</strong> each other except at 0.<br />

According <strong>to</strong> a discussion with Buff, Chéritat, Oversteegen,<br />

quadratic Julia sets with non-Bruno, high-type rotation number<br />

seem <strong>to</strong> be decomposable.


Merci!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!