27.07.2014 Views

ME1102 Mechanics of Solids - Staff.city.ac.uk

ME1102 Mechanics of Solids - Staff.city.ac.uk

ME1102 Mechanics of Solids - Staff.city.ac.uk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SECTION A<br />

Question 1<br />

150<br />

A<br />

2 m<br />

40 kN 25 kN<br />

B<br />

3 m<br />

C<br />

8 kN/m<br />

3m<br />

m<br />

D<br />

250<br />

All dimensions<br />

in mm<br />

15<br />

15<br />

Figure Q1(a)<br />

Figure Q1(b)<br />

The horizontal beam ABCD shown in Figure Q1(a) has a uniform cross-section as<br />

shown in Figure Q1(b). It is simply supported at A and D.<br />

(a)<br />

(b)<br />

Calculate the second moment <strong>of</strong> area, I, and the elastic section modulus, Z, for the<br />

beam section about its major axis.<br />

[3 marks]<br />

For the loading shown:<br />

(i)<br />

(ii)<br />

draw the shear force and bending moment diagrams, showing all principal<br />

values,<br />

[10 marks]<br />

calculate the maximum value <strong>of</strong> stress in the beam due to bending moment.<br />

[2 marks]<br />

(c)<br />

Sketch the distribution <strong>of</strong> shear stress in the webs <strong>of</strong> the section.<br />

[2 marks]<br />

(d)<br />

If the end A <strong>of</strong> the beam were fixed at the support, describe the effect this would<br />

have on the deflection and bending moment distribution in the beam.<br />

[3 marks]<br />

Page - 1 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question 2<br />

60 kN<br />

20 kN<br />

A<br />

B<br />

C<br />

D<br />

5m<br />

3m<br />

Figure Q2<br />

2m<br />

The uniform beam, ABCD, shown in Figure Q2 is simply supported at its end, A and<br />

propped at C. The beam carries concentrated loads <strong>of</strong> 60 kN at B and 20 kN at D.<br />

The modulus <strong>of</strong> elasti<strong>city</strong> <strong>of</strong> the material <strong>of</strong> the beam is 205 x 10 3 N/mm 2 and the second<br />

moment <strong>of</strong> area <strong>of</strong> the beam about the axis <strong>of</strong> bending is 120 x 10 6 mm 4 .<br />

(a) Sketch the deflected form, indicating points where the deflection, slope or<br />

curvature are zero.<br />

[2 marks]<br />

(b) Find the position and value <strong>of</strong> the maximum deflection <strong>of</strong> the beam.<br />

[18 marks]<br />

Page - 2 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question 3<br />

40 kN<br />

1.5 m 1.5 m<br />

40 kN<br />

D<br />

B<br />

A<br />

1.5 m<br />

E<br />

C<br />

Figure Q3<br />

The pin-jointed truss shown in Figure Q3 lies in a vertical plane and is pinned to a<br />

vertical, rigid support at D and E.<br />

(a) Find the force in e<strong>ac</strong>h member <strong>of</strong> the truss due to the loading shown.<br />

[14 marks]<br />

(b) Find the magnitudes and directions <strong>of</strong> the re<strong>ac</strong>tions at D and E.<br />

[6 marks]<br />

Page - 3 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question 4<br />

(a)<br />

A circular, hollow shaft has a cross-section with an external diameter <strong>of</strong> 100 mm<br />

and wall thickness 15 mm. It has a length <strong>of</strong> 1.5 m and transmits a torque <strong>of</strong> 15<br />

kNm when rotating at 300 revolutions per minute. The shear modulus, G, for the<br />

material <strong>of</strong> the shaft is 78 x 10 3 N/mm 2 .<br />

Find:<br />

(i) the maximum shear stress in the shaft<br />

(ii) the angle <strong>of</strong> twist<br />

(iii) the power transmitted.<br />

[6 marks]<br />

[4 marks]<br />

[2 marks]<br />

(b)<br />

A solid circular shaft has the same length and mass. What torque would be<br />

transmitted if the maximum shear stress were the same as for the hollow shaft?<br />

[8 marks]<br />

Page - 4 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


SECTION B<br />

Question 5<br />

(a) Car A is travelling along a straight motorway, while car B is moving along a circular<br />

exit ramp <strong>of</strong> 100 m radius. The speed <strong>of</strong> A is being increased at a rate <strong>of</strong> 1.6 m/s 2 while<br />

car B is moving with a constant velo<strong>city</strong> <strong>of</strong> 12 m/s. For the position shown, determine:<br />

(i) the velo<strong>city</strong> <strong>of</strong> A relative to B and its direction (to horizontal axis) from a<br />

velo<strong>city</strong> vector diagram or any other method.<br />

[5 marks]<br />

(ii) the <strong>ac</strong>celeration <strong>of</strong> A relative to B and its direction [7 marks]<br />

A<br />

V A = 22 m/s<br />

30 o 100 m<br />

B<br />

V B = 12 m/s<br />

Figure Q5(a)<br />

(b) The bar OB is supported at O and held in a vertical position by three cables AC, AD<br />

and BE, figure Q5(b). If the tension in the cable BE is T =453.5i -151.2j – 1209.2k,<br />

determine:<br />

(i) The magnitude <strong>of</strong> tension force. [1 marks]<br />

(ii) The moment <strong>of</strong> this vector T with respect to base <strong>of</strong> the pillar at O. [7 marks]<br />

z<br />

B<br />

A<br />

D<br />

T<br />

y<br />

C<br />

O<br />

4.5<br />

All dimension in m<br />

OB=12 m<br />

E<br />

1.5<br />

x<br />

Figure Q5 (b)<br />

Page - 5 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question 6<br />

The van shown in Fig. Q6 has a mass 1800 kg with mass centre at G. The coefficient <strong>of</strong><br />

friction between the tyres and the road surf<strong>ac</strong>e is 0.75. The brakes are applied when the<br />

van is travelling down a slop <strong>of</strong> 5 degrees and at this instant all the wheels are on the<br />

point <strong>of</strong> slipping.<br />

(a) Draw an appropriate free body diagram<br />

[4 marks]<br />

(b) Calculate:<br />

(i) the deceleration <strong>of</strong> the van [8 marks]<br />

(ii) the distance required that the van comes to rest from a speed <strong>of</strong> 100.8 km/h<br />

[3 marks]<br />

(ii) the normal forces at the front and rear wheels. [5 marks]<br />

100.8 km/h<br />

0.6 m<br />

G<br />

1.7 m 1.3 m<br />

θ<br />

=<br />

Figure Q6<br />

Page - 6 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question7<br />

The unbalanced 25 kg flywheel shown in Fig. Q7 has a radius <strong>of</strong> gyration <strong>of</strong> 0.18 m<br />

about an axis passing through its mass centre G. If it has a clockwise angular velo<strong>city</strong> <strong>of</strong><br />

8 rad/s at the instant shown, draw the free body diagram and mass <strong>ac</strong>celeration diagram.<br />

[5 marks]<br />

Also determine:<br />

(a) the angular <strong>ac</strong>celeration <strong>of</strong> the flywheel<br />

[10 marks]<br />

(b) the horizontal and vertical re<strong>ac</strong>tion forces at O<br />

[5 marks]<br />

ω = 8 rad/s<br />

0.15 m<br />

120 N.m<br />

O<br />

G<br />

Figure Q7<br />

Page - 7 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


Question 8<br />

In the forging device shown in Fig. Q8, The 40 kg hammer is lifted to position 1 and<br />

released from rest. It falls and strikes a 20 kg pile embedded in the wood when it is in<br />

position 2. The two identical springs have a constant <strong>of</strong> k=1500 N/m, and the tension in<br />

e<strong>ac</strong>h spring is 150 N when the hammer is in position 2. Neglect friction between the<br />

hammer and slide bars and calculate:<br />

(a) the unstretched length <strong>of</strong> the springs.<br />

[5 marks]<br />

(b) the velo<strong>city</strong> <strong>of</strong> the hammer just before it strikes the pile by using the conservation<br />

<strong>of</strong> energy .<br />

[10 marks]<br />

(c) the velo<strong>city</strong> <strong>of</strong> pile immediately after the imp<strong>ac</strong>t if the hammer velo<strong>city</strong> is<br />

reduced to 1.7 m/s.<br />

[5 marks]<br />

Hammer<br />

1<br />

300 mm<br />

k<br />

k<br />

400<br />

mm<br />

2<br />

Pile<br />

Figure Q8<br />

DATA SHEET<br />

Page - 8 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc


PART I MECHANICS OF SOLID<br />

One-dimensional motion<br />

2<br />

ds<br />

ds d s<br />

v =<br />

a = =<br />

2<br />

dt<br />

dt dt<br />

Constant velo<strong>city</strong>, a=0 s = s o +vt<br />

Constant Acceleration v=v o +at s=s o +v o t+ 2<br />

1 at<br />

2<br />

dv<br />

= v<br />

ds<br />

Curvilinear motion<br />

Cartesian (rectangular) co-ordinates<br />

Position vector<br />

r =xi+yj+zk<br />

Velo<strong>city</strong> vector<br />

v = v i+<br />

x<br />

v y<br />

j+ v z<br />

k = x& i+ y& j+ z& k<br />

Acceleration<br />

a = a i+<br />

x<br />

a y<br />

j+ a z<br />

k = & x& i+ & y& j+ & z& k<br />

Normal (n) and tangential (t) coordinates<br />

v 2 = v o 2 +2as<br />

velo<strong>city</strong> v = v e t = rω e t = rθ & e t Acceleration a = e n + v& e<br />

r t<br />

a n =v 2 2 2<br />

/r a t = v& =dv/dt a = a n<br />

+ a t<br />

Radial-Transverse (Polar) coordinates<br />

Position vector r = r e r<br />

Velo<strong>city</strong> vector v = r& e r + rθ & e θ<br />

Acceleration a = (& r& - rθ & 2 )e r + (2 r& & θ + rθ & ) e θ<br />

a r =( & r& - rθ & 2 ) a θ =(2 r& & θ + rθ & 2<br />

) a = a +<br />

r<br />

v 2<br />

2<br />

a θ<br />

Rigid body plane motion<br />

∑M G =I G α<br />

∑M o =I G α+ma G d<br />

Energy equation<br />

∆U= ∆KE + ∆PE+ ∆SE where ∆KE=0.5mv 2 , ∆PE =mgh and<br />

Strain energy SE = V e = 2<br />

1 k x<br />

2<br />

Kinetic energy <strong>of</strong> rigid body in plane motion KE= T = 2<br />

1 mvG<br />

2<br />

+ 2<br />

1<br />

ΙG ω 2<br />

Coefficient <strong>of</strong> Restitution<br />

e =<br />

v<br />

u<br />

B<br />

−<br />

v<br />

u<br />

A B<br />

=<br />

−<br />

A<br />

relative<br />

relative<br />

velo<strong>city</strong><br />

velo<strong>city</strong><br />

<strong>of</strong><br />

<strong>of</strong><br />

separation<br />

appro<strong>ac</strong>h<br />

Moment <strong>of</strong> a Force<br />

M=r x F= (rFsinθ)<br />

e p<br />

Page - 9 - <strong>of</strong> 9<br />

<strong>ME1102</strong> <strong>Mechanics</strong> <strong>of</strong> <strong>Solids</strong>-May2006.doc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!