27.07.2014 Views

Bias and Efficiency in fMRI Time-Series Analysis - Purdue University

Bias and Efficiency in fMRI Time-Series Analysis - Purdue University

Bias and Efficiency in fMRI Time-Series Analysis - Purdue University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>fMRI</strong> TIME-SERIES ANALYSIS<br />

207<br />

autocorrelation function (t) are related by the Fourier<br />

transform pair<br />

t FTg, g IFTt,<br />

where V Toeplitzt <strong>and</strong> K V 1/2 .<br />

(A.1)<br />

Here t [0,1,...,n 1] is the lag <strong>in</strong> scans with (0) <br />

1 <strong>and</strong> 2i (i [0,...,n 1]) denotes frequency.<br />

The Toeplitz operator returns a Toeplitz matrix (i.e., a<br />

matrix that is symmetrical about the lead<strong>in</strong>g diagonal).<br />

The transfer function associated with the l<strong>in</strong>ear<br />

filter K is l(), where g() l() 2 .<br />

Autoregressive Models<br />

Autoregressive models have the follow<strong>in</strong>g form:<br />

A z N 1 A 1 z,<br />

giv<strong>in</strong>g K a 1 A 1 where A<br />

<br />

0 0 0 0 . . .<br />

a 1 0 0 0<br />

a 2 a 1 0 0<br />

a 3 a 2 a 1 0<br />

· ·<br />

···<br />

·.<br />

(A.2)<br />

The autoregression coefficients <strong>in</strong> the triangular matrix<br />

A can be estimated us<strong>in</strong>g<br />

a a 1 ,...,a p <br />

<br />

1 1 ··· p<br />

1 1<br />

·<br />

···<br />

· 1<br />

···<br />

·<br />

p ··· 1 1<br />

1<br />

1<br />

2<br />

p<br />

···<br />

1.<br />

(A.3)<br />

The correspond<strong>in</strong>g spectral density over n frequencies<br />

is given by<br />

g FT n 1, a 2 ,<br />

(A.4)<br />

where FT n { }isan-po<strong>in</strong>t Fourier transform with zero<br />

padd<strong>in</strong>g (cf. the Yule–Walker method of spectral density<br />

estimation). With these relationships [(A.1) to<br />

(A.3)] one can take any empirical estimate of the autocorrelation<br />

function (t) <strong>and</strong> estimate the autoregression<br />

model-specific convolution K a <strong>and</strong> autocorrelation<br />

V a K a K a T matrices.<br />

Modified 1/f Models<br />

K a <strong>and</strong> V a can obviously be estimated us<strong>in</strong>g spectral<br />

density through Eq. (A.1) if the model of autocorrelations<br />

is expressed <strong>in</strong> frequency space; here we use the<br />

analytic form suggested by the work of Zarahn et al.<br />

(1997),<br />

s q 1<br />

q 2, where g s 2 . (A.5)<br />

Note that Eq. (A.5) is l<strong>in</strong>ear <strong>in</strong> the parameters which<br />

can therefore be estimated <strong>in</strong> an unbiased manner<br />

us<strong>in</strong>g ord<strong>in</strong>ary least squares.<br />

APPENDIX B<br />

<strong>Efficiency</strong> <strong>and</strong> <strong>Bias</strong><br />

In this section we provide expressions for the efficiency<br />

<strong>and</strong> bias for any design matrix X <strong>and</strong> any contrast<br />

of parameter estimates specified with a vector of<br />

contrast weights c (this framework serves all the filter<strong>in</strong>g<br />

schemes outl<strong>in</strong>ed <strong>in</strong> the ma<strong>in</strong> text). These expressions<br />

are developed <strong>in</strong> the context of the general<br />

l<strong>in</strong>ear model <strong>and</strong> parametric statistical <strong>in</strong>ference (Friston<br />

et al., 1995). The bias here is <strong>in</strong> terms of the<br />

estimated st<strong>and</strong>ard error associated with any ensu<strong>in</strong>g<br />

statistic. Consider the general l<strong>in</strong>ear model,<br />

Sy SX SK i z,<br />

(B.1)<br />

where y is the response variable <strong>and</strong> S is an applied<br />

filter matrix. The efficiency of the general least squares<br />

contrast estimator c T ˆ GLS is <strong>in</strong>versely proportional to<br />

its variance,<br />

<strong>Efficiency</strong> Varc T ˆ GLS 1<br />

Varc T ˆ GLS 2 c T SX SV i S T SX T c,<br />

(B.2)<br />

where denotes the pseudo<strong>in</strong>verse. <strong>Efficiency</strong> is maximized<br />

with the Gauss–Markov estimator, when S <br />

K 1<br />

i if the latter were known. However, there is another<br />

important consideration: The variance of the contrast<br />

has to be estimated <strong>in</strong> order to provide for statistical<br />

<strong>in</strong>ference. This estimator <strong>and</strong> its expectation are<br />

Vˆ arc T ˆ <br />

<br />

y T S T R T RSy<br />

traceRSV a S T c T SX SV a S T SX T c<br />

Vˆ arc T ˆ <br />

2 traceRSV i S T <br />

traceRSV a S T <br />

c T SX SV a S T SX T c,<br />

(B.3)<br />

where R I SX(SX) is a residual-form<strong>in</strong>g matrix.<br />

<strong>Bias</strong> can be expressed <strong>in</strong> terms of the (normalized)<br />

difference between the actual <strong>and</strong> the expected contrast<br />

variance estimators,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!