28.07.2014 Views

Epidemic Modeling: SIRS Models (short) - Columbia University

Epidemic Modeling: SIRS Models (short) - Columbia University

Epidemic Modeling: SIRS Models (short) - Columbia University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Epidemic</strong> <strong>Modeling</strong>: <strong>SIRS</strong> <strong>Models</strong><br />

Regina Dolgoarshinnykh<br />

<strong>Columbia</strong> <strong>University</strong><br />

Steven P. Lalley<br />

<strong>University</strong> of Chicago


<strong>Epidemic</strong> <strong>Models</strong>: SIR, <strong>SIRS</strong><br />

2


<strong>SIRS</strong> models<br />

S t = # susceptible at time t<br />

I t = # infected at time t<br />

R t = # recovered (immune) at time t<br />

N ≡ S t + I t + R t = population size<br />

s t = S t /N, i t = I t /N<br />

r t = R t /N = 1 − s t − i t<br />

γ t = (s t , i t ) T 3


<strong>SIRS</strong> Model<br />

MCs indexed by N with transition rates:<br />

ρ (s → i) = S · θI/N = Nθsi<br />

ρ (i → r) = ρI = Nρi<br />

ρ (r → s) = R = Nr<br />

Questions:<br />

• Establishment: Will the infection spread?<br />

• Spread: How does it develop with time?<br />

• Persistance: When does it disappear?<br />

4


Overview<br />

• Limiting ODEs<br />

• Fluctuations about (s ∞ , i ∞ )<br />

• Exit path LDP<br />

• Time until infection “dies out”<br />

5


i<br />

i<br />

i<br />

N=100<br />

N=100<br />

1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

population fractions<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0 10 20 30 40 50<br />

s<br />

time<br />

N=400<br />

N=400<br />

1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

population fractions<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

s<br />

0.0<br />

0 10 20 30 40 50<br />

time<br />

N=2500<br />

N=2500<br />

1.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

population fractions<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

s<br />

0.0<br />

0 10 20 30 40 50<br />

time<br />

6


Deterministic Approximation<br />

Fix N, h > 0<br />

E t (s t+h ) = s t + r t h − θi t s t h + o(h)<br />

E t (i t+h ) = i t + θi t s t h − ρi t h + o(h)<br />

Get “mean field approximation” as h → 0<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ds t<br />

dt<br />

di t<br />

dt<br />

= r t − θi t s t<br />

= θi t s t − ρi t<br />

:= F (γ t )<br />

7


Deterministic Approximation<br />

1<br />

Mean field: theta=3,rho=1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

i<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

s<br />

8


Deterministic Approximation<br />

(¯γ t ) t≥0 - solution of mean path ODE,<br />

i.e. ˙γ = F (γ)<br />

(<br />

γ<br />

N t<br />

)<br />

t≥0<br />

- random path<br />

Theorem 1. If γ0<br />

N<br />

any T > 0<br />

→ ¯γ 0 as N → ∞ then for<br />

lim sup |γt N − ¯γ t | = 0 a.s.<br />

N→∞ t≤T<br />

9


Fluctuations around (s ∞ , i ∞ )<br />

X N t :=<br />

⎧<br />

⎨<br />

⎩<br />

x 1 t = √ N(s N t − s ∞ )<br />

x 2 t = √ N(i N t − i ∞ )<br />

so that<br />

⎧<br />

⎪⎨ s N t<br />

⎪⎩ i N t<br />

= s ∞ + x1 t<br />

√<br />

N<br />

= i ∞ + x2 t<br />

√<br />

N<br />

Theorem 2. If X0<br />

N → D X 0 as N → ∞, then<br />

X N ⇒ X in D R 2[0, ∞).<br />

10


Fluctuations around (s ∞ , i ∞ )<br />

X is generated by G<br />

G =<br />

2∑<br />

i=1<br />

µ i (x) ∂<br />

∂x i<br />

+ 1 2<br />

2∑<br />

i,j=1<br />

σ ij<br />

∂ 2<br />

∂x i ∂x j<br />

where<br />

( )<br />

µ1 (x)<br />

µ 2 (x)<br />

=<br />

⎛<br />

− 1+θ ⎞<br />

1+ρ −(1+ρ)<br />

⎛ ⎞<br />

x 1<br />

⎜<br />

⎟ ⎜ ⎟<br />

⎝<br />

⎠ ⎝ ⎠<br />

θ−ρ<br />

1+ρ<br />

0 x 2<br />

( )<br />

σ11 σ 12<br />

σ 12 σ 22<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

2ρ(θ−ρ)<br />

θ(1+ρ)<br />

− ρ(θ−ρ)<br />

θ(1+ρ)<br />

− ρ(θ−ρ) ⎞<br />

θ(1+ρ)<br />

⎟<br />

2ρ(θ−ρ)<br />

θ(1+ρ)<br />

⎠ . 11


Fluctuations around (s ∞ , i ∞ )<br />

100<br />

80<br />

60<br />

40<br />

20<br />

x2<br />

0<br />

−20<br />

−40<br />

−60<br />

−80<br />

−100<br />

−80 −60 −40 −20 0 20 40 60 80<br />

x1<br />

12


Time to Extinction<br />

For all N, infection dies out with prob.1.<br />

How long until this happens?<br />

• If Y<br />

∼ Geometric(q) then E(Y ) = 1 q<br />

• Connection to “most likely” path<br />

• Large Deviations for exit paths (LDP).<br />

13


Large Deviations Principle<br />

Def. Family µ N satisfy LDP on X with rate<br />

function I if<br />

− inf I(x) ≤ lim 1<br />

x∈F ◦ N→∞<br />

N log µN (F )<br />

1<br />

≤ lim N→∞<br />

N log µN (F ) ≤ − inf I(x)<br />

x∈ ¯F<br />

for F ⊂ X .<br />

Y t = Poisson processes rate m<br />

y N t<br />

= N −1 Y Nt satisfy LDP with rate function<br />

I(y) =<br />

:=<br />

∫ T<br />

(ẏt )<br />

0 ẏt log<br />

m<br />

∫ T<br />

0 f(ẏ t, m) dt<br />

− ẏ t + m dt<br />

14


Time Changed Poisson<br />

Processes<br />

Y 1 (t), Y 2 (t), Y 3 (t) are rate 1 PPs<br />

y k (t) = y N k (t) = N −1 Y k (Nt) for k = 1, 2, 3<br />

(∫ t<br />

) (∫ t<br />

s t = s 0 − y 1 θs ui u du + y 3 r u du<br />

0 0<br />

(∫ t<br />

) (∫ t<br />

i t = i 0 + y 1 θs ui u du − y 2 ρi u du<br />

0 0<br />

)<br />

)<br />

.<br />

15


Exit Path LDP<br />

• Why standard methods don’t work<br />

– Contraction Principle<br />

Cont. f : X → Y & LDP for µ N on X<br />

⇒ LDP for µ N ◦ f −1 on Y.<br />

– Wentzell and Freidlin<br />

• Dangers of diffusion approximations<br />

16


Exit path LDP<br />

Fix γ = (s t , i t ) t≥0 ∈ AC[0, T ]<br />

Let λ, µ, ν ≥ 0 s.t.<br />

⎧<br />

⎪⎨<br />

ds t<br />

dt = ν t − λ t<br />

⎪⎩<br />

di t<br />

dt = λ t − µ t<br />

17


Exit path LDP<br />

I(γ) = inf<br />

λ,µ,ν<br />

∫T<br />

0<br />

f(x, m) = x log<br />

For γ ∈ AC[0, T ]<br />

f(λ t , θs t i t ) + f(µ t , ρi t ) + f(ν t , r t )dt,<br />

where<br />

( x<br />

m)<br />

− x + m, x, m ≥ 0.<br />

Theorem 3. <strong>SIRS</strong> processes γ N<br />

with good rate function I(γ),<br />

satisfy LDP<br />

i.e.<br />

P N (||γ − ˜γ|| T < δ) ≈ e −NI(˜γ) .<br />

18


Exit path LDP<br />

Lower Bound<br />

Define measure Q ∼ λ t , µ t , ν t<br />

P N (||γ − ˜γ|| T < δ) =<br />

E N Q<br />

(<br />

I{||γ − ˜γ|| T < δ} · dP<br />

dQ<br />

)<br />

Upper Bound<br />

Exponential Approximations<br />

Markov-type Inequality<br />

Boundary Problem<br />

19


Time until extinction<br />

τ N = inf{t : i t = 0} = time to extinction<br />

Ī = inf γ I τ (γ) = “minimal cost” of exit<br />

In fact,for any ɛ > 0<br />

lim<br />

(<br />

N→∞ PN e N(Ī−ɛ) ≤ τ N ≤ e N(Ī+ɛ)) = 1.<br />

Conjecture.<br />

lim<br />

N→∞<br />

1<br />

N log E τ N = Ī.<br />

20


Extensions / Future Directions<br />

• Time to extinction<br />

• Similar models - spatial component<br />

• Start with small number of infected<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!