28.07.2014 Views

Pricing Asian Options in a Semimartingale Model - Department of ...

Pricing Asian Options in a Semimartingale Model - Department of ...

Pricing Asian Options in a Semimartingale Model - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Theorem 2.3 (<strong>Pric<strong>in</strong>g</strong> Formula) Let V λ (0, S 0 , K 1 , K 2 ), the price <strong>of</strong> the <strong>Asian</strong> option with the pay<strong>of</strong>f (1.1)<br />

when ξ = 1, be def<strong>in</strong>ed as<br />

⎡ ( ∫ ) ⎤ + T<br />

(2.8) V λ (0, S 0 , K 1 , K 2 ) E P ⎣e −rT S t dλ(t) − K 1 S T − K 2<br />

⎦ .<br />

Then we have the follow<strong>in</strong>g relationship<br />

(2.9) V λ (0, S 0 , K 1 , K 2 ) = S 0 · E Q [(Z T − K 1 ) + ]<br />

where Q is def<strong>in</strong>ed by (2.7), X t is the self-f<strong>in</strong>anc<strong>in</strong>g portfolio (2.2) with the <strong>in</strong>itial condition X 0 and trad<strong>in</strong>g<br />

strategy q t def<strong>in</strong>ed <strong>in</strong> (2.4) and (2.3), and Z t = Xt<br />

S t<br />

.<br />

0<br />

Pro<strong>of</strong>. An easy consequence <strong>of</strong> proposition 2.2 is<br />

⎡( ∫ T<br />

V λ (0, S 0 , K 1 , K 2 ) = e −rT · E P ⎣<br />

0<br />

) ⎤ +<br />

S t dλ(t) − K 1 S T − K 2<br />

⎦<br />

= e −rT · E P [ (X T − K 1 S T ) +]<br />

= e −rT · E Q [<br />

(X T − K 1 S T ) + S 0 e rT<br />

S T<br />

]<br />

= S 0 · E Q [(Z T − K 1 ) + ].<br />

⋄<br />

3 Integro-Differential Equation<br />

For our next analysis, we need the follow<strong>in</strong>g result:<br />

Lemma 3.1 Z t = Xt<br />

S t<br />

is a local mart<strong>in</strong>gale under Q.<br />

Pro<strong>of</strong>. Recall that P is a risk-neutral measure. Equation (2.2) and the fact that q t is determ<strong>in</strong>istic ensure<br />

that e −rt X t is a mart<strong>in</strong>gale. For 0 ≤ u ≤ t,<br />

E Q [Z t |F u ] = S 0e ru [ ]<br />

E P St Z t<br />

S 0 e rt | F u<br />

S u<br />

= eru<br />

S u<br />

E P [ e −rt X t | F u<br />

]<br />

= eru<br />

e −ru X u = Z u .<br />

S u<br />

⋄<br />

To derive the <strong>in</strong>tegro-differential equation, we need to impose more restrictions on the structure <strong>of</strong> the<br />

stock price to get the Markovian property. Let H be a semimart<strong>in</strong>gale on the same stochastic basis (Ω, F, F =<br />

(F t ) t∈R+ , P), with values <strong>in</strong> R and H 0 = 0. Suppose the stock price has the follow<strong>in</strong>g dynamics:<br />

(3.1) dS t = S t− dH t ,<br />

S<strong>in</strong>ce we have assumed e −rt S t to be a mart<strong>in</strong>gale under P, H is necessarily a special semimart<strong>in</strong>gale. Follow<strong>in</strong>g<br />

the notation <strong>in</strong> Jacod and Shiryaev (2002), H has the canonical decomposition:<br />

(3.2) H t = rt + H c t +<br />

∫ t ∫ ∞<br />

0<br />

−∞<br />

x (µ(ds, dx) − ν(ds, dx)) ,<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!