29.07.2014 Views

ST4241: Design and Analysis of Clinical Trials - The Department of ...

ST4241: Design and Analysis of Clinical Trials - The Department of ...

ST4241: Design and Analysis of Clinical Trials - The Department of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ST4241</strong>: <strong>Design</strong> <strong>and</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Clinical</strong> <strong>Trials</strong><br />

2012/2013: Semester I<br />

Tutorial 8<br />

1. <strong>The</strong> linear model for the balanced incomplete block design with design parameters g, k, r<br />

<strong>and</strong> λ is as follows:<br />

X ij = µ + s i + α j + ɛ ij ,<br />

where ∑ j α j = 0, s i ’s are i.i.d. r<strong>and</strong>om variables with mean zero <strong>and</strong> variance σ 2 s, ɛ ij ’s are<br />

i.i.d. r<strong>and</strong>om errors with mean zero <strong>and</strong> variance σ 2 e <strong>and</strong> are independent <strong>of</strong> s i ’s. Let a j be the<br />

unbiased estimate <strong>of</strong> α j as defined in the lecture notes.<br />

(i) Show that the a j ’s are least squares estimates <strong>of</strong> α j ’s; that is they are minimizers <strong>of</strong><br />

∑ ∑<br />

(X ij − µ − s i − α j ) 2 , subject to ∑<br />

i j<br />

j<br />

α j = 0.<br />

By Lagrange method, taking derivatives w.r.t. the unknowns <strong>of</strong> the function <strong>and</strong> setting<br />

them to zero<br />

∑ ∑<br />

(X ij − µ − s i − α j ) 2 + κ ∑ α j<br />

i j<br />

j<br />

yields the following equations:<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

X·· = grµ + k ∑ s i<br />

X i· = k(µ + s i ) + ∑ α j , i = 1, . . . , n<br />

j∈T i<br />

X·j = r(µ + α j ) + ∑ s i + κ, j = 1, . . . , g<br />

i∈S j<br />

∑<br />

α j = 0<br />

j<br />

where T i is the set <strong>of</strong> j’s such that Treatment j is applied in Block i, S j is the set <strong>of</strong> i’s<br />

such that Block i receives Treatment j.<br />

1


Sum up (3) over j yields<br />

(5) X·· = grµ + k ∑ s i + gκ<br />

(5)-(1) yields that κ = 0. From (2) <strong>and</strong> (3), we have<br />

(6)<br />

(7)<br />

µ + s i = ¯X i· − 1 k<br />

∑<br />

j ′ ∈T i<br />

α j<br />

′<br />

X·j = rα j + ∑ i∈S j<br />

(µ + s i )<br />

Substituting (6) into (7) yields<br />

It yields<br />

(ii) Show that<br />

X·j = rα j + ∑ ( ¯X i· − 1 ∑<br />

α<br />

k j<br />

′)<br />

i∈S j j ′ ∈T i<br />

= rα j + rM j − 1 ∑ ∑<br />

k<br />

α j<br />

′<br />

i∈S j j ′ ∈T i<br />

= rα j + rM j − r − λ<br />

k α j.<br />

(1 − r − λ<br />

kr )α j = ¯X·j − M j , i.e., α j = 1<br />

eff ( ¯X·j − M j ).<br />

Var(a j ) =<br />

where eff = g(k−1)<br />

k(g−1) .<br />

σ2 e<br />

reff<br />

g − 1<br />

, Cov(a j , a k ) = − σ2 e<br />

g<br />

1<br />

reff g ,<br />

Write<br />

¯X·j − M j = 1 ∑<br />

(X ij −<br />

r<br />

¯X i·)<br />

i∈S j<br />

= 1 ∑<br />

(α j − 1 ∑<br />

α<br />

r k j<br />

′ + ɛ ij − 1 ∑<br />

ɛ<br />

k ij<br />

′).<br />

i∈S j j ′ ∈T i j ′ ∈T i<br />

2


Thus<br />

Var( ¯X·j − M j ) = 1 ∑<br />

Var(ɛ<br />

r 2 ij − 1 ∑<br />

ɛ<br />

k ij<br />

′)<br />

i∈S j j ′ ∈T i<br />

= 1 ∑<br />

[(1 − 1 r 2 k )2 + k − 1 ]σ<br />

k 2 e<br />

2<br />

i∈S j<br />

= k − 1<br />

rk σ2 e.<br />

Hence<br />

Var(a j ) = k − 1<br />

rkeff 2 σ2 e =<br />

σ2 e k − 1<br />

reff keff =<br />

σ2 e<br />

reff<br />

g − 1<br />

.<br />

g<br />

Similarly,<br />

Cov( ¯X·j − M j , ¯X·l − M l )<br />

= 1 ∑ ∑<br />

Cov(ɛ<br />

r 2 ij − 1 ∑<br />

ɛ<br />

k ij<br />

′, ɛ i ′ l − 1 ∑<br />

ɛ ′<br />

k i j<br />

′)<br />

i∈S j i ′ ∈S l j ′ ∈T i j ′ ∈T ′ i<br />

= 1 r λCov(ɛ 2 ij − 1 ∑<br />

ɛ<br />

k ij<br />

′, ɛ il − 1 ∑<br />

ɛ<br />

k ij<br />

′)<br />

j ′ ∈T i j ′ ∈T i<br />

= λ r 2 (−σ2 e<br />

k ).<br />

Hence<br />

Cov(a j , a l ) =<br />

λ<br />

r 2 eff 2 (−σ2 e<br />

k ) = − 1 σe<br />

2<br />

reff g .<br />

(iii) Show that, for any contrast ∑ g<br />

j=1 c ja j ,<br />

Var(<br />

g∑<br />

c j a j ) =<br />

j=1<br />

σ2 e<br />

reff<br />

∑<br />

c 2 j.<br />

j<br />

3


g∑<br />

Var( c j a j )<br />

j=1<br />

= ∑ j<br />

= ∑ j<br />

= ∑ j<br />

∑<br />

c j c l Cov(a j , a l )<br />

c 2 j<br />

c 2 j<br />

l<br />

σ 2<br />

reff<br />

g − 1<br />

g<br />

− ∑ j≠l<br />

σ 2<br />

reff [g − 1 + 1 g g ] = ∑ j<br />

1 σe<br />

2 c j c l<br />

reff g<br />

c 2 j<br />

σ 2<br />

reff .<br />

Note that<br />

0 = ( ∑ j<br />

c j ) 2 = ∑ j<br />

c 2 j + ∑ j≠l<br />

c j c l .<br />

2. <strong>The</strong> data from the interexaminer reliability study considered in the lecture notes is given on<br />

the next page.<br />

(i) Using the linear model approach, derive the F ratio for testing the significance <strong>of</strong> the<br />

differences among the examiners.<br />

Examiner<br />

Patient 1 2 3 4 5 6 Mean<br />

1 10 14 10 11.33<br />

2 3 3 1 2.33<br />

3 7 12 9 9.33<br />

4 3 8 5 5.33<br />

5 20 26 20 22.00<br />

6 20 14 20 18.00<br />

7 5 8 14 9.00<br />

8 14 18 15 15.67<br />

9 12 17 12 13.67<br />

10 18 19 13 16.67<br />

Mean 8.6 11.2 13.2 10.6 16.2 14.2 12.33<br />

<strong>The</strong> data is fitted to the following model<br />

∑10<br />

6∑<br />

X = µ 0 + s i b i + a j t j + ɛ,<br />

i=2 j=2<br />

4


where the dummy variables b i ’s <strong>and</strong> t j ’s are defined conventionally.<br />

<strong>The</strong> R code<br />

lm.fit1=lm(x~s+a)<br />

produces the following ANOVA table:<br />

Df Sum Sq Mean Sq F value Pr(>F)<br />

s 9 982.00 109.11 11.7558 2.615e-05 ***<br />

a 5 35.44 7.09 0.7638 0.5898<br />

Residuals 15 139.22 9.28<br />

<strong>The</strong> F ratio for the examiner effect is 0.7638 with a p-value 0.5898. <strong>The</strong>re is no significant<br />

effect <strong>of</strong> the examiners.<br />

(ii) By looking at the data, it seems that Examiner 5 <strong>and</strong> 6 have higher mean scores than the<br />

other examiners. One would like to see whether the following contrasts are significant:<br />

α 1 + α 2 + α 3 + α 4<br />

4<br />

α 1 + α 2 + α 3 + α 4<br />

4<br />

α 1 + α 2 + α 3 + α 4<br />

4<br />

− α 5 + α 6<br />

,<br />

2<br />

− α 5 ,<br />

− α 6 .<br />

Using an appropriate multiple comparison criterion, test the significance <strong>of</strong> the above<br />

contrasts by controlling the overall error rate at 0.05.<br />

In terms <strong>of</strong> the parameters <strong>of</strong> the linear model, the contrasts are equivalent to the linear<br />

forms:<br />

a 2 + a 3 + a 4<br />

4<br />

a 2 + a 3 + a 4<br />

4<br />

a 2 + a 3 + a 4<br />

4<br />

− a 5 + a 6<br />

,<br />

2<br />

− a 5 ,<br />

− a 6 .<br />

<strong>The</strong> estimated a j ’s <strong>and</strong> their variance matrix are as follows:<br />

5


a2 a3 a4 a5 a6<br />

1.750000 1.083333 3.333333 3.416667 1.416667<br />

a2 a3 a4 a5 a6<br />

a2 4.640741 2.320370 2.320370 2.320370 2.320370<br />

a3 2.320370 4.640741 2.320370 2.320370 2.320370<br />

a4 2.320370 2.320370 4.640741 2.320370 2.320370<br />

a5 2.320370 2.320370 2.320370 4.640741 2.320370<br />

a6 2.320370 2.320370 2.320370 2.320370 4.640741<br />

By using the above information, the test statistics for the three contrasts are computed as<br />

L 1 = −0.6633, L 2 = −1.1010, L 3 = 0.0734.<br />

<strong>The</strong> Schiffe criterion should be used. <strong>The</strong> critical value is given by √ 5F 5,15,0.05 = 3.8087.<br />

None <strong>of</strong> the contrasts is significant.<br />

3. <strong>The</strong> data form the study comparing four formulations considered in the lecture notes is given<br />

at the end <strong>of</strong> this question. Using R, fit a linear model to the data. Using the information in<br />

the fitted object, do the following:<br />

(i) By computing the means for each formulation, it is obvious form that the estimated effect<br />

<strong>of</strong> Formulation 3 is different from all the others. Check that the value <strong>of</strong> the contrast<br />

C = a 3 − (a 1 + a 2 + a 4 )/3 is −0.6489 with an estimated st<strong>and</strong>ard error 0.0883. Test the<br />

significance <strong>of</strong> the contrast at level 0.05 using Scheffe’s criterion. (Why should Scheffe’s<br />

criterion be used?)<br />

<strong>The</strong> following code is used to extract the information from the fitted object lm.fit <strong>and</strong><br />

compute the required quantities:<br />

b=lm.fit$coef[14:16]<br />

v=vcov(lm.fit)[14:16,14:16]<br />

c1 = c(-1/3,1,-1/3)<br />

t(c1)%*%b<br />

sqrt( t(c1)%*%v%*%c1 )<br />

L = t(c1)%*%b/sqrt( t(c1)%*%v%*%c1 )<br />

<strong>The</strong> computation yields the given values for C <strong>and</strong> its st<strong>and</strong>ard error. <strong>The</strong> test statistic<br />

equals −7.35599. Its absolute value, compared with √ 3F 3,8,0.05 = 3.492641, is not<br />

significant.<br />

6


(ii) Check that, <strong>of</strong> the six pairwise differences a j − a j<br />

′, only the three differences involving<br />

Formulation 3 are statistically significant by the Tukey criterion.<br />

<strong>The</strong> following code is used for the computation:<br />

c12 = c(1,0,0)<br />

c13 = c(0,1,0)<br />

c14 = c(0,0,1)<br />

c23 = c(1,-1,0)<br />

c24 = c(1,0,-1)<br />

c34 = c(0,1,-1)<br />

C = rbind(c12,c13,c14,c23,c24,c34)<br />

l = C%*%b<br />

ss = sqrt( diag( C%*%v%*%t(C)) )<br />

L = l/ss<br />

<strong>The</strong> computed test statistics corresponding the six pairs are:<br />

c12 0.76096856<br />

c13 -5.73428051<br />

c14 0.05461109<br />

c23 6.49524907<br />

c24 0.70635747<br />

c34 -5.78889161<br />

<strong>The</strong> critical value for the statistics using Tukey’s criterion is q 4,8,0.05 / √ 2 = 4.529/ √ 2 =<br />

3.2025. It is seen that c13, c23, c34 are significant.<br />

7


Formulation<br />

Patient 1 2 3 4<br />

1 -1.0894 (A) -1.3200 (B)<br />

2 -1.7577 (B) -0.9817 (A)<br />

3 -1.0771 (B) -1.7531 (A)<br />

4 -0.9381 (A) -1.6769 (B)<br />

5 -1.2044 (B) -0.7795 (A)<br />

6 -1.0395 (B) -1.0426 (A)<br />

7 -1.0991 (B) -0.8092 (A)<br />

8 -2.0245 (A) -1.3374 (B)<br />

9 -0.9846 (A) -1.4712 (B)<br />

10 -1.1395 (B) -1.6683 (A)<br />

11 -0.8069 (A) -1.1913 (B)<br />

12 -0.7789 (A) -1.1694 (B)<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!