29.07.2014 Views

Air pollution

Air pollution

Air pollution

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Air</strong> <strong>pollution</strong><br />

apl. Prof. Dr. Cornelia<br />

Herschbach<br />

Institute of Forest Botany and Tree Physiology, Chair<br />

of Tree Physiology, Georges-Köhler<br />

hler-Allee 053/054


<strong>Air</strong> <strong>pollution</strong><br />

Basic literature:<br />

<strong>Air</strong> Pollution and Climate Change: The Biological Impact.<br />

Ed. A.R. Wellburn, , Addison Wesly Longman Limited,<br />

London<br />

Luftverschmutzung und Klimaänderung<br />

nderung, Auswirkungen auf<br />

Flora und Fauna und Mensch. . Ed. A.R. Wellburn, , Springer,<br />

Berlin


Internet sides with relevant<br />

• http://www.epa.gov/air/<br />

literature:<br />

• http://www.greenfacts.org/air-<strong>pollution</strong>/index.htm<br />

• http://en.wikipedia.org/wiki/Acid_rain<br />

• http://edugreen.teri.res.in/explore/air/air.htm<br />

• http://www.nationmaster.com/cat/Environment<br />

Herschbach 2007


Aim of the session<br />

• Critical reading of the literature<br />

• assessment of the source<br />

• credible and neutral / value-free source?<br />

• You can not discuss a fact without<br />

background knowledge<br />

Very important: acquire of background<br />

and basic knowledge<br />

Herschbach 2007


<strong>Air</strong> Pollution<br />

1. General aspects, including same data<br />

2. Uptake by plants via stomata<br />

3. Examples of air pollutant<br />

4. Limit values<br />

Herschbach 2007


1. General aspects<br />

1. Clean air<br />

2. Mayor pollutants<br />

• NAAQS: National Ambient <strong>Air</strong> Quality<br />

Standards<br />

3. Smog & Inversion<br />

4. Sources of mayor pollutants<br />

5. History of air <strong>pollution</strong><br />

6. Dry and wet deposition<br />

• Acid rain<br />

Herschbach 2007


.<br />

1.1. Clean air<br />

The gaseous composition<br />

of unpolluted air<br />

The Gases<br />

Parts per million (vol)<br />

A<br />

Herschbach 2007<br />

Nitrogen 756,500<br />

Oxygen 202,900<br />

Water 31,200<br />

Argon 9,000<br />

Carbon Dioxide 305<br />

Neon 17.4<br />

Helium 5.0<br />

Methane 0.97-1.16<br />

Krypton 0.97<br />

Nitrous oxide 0.49<br />

Hydrogen 0.49<br />

Xenon 0.08<br />

Organic vapours<br />

ca.0.02


What is an air pollutant?<br />

‘The presence in the atmosphere of one or more<br />

contaminants in such quality and for such<br />

duration as is injurious, or tends to be<br />

injurious, to human health or welfare, animal<br />

or plant life.’<br />

An air pollutant is a substance in the air at the<br />

wrong place at the wrong time and the wrong<br />

concentration which damage the biosphere.<br />

‘Alan Wellburn’<br />

Herschbach 2007


.<br />

1.2. Mayor pollutants<br />

SO 2<br />

Primary air pollutant<br />

NO 2 - NO x<br />

CO<br />

Pb<br />

VOC – ozone O 3<br />

Secondary air pollutant<br />

PM<br />

Herschbach 2007


.<br />

1.2. Mayor pollutants - NAAQS<br />

NAAQS:<br />

National Ambient <strong>Air</strong> Quality Standards<br />

US EPA<br />

!! Reference<br />

credible ??<br />

United States Environmental Protection Agency<br />

http://www.epa.gov/<br />

Herschbach 2007


Pollutant<br />

Carbon Monoxide<br />

Lead<br />

Nitrogen Dioxide<br />

Particulate Matter (PM 10<br />

)<br />

Particulate Matter (PM 2.5<br />

)<br />

Ozone<br />

Sulfur Oxides<br />

Herschbach 2007<br />

1.2. Mayor pollutants - NAAQS<br />

Primary Stds.<br />

9 ppm (10 mg/m 3 )<br />

35 ppm (40 mg/m 3 )<br />

1.5 µg/m 3 (6 µg/m 3 a)<br />

0.053 ppm (100 µg/m 3 )<br />

Revoked (2)<br />

Annual (2) (Arith. Mean)<br />

150 µg/m 3 24-hour (3)<br />

15.0 µg/m 3<br />

Annual (4) (Arith. Mean)<br />

35 µg/m 3 24-hour (5)<br />

0.08 ppm<br />

0.12 ppm<br />

0.03 ppm<br />

0.14 ppm<br />

-------<br />

http://www.epa.gov/air/criteria.html<br />

Averaging Times<br />

8-hour (1)<br />

1-hour (1)<br />

Quarterly Average<br />

Annual (Arithmetic Mean)<br />

8-hour (6)<br />

1-hour (7) (Applies only in<br />

limited areas)<br />

Annual (Arith. Mean)<br />

24-hour (1)<br />

3-hour (1)


.<br />

1.2. Mayor pollutants - NAAQS<br />

Source:<br />

EduGreen<br />

Not an official<br />

organisation, only<br />

a public side<br />

!! Reference<br />

credible ??<br />

Herschbach 2007<br />

Pollutants Average Time Concentration<br />

SO 2<br />

Annual average 60 µg/m 3<br />

24 hour 80 µg/m 3<br />

NO 2 Annual average 60 µg/m 3<br />

24 hour 80 µg/m 3<br />

SPM<br />

Suspended Particulate Matter<br />

Pb<br />

CO<br />

RPM<br />

Respirable Particulate Matter<br />

Annual average 140 µg/m 3<br />

24 hour 200 µg/m 3<br />

Annual average 0.75 µg/m 3<br />

24 hour 1.0 µg/m 3<br />

Annual average 2.0 µg/m 3<br />

24 hour 4.0 µg/m 3<br />

Annual average 60 µg/m 3<br />

24 hour 100 µg/m 3<br />

http://edugreen.teri.res.in/explore/air/major.htm


How can we say that SO 2 as an<br />

example is really an air <strong>pollution</strong><br />

after this definition?


1.3. Smog & Inversion<br />

London 1952<br />

Visibility was below:<br />

• 500 m for 114 h<br />

• 50 m for 48 h<br />

Herschbach 2007


1.3. Smog & Inversion<br />

London 1952<br />

Death<br />

SO 2<br />

Smoke<br />

Herschbach 2007


1.3. Smog & Inversion<br />

Development of Smog<br />

Hot air<br />

Boundary layer<br />

Cold air<br />

Sampling of smoke & emissions<br />

like under a bell<br />

Herschbach 2007


1.3. Smog & Inversion<br />

Herschbach 2007


1.3. Smog & Inversion<br />

1.3. Smog & Inversion (NH 4 ) 2 SO 4<br />

& organic<br />

compounds<br />

Herschbach 2007


1.3. Smog & Inversion<br />

NO<br />

NO 2<br />

PM10<br />

Herschbach 2007


1.4. Sources of mayor pollutants<br />

Herschbach 2007


1.4. Sources of mayor pollutants<br />

Herschbach 2007


Origin of CO emission<br />

U.S. Environmental Protection Agency<br />

Herschbach 2007<br />

http://www.epa.gov/air/urbanair/co/what1.html


History of Pb origin<br />

U.S. Environmental Protection Agency<br />

What is the reason for<br />

such a dramatically<br />

reduction?<br />

221000 tons<br />

3915 tons<br />

Herschbach 2007<br />

http://www.epa.gov/air/urbanair/lead/what.html


Origin of NOx emission<br />

Herschbach 2007


Origin of SO 2 emission<br />

!! Importance of<br />

population density<br />

Herschbach 2007


Particulate matter - PM Sizes<br />

PM varies widely in its<br />

physical and chemical<br />

composition<br />

• elemental carbon<br />

• heavy metals<br />

• organic carbon<br />

• sulphates<br />

• nitrates<br />

• soil particles<br />

• biological particles<br />

PM


Particulate matter - Origin<br />

• PM 2.5 - PM 10 :<br />

– road dust<br />

– pollen grains<br />

– spores, plant and insect parts<br />

– uncovered soil<br />

• PM 0.1 : condensation of low-vapour-pressure<br />

substances<br />

– gases are converted to small liquid drops – nuclei<br />

– including: elemental carbon, heavy metals, organic carbon,<br />

sulfates and nitrates<br />

– by coagulation and condensation nuclei can grow up to 1µm<br />

Herschbach 2007


1.5. History<br />

Acid rain was first reported in Manchester,<br />

England, which was an important city during<br />

the Industrial Revolution.<br />

In 1852, Robert Angus Smith found the<br />

relationship between acid rain and<br />

atmospheric <strong>pollution</strong>. The term "acid rain"<br />

was used by him in 1872. He observed that<br />

acid rain could lead to natural destruction.<br />

Though acid rain was discovered in 1852, it<br />

wasn't until the 1970s that scientists began<br />

observing acid rain.<br />

Herschbach 2007


1967 Svante Odén, a Swedish researcher<br />

documented acidification of rain. 14000 lakes were<br />

acidified, and fishes died and were no longer<br />

observed in the lakes.<br />

During the 1970s Sweden and Norway tried to stir up<br />

international attention to this problem.<br />

Herschbach 2007


Consequences of acid rain<br />

kills trees and forests<br />

Herschbach 2007<br />

Fichtelgebirge, Germany


Consequences of acid rain<br />

kills trees and forests<br />

Acid fog and dead spruce trees<br />

along the coast at West Quoddy<br />

Head.<br />

Herschbach 2007


1967 Svante Odén, a Swedish researcher<br />

documented acidification of rain. 14000 lakes were<br />

acidified, and fishes died and were no longer<br />

observed in the lakes.<br />

During the 1970s Sweden and Norway tried to stir up<br />

international attention to this problem.<br />

Only after pictures from dying trees coming around the<br />

world the problem of acid rain gets public.<br />

Herschbach 2007


History of air <strong>pollution</strong> emission –<br />

SO 2 as an example<br />

B. Lomborg described the emission of air <strong>pollution</strong> in<br />

a popular scientific manner.<br />

So what is really true?<br />

Critic comes to this graph<br />

in respect to several aspects<br />

Herschbach 2007


Critic to this picture<br />

Smoke and SO 2<br />

µg / m 3<br />

Wrong calculation<br />

http://www.lomborg-errors.dk<br />

P. Brimblecombe<br />

10-20 µg / m 3 C. 50 µg / m 3<br />

Herschbach 2007


Sulfur Dioxide in Great London, 1931-1985,<br />

1985,<br />

Duncan et al., 1987, Environmental Pollution 43, 103-114.<br />

114.<br />

Herschbach 2007


History of air <strong>pollution</strong> emission<br />

B. Lomborg described the emission of air <strong>pollution</strong> in<br />

a popular scientific manner.<br />

So what is really true?<br />

Duncan et al., 1987, Environmental Pollution 43, 103-114<br />

114<br />

30-40 µg/m 3<br />

Herschbach 2007


History of air <strong>pollution</strong> emission<br />

B. Lomborg described the emission of air <strong>pollution</strong> in<br />

a popular scientific manner.<br />

So what is really true?<br />

Peak values!!!<br />

Herschbach 2007<br />

Duncan et al., 1987, Environmental Pollution 43, 103-114<br />

114


The reality in United Kingdom<br />

but<br />

• How looks the reality in other countries<br />

and continents?<br />

• For an example China<br />

• Other countries please tell from your<br />

countries!!!<br />

Herschbach 2007


The important energy source in China<br />

Herschbach 2007


SO 2 emission in past and future<br />

Herschbach 2007<br />

http://pubs.acs.org/subscribe/journals/esthag/40/i02/html/011506feature_larssen.html


Acid rain in China<br />

Herschbach 2007<br />

http://pubs.acs.org/subscribe/journals/esthag/40/i02/html/011506feature_larssen.html


<strong>Air</strong> <strong>pollution</strong> in China<br />

S<br />

Hub: Hubbard Brook, U.S.,<br />

New Hampshire (1979-1983)<br />

Lys: Czech Republic (ca. 1980)<br />

Sud: Sudbury Ontario Canada (1970)<br />

Ca<br />

Herschbach 2007<br />

http://pubs.acs.org/subscribe/journals/esthag/40/i02/html/011506feature_larssen.html


1.6. Dry and wet deposition<br />

Herschbach 2007


1.6. Wet deposition – fog, rain & snow<br />

Herschbach 2007


Damage on buildings<br />

!!! Not mentioned<br />

by B. Lomborg<br />

today<br />

1880<br />

Cleopatra's Needle in New York<br />

Herschbach 2007


Damage on buildings<br />

1968<br />

!!! Not mentioned<br />

by B. Lomborg<br />

1908<br />

Herschbach 2007<br />

Sandstone figure over the portal of a castle in Westphalia, Germany


Acid rain - overview<br />

Formation<br />

Deposition<br />

Emission<br />

Sources<br />

Consequences<br />

Herschbach 2007


Consequences of acid rain on lakes<br />

Herschbach 2007


Rain composition today<br />

Natural rain composition<br />

Herschbach 2007


Consequences of acid rain on lakes<br />

Herschbach 2007


Ca/Al in the soil<br />

consequences of reduced SO 2 deposition<br />

Herschbach 2007<br />

This ratio is used as an indicator for potential long-term forest damage.


B. Lomborg says (<br />

says (page 172):<br />

• The regulation of SO 2 emission was<br />

primarily a consequence of the anxiety<br />

in the 1980s about acid rain and its<br />

effect on forests and lakes in exposed<br />

areas. Even thought it later proved that<br />

the effect on forests was extremely<br />

slight or even non-existent.<br />

Wrong !!<br />

Herschbach 2007


Acidic rain is still existing<br />

Lomborg stated (page 178):<br />

Today we know that acid rain<br />

was nothing like a problem it<br />

was made out to be in the<br />

1980s.<br />

myth and reality<br />

T h e E c o l o g i c a l C o u n c i l<br />

The Ecological Council (Det Økologiske Råd)<br />

is a Danish NGO founded in 1991. Our main<br />

objective is to promote sustainable patterns of<br />

development, where environmental concerns,<br />

social justice and human well-being are main<br />

focal points.<br />

Herschbach 2007


SO 2 emission in China<br />

Primary Chinese energy<br />

sources in 2003<br />

annual emission<br />

1991 16.22 million tons<br />

2000 20.98 million tons<br />

2010 27.67 million tons<br />

2020 31.78 million tons<br />

http://www.cestt.org.cn/English/projects/rains-asia/situation.htm<br />

Herschbach 2007


Acid rain<br />

<strong>Air</strong> Pollution in Cities of Different Size<br />

Herschbach 2007<br />

http://www.zhb.gov.cn/english/SOE/soechina2002/air.htm


Grading of Urban <strong>Air</strong> Quality in the Country<br />

Acid rain<br />

Percentage Population under Different <strong>Air</strong> Quality<br />

Herschbach 2007<br />

http://www.zhb.gov.cn/english/SOE/soechina2002/air.htm


Acid rain and SO 2 - China<br />

Herschbach 2007<br />

http://www.zhb.gov.cn/english/SOE/soechina2002/air.htm


What can we do??<br />

Desulphurization<br />

Herschbach 2007


Emission and deposition of air <strong>pollution</strong>s<br />

Long Range Transport<br />

flue gas<br />

stack<br />

Short Range Transport<br />

Lackes<br />

Natural forests<br />

Herschbach 2007


S-<br />

Deposition<br />

in Europe<br />

(1999)<br />

&<br />

grade of<br />

forest<br />

decline<br />

Herschbach 2007


An<br />

existing<br />

problem:<br />

Herschbach 2007


Acid rain risk in Europe<br />

!!! Important is<br />

the main wind<br />

direction<br />

Project:<br />

European Atlas of<br />

Environment and Health<br />

Date of creation: Jan 98<br />

Herschbach 2007<br />

http://www.grida.no/db/maps/prod/level3/id_1177.htm


Acid rain and SO 2 - China<br />

Main wind direction<br />

Herschbach 2007<br />

http://www.zhb.gov.cn/english/SOE/soechina2002/air.htm


The world<br />

Wind direction<br />

Herschbach 2007


What can we do??<br />

globalization<br />

Herschbach 2007


Experiments with acid rain:<br />

• How was the experiment<br />

performed?<br />

• Only acid water to the roots?<br />

• Precipitation by spraying the<br />

leaves?<br />

• Duration of the experiment?<br />

• Pre-deposition of the<br />

forest?<br />

• Nutrient status? deficient –<br />

sufficient – surplus?<br />

Herschbach 2007


Forest damage and growth<br />

• In the 80th forest died due to acid rain<br />

• Prognosis about forests was very bad<br />

• But, the widespread death did not<br />

occurred<br />

• Instead forest growth increased<br />

What's happed and what is going on?<br />

Herschbach 2007


<strong>Air</strong> Pollutions Elevated CO 2<br />

SO 2<br />

NH 3<br />

NO x<br />

Nutrient availability<br />

Ozone<br />

Herschbach 2007


Forest damage and growth<br />

• SO 2 could be a nutrient !!!<br />

• NO 2 could be a nutrient !!!!<br />

• CO 2 may improve growth !!!<br />

Sulfur deficiency in sugar beet<br />

Herschbach 2007


2. Uptake by plants via stomata<br />

Some basic knowledge on the<br />

uptake of air <strong>pollution</strong>s by plants<br />

Herschbach 2007


2. Uptake by plants via stomata<br />

Atmosphere<br />

Laminar boundary layer<br />

Apoplastic fluid<br />

Substomatal cavity<br />

Herschbach 2007


Which parameters are involved to<br />

take up air pollutants by stomata?<br />

Stomata<br />

Resistance<br />

-<br />

Stomata<br />

conductance<br />

open<br />

closed<br />

Herschbach 2007


Which parameters are involved to<br />

take up air pollutants by stomata?<br />

Atmosphere<br />

Mesophyll<br />

resistance<br />

Laminar boundary layer<br />

Apoplastic fluid<br />

Substomatal cavity<br />

Herschbach 2007


Which parameters are involved to<br />

take up air pollutants by stomata?<br />

Mesophyll<br />

resistance<br />

-<br />

Uptake into the<br />

cytosol by active<br />

and passive<br />

transport across<br />

the membrane<br />

Herschbach 2007


3. Examples of air pollutant<br />

1. Nitrogen oxides - NO & Ammoniac - NH X 3<br />

2. Ozone - O 3<br />

3. Carbon monoxide - CO<br />

4. Sulfur dioxide - SO 2 & Hydrogen sulfide<br />

- H 2 S<br />

5. Acid rain<br />

6. Particulate Matter<br />

7. Lead - Pb<br />

Herschbach 2007


3.1. Nitrogen oxides - NO x<br />

a. Appearance<br />

b. Seasonal and daily variation<br />

c. Reactions of NO 2 in the atmosphere<br />

d. Deposition & uptake by plants<br />

e. Consequences to plants<br />

Herschbach 2007


Appearance & diurnal rhythmic<br />

Herschbach 2007


Reactions of NO 2 in the<br />

atmosphere<br />

Lightning<br />

Burning<br />

Dry deposition<br />

Wet deposition<br />

Soil<br />

Herschbach 2007


First consequences to plants<br />

Uptake of<br />

NOx<br />

by leaves via<br />

the stomata<br />

Increased NO 3- contents in leaves<br />

OH - production, alkalinisation<br />

Increased nitrogen metabolism<br />

Increased growth<br />

Nutrient imbalance<br />

Herschbach 2007


Trees and nitrogen deposition<br />

Increased photosynthesis, enhanced stomata<br />

conductance, i.e. higher transpiration<br />

A higher sensitivity against drought<br />

Additional N<br />

must be<br />

assimilated,<br />

i.e. also detoxified<br />

Increased photosynthesis until autumn<br />

Reduced frost hardening<br />

Additional amino acids<br />

Higher attractiveness for pathogens<br />

Reduced assimilate availability to produce wood<br />

and protection tissues<br />

Herschbach 2007<br />

Reduced mechanical &<br />

diminished pathogen resistance


Forests and nitrogen deposition<br />

This Douglas-fir<br />

tree was cut when<br />

it was about 30<br />

years old. When it<br />

was 20 years old,<br />

the tree was<br />

fertilized with<br />

biosolids, resulting<br />

in the wider growth<br />

rings.<br />

Herschbach 2007<br />

http://dnr.metrokc.gov/wtd/biosolids/Forest.htm


Forests and nitrogen deposition<br />

NO<br />

Herschbach 2007


Pollutant or Nutrient ??


Forests and nitrogen deposition<br />

NO<br />

Herschbach 2007


3.2. Ozone - O 3<br />

a. Origin, appearance & formation<br />

b. Seasonal and daily variation<br />

c. Uptake by plants<br />

d. Consequences to plants<br />

Herschbach 2007


Appearance<br />

Herschbach 2007


Ozone in the<br />

atmosphere<br />

- History<br />

stratosphere<br />

troposphere<br />

Herschbach 2007


Seasonal variation<br />

Herschbach 2007<br />

troposphere


Daily variation<br />

Herschbach 2007


Formation of ozone<br />

Herschbach 2007


Ozone levels in United Kingdom<br />

But B. Lomborg states<br />

(page 173):<br />

‚In the 1997 UK ozone<br />

review it was concluded<br />

that there was clear<br />

evidence of a reduction in<br />

peak concentrations.’<br />

(see also B. Lomborg fig 93)<br />

Herschbach 2007


Ozone & Photochemical smog<br />

Chemical reactions in the atmosphere<br />

VOC<br />

Formation of aldehydes<br />

PAN = peroxy acetyl nitrate<br />

Herschbach 2007


Photochemical smog<br />

volatile organic compounds (VOC)<br />

Herschbach 2007<br />

Time of the day


Plant injury by ozone<br />

Ulmus<br />

Prunus serotina<br />

Fagus sylvatica<br />

Herschbach 2007


Ozone uptake by plants<br />

atmosphere<br />

laminar boundary layer<br />

Herschbach 2007


Ozone reactions<br />

Chemical<br />

reaction with<br />

amino acids<br />

Herschbach 2007


Ozone reactions<br />

Chemical reaction with<br />

lipids<br />

Herschbach 2007


Ozone reactions with cell components<br />

Membrane from animals<br />

Herschbach 2007


B. Lomborg says (page<br />

173)<br />

• Ozone is not believed to have any actual<br />

life-threatening effects<br />

Wrong !!<br />

Ozone is highly reactive!!!<br />

Herschbach 2007


Duration of ozone exposure<br />

Acute ozone exposure:<br />

Change in membrane permeability<br />

unregulated cell death<br />

Elicitor release increased<br />

programmed cell death<br />

cell repair mechanism<br />

cell protection mechanism<br />

Herschbach 2007


Ozone injury of poplar<br />

mature leaves<br />

(5 th and 7 th )<br />

young leaf (2 nd )<br />

Herschbach 2007


Duration of ozone exposure<br />

Acute ozone exposure:<br />

Change in membrane permeability<br />

unregulated cell death<br />

Elicitor release increased<br />

programmed cell death<br />

cell repair mechanism<br />

cell protection mechanism<br />

Low level-long term<br />

ozone exposure:<br />

Scavenge of AOS with antioxidants<br />

detoxification<br />

Elicitor release<br />

accelerated foliar<br />

senescence<br />

Herschbach 2007


• Ascorbate (Vitamin C)<br />

Antioxidant<br />

• Carotinoide<br />

• Xanthophyll<br />

e<br />

• Tocopherol (Vitamin E)<br />

Herschbach 2007


Secondary ozone effects<br />

at the example Betula pendula<br />

The cell:<br />

• Increase of repair and defence reaction - Respiration<br />

• Increased PEPC<br />

• Reduced photosynthesis, RUBISCO<br />

Leaf tissue:<br />

• Reduced leaf area<br />

• Reduced stomata conductance<br />

• Increased stomata density<br />

• Reduced transpiration<br />

• Reduced foliage area<br />

What happens with ecosystems?<br />

The whole forest?<br />

Agrosystems – Crop yield?<br />

Whole plant: • Reduced carbon allocation for growth<br />

• Reduced brunching<br />

• Reduced leaf turnover<br />

• Reduced transpiration<br />

Reduced biomass production<br />

Reduced fitness due to a changed pre-disposition<br />

Herschbach 2007<br />

Kolb & Matyssek 2001, Environm Polution


4. Limit values<br />

1. Definition of limits<br />

2. Limit values to protect ecosystems &<br />

WHO 1996 - <strong>Air</strong> Quality Guidelines for<br />

Europe<br />

3. AOT40<br />

Herschbach 2007


4.1. Definition of limits<br />

Critical level<br />

General term referring to the<br />

concentration limit beyond which a<br />

substance can cause dangerous<br />

effects to living organisms.<br />

Limit values<br />

The European Commission today<br />

adopted a proposal for a directive<br />

setting new ambient air quality for<br />

SO 2 , NO x , PM 10 and Pb.<br />

Herschbach 2007


4.2. WHO 1996 –<br />

<strong>Air</strong> Quality Guidelines for Europe<br />

Herschbach 2007


AOT40 – How can we understand<br />

Accumulation over one day<br />

Ozone concentration (ppb)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

!!! Sum !!!<br />

208 ppb h<br />

accumulated<br />

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21<br />

Time of the day (daylight hours)<br />

Herschbach 2007


4.4. AOT40<br />

Accumulated<br />

dose Over<br />

a Threshold<br />

of 40 ppb<br />

Parameter used to represent the accumulated dose :<br />

AOT40 is the sum of the differences between the hourly mean<br />

ozone concentration (in ppb) and 40 ppb for each hour when the<br />

concentration exceeds 40 ppb, accumulated during daylight hours.<br />

40 ppb Ozone as background<br />

Herschbach 2007


AOT40 - Accumulated<br />

ccumulated dose Over<br />

a Threshold<br />

of 40 ppb<br />

The long-term critical level of ozone for crops:<br />

An AOT40 of 3000 ppb.h accumulated over 3 months.<br />

This critical level was derived experimentally using open-top<br />

chambers to expose field-grown wheat to ozone.<br />

The data from spring wheat experiments in 6 countries, 10 seasons<br />

and with 10 cultivars were used to derive an exposure response<br />

relationship with an r 2 of 0.88.<br />

The AOT40 associated with a 5% reduction in yield, 3000 ppb.h, was<br />

accepted as the critical level of ozone for yield reduction in crops.<br />

Herschbach 2007


AOT40 - Accumulated<br />

ccumulated dose Over<br />

a Threshold<br />

of 40 ppb<br />

The long-term critical level of ozone for beech:<br />

An AOT40 of 10000 ppb.h accumulated over a 6 month growing season and<br />

calculated daylight hours only between April and September.<br />

The critical threshold of 10 ppm.h:<br />

relates to an estimated 10% reduction in growth of young beech trees<br />

exposed to O 3 for 1 and 3 seasons<br />

based on 5 studies of above-ground growth and<br />

based on 3 studies of above ground biomass increment (Fuhrer et al.<br />

1997).<br />

Herschbach 2007


Critic on AOT40 definition<br />

• The value was achieved from few studies with<br />

young beech under controlled conditions<br />

• Beech have been used as an example for all<br />

forest tree species<br />

• AOT40 does not consider tree species,<br />

genotypes, site conditions, and tree age<br />

• A link between the occurrence of O 3 and<br />

forest damage is not unequivocally<br />

established in Europe<br />

Herschbach 2007


What says B. Lomborg about that?<br />

nothing<br />

What says B. Lomborg about<br />

combinatory effects by multiple air<br />

<strong>pollution</strong>s?<br />

nothing<br />

Herschbach 2007


What says B. Lomborg about long<br />

term effects on earth forests?<br />

nothing<br />

What says B. Lomborg about our<br />

biodiversity?<br />

nothing<br />

Herschbach 2007


Herschbach 2007


Herschbach 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!