30.07.2014 Views

Recent Advances in DNA Biosensor - International Frequency ...

Recent Advances in DNA Biosensor - International Frequency ...

Recent Advances in DNA Biosensor - International Frequency ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sensors & Transducers<br />

Volume 92<br />

Issue 5<br />

May 2008<br />

www.sensorsportal.com ISSN 1726-5479<br />

Editor-<strong>in</strong>-Chief: professor Sergey Y. Yurish, phone: +34 696067716, fax: +34 93 4011989,<br />

e-mail: editor@sensorsportal.com<br />

Editors for Western Europe<br />

Meijer, Gerard C.M., Delft University of Technology, The Netherlands<br />

Ferrari, Vittorio, Universitá di Brescia, Italy<br />

Editors for North America<br />

Datskos, Panos G., Oak Ridge National Laboratory, USA<br />

Fabien, J. Josse, Marquette University, USA<br />

Katz, Evgeny, Clarkson University, USA<br />

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia<br />

Ahmad, Mohd Noor, Nothern University of Eng<strong>in</strong>eer<strong>in</strong>g, Malaysia<br />

Annamalai, Karthigeyan, National Institute of Advanced Industrial<br />

Science and Technology, Japan<br />

Arcega, Francisco, University of Zaragoza, Spa<strong>in</strong><br />

Arguel, Philippe, CNRS, France<br />

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea<br />

Arndt, Michael, Robert Bosch GmbH, Germany<br />

Ascoli, Giorgio, George Mason University, USA<br />

Atalay, Selcuk, Inonu University, Turkey<br />

Atghiaee, Ahmad, University of Tehran, Iran<br />

Augutis, Vygantas, Kaunas University of Technology, Lithuania<br />

Avachit, Patil Lalchand, North Maharashtra University, India<br />

Ayesh, Aladd<strong>in</strong>, De Montfort University, UK<br />

Bahreyni, Behraad, University of Manitoba, Canada<br />

Baoxian, Ye, Zhengzhou University, Ch<strong>in</strong>a<br />

Barford, Lee, Agilent Laboratories, USA<br />

Barl<strong>in</strong>gay, Rav<strong>in</strong>dra, RF Arrays Systems, India<br />

Basu, Sukumar, Jadavpur University, India<br />

Beck, Stephen, University of Sheffield, UK<br />

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia<br />

B<strong>in</strong>nie, T. David, Napier University, UK<br />

Bischoff, Gerl<strong>in</strong>de, Inst. Analytical Chemistry, Germany<br />

Bodas, Dhananjay, IMTEK, Germany<br />

Borges Carval, Nuno, Universidade de Aveiro, Portugal<br />

Bousbia-Salah, Mounir, University of Annaba, Algeria<br />

Bouvet, Marcel, CNRS – UPMC, France<br />

Brudzewski, Kazimierz, Warsaw University of Technology, Poland<br />

Cai, Chenx<strong>in</strong>, Nanj<strong>in</strong>g Normal University, Ch<strong>in</strong>a<br />

Cai, Q<strong>in</strong>gyun, Hunan University, Ch<strong>in</strong>a<br />

Campanella, Luigi, University La Sapienza, Italy<br />

Carvalho, Vitor, M<strong>in</strong>ho University, Portugal<br />

Cecelja, Franjo, Brunel University, London, UK<br />

Cerda Belmonte, Judith, Imperial College London, UK<br />

Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia<br />

Chakravorty, Dipankar, Association for the Cultivation of Science, India<br />

Changhai, Ru, Harb<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g University, Ch<strong>in</strong>a<br />

Chaudhari, Gajanan, Shri Shivaji Science College, India<br />

Chen, Jim<strong>in</strong>g, Zhejiang University, Ch<strong>in</strong>a<br />

Chen, Rongshun, National Ts<strong>in</strong>g Hua University, Taiwan<br />

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan<br />

Chiriac, Horia, National Institute of Research and Development, Romania<br />

Chowdhuri, Arijit, University of Delhi, India<br />

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan<br />

Corres, Jesus, Universidad Publica de Navarra, Spa<strong>in</strong><br />

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia<br />

Courtois, Christian, Universite de Valenciennes, France<br />

Cusano, Andrea, University of Sannio, Italy<br />

D'Amico, Arnaldo, Università di Tor Vergata, Italy<br />

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy<br />

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India<br />

Dickert, Franz L., Vienna University, Austria<br />

Dieguez, Angel, University of Barcelona, Spa<strong>in</strong><br />

Dimitropoulos, Panos, University of Thessaly, Greece<br />

D<strong>in</strong>g Jian, N<strong>in</strong>g, Jiangsu University, Ch<strong>in</strong>a<br />

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong<br />

Editorial Advisory Board<br />

Editor South America<br />

Costa-Felix, Rodrigo, Inmetro, Brazil<br />

Editor for Eastern Europe<br />

Sachenko, Anatoly, Ternopil State Economic University, Ukra<strong>in</strong>e<br />

Editor for Asia<br />

Ohyama, Sh<strong>in</strong>ji, Tokyo Institute of Technology, Japan<br />

Donato, Nicola, University of Mess<strong>in</strong>a, Italy<br />

Donato, Patricio, Universidad de Mar del Plata, Argent<strong>in</strong>a<br />

Dong, Feng, Tianj<strong>in</strong> University, Ch<strong>in</strong>a<br />

Drljaca, Predrag, Instersema Sensoric SA, Switzerland<br />

Dubey, Venketesh, Bournemouth University, UK<br />

Enderle, Stefan, University of Ulm and KTB Mechatronics GmbH,<br />

Germany<br />

Erdem, Gursan K. Arzum, Ege University, Turkey<br />

Erkmen, Aydan M., Middle East Technical University, Turkey<br />

Estelle, Patrice, Insa Rennes, France<br />

Estrada, Horacio, University of North Carol<strong>in</strong>a, USA<br />

Faiz, Adil, INSA Lyon, France<br />

Fericean, Sor<strong>in</strong>, Balluff GmbH, Germany<br />

Fernandes, Joana M., University of Porto, Portugal<br />

Francioso, Luca, CNR-IMM Institute for Microelectronics and<br />

Microsystems, Italy<br />

Francis, Laurent, University Catholique de Louva<strong>in</strong>, Belgium<br />

Fu, Weil<strong>in</strong>g, South-Western Hospital, Chongq<strong>in</strong>g, Ch<strong>in</strong>a<br />

Gaura, Elena, Coventry University, UK<br />

Geng, Yanfeng, Ch<strong>in</strong>a University of Petroleum, Ch<strong>in</strong>a<br />

Gole, James, Georgia Institute of Technology, USA<br />

Gong, Hao, National University of S<strong>in</strong>gapore, S<strong>in</strong>gapore<br />

Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spa<strong>in</strong><br />

Granel, Annette, Goteborg University, Sweden<br />

Graff, Mason, The University of Texas at Arl<strong>in</strong>gton, USA<br />

Guan, Shan, Eastman Kodak, USA<br />

Guillet, Bruno, University of Caen, France<br />

Guo, Zhen, New Jersey Institute of Technology, USA<br />

Gupta, Narendra Kumar, Napier University, UK<br />

Hadjiloucas, Sillas, The University of Read<strong>in</strong>g, UK<br />

Hashsham, Syed, Michigan State University, USA<br />

Hernandez, Alvaro, University of Alcala, Spa<strong>in</strong><br />

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spa<strong>in</strong><br />

Homentcovschi, Dorel, SUNY B<strong>in</strong>ghamton, USA<br />

Horstman, Tom, U.S. Automation Group, LLC, USA<br />

Hsiai, Tzung (John), University of Southern California, USA<br />

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan<br />

Huang, Star, National Ts<strong>in</strong>g Hua University, Taiwan<br />

Huang, Wei, PSG Design Center, USA<br />

Hui, David, University of New Orleans, USA<br />

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France<br />

Jaime Calvo-Galleg, Jaime, Universidad de Salamanca, Spa<strong>in</strong><br />

James, Daniel, Griffith University, Australia<br />

Jant<strong>in</strong>g, Jakob, DELTA Danish Electronics, Denmark<br />

Jiang, Liudi, University of Southampton, UK<br />

Jiao, Zheng, Shanghai University, Ch<strong>in</strong>a<br />

John, Joachim, IMEC, Belgium<br />

Kalach, Andrew, Voronezh Institute of M<strong>in</strong>istry of Interior, Russia<br />

Kang, Moonho, Sunmoon University, Korea South<br />

Kaniusas, Eugenijus, Vienna University of Technology, Austria<br />

Katake, Anup, Texas A&M University, USA<br />

Kausel, Wilfried, University of Music, Vienna, Austria<br />

Kavasoglu, Nese, Mugla University, Turkey<br />

Ke, Cathy, Tyndall National Institute, Ireland<br />

Khan, Asif, Aligarh Muslim University, Aligarh, India<br />

Kim, M<strong>in</strong> Young, Koh Young Technology, Inc., Korea South


Ko, Sang Choon, Electronics and Telecommunications Research Institute,<br />

Korea South<br />

Kockar, Hakan, Balikesir University, Turkey<br />

Kotulska, Malgorzata, Wroclaw University of Technology, Poland<br />

Kratz, Henrik, Uppsala University, Sweden<br />

Kumar, Arun, University of South Florida, USA<br />

Kumar, Subodh, National Physical Laboratory, India<br />

Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan<br />

Lacnjevac, Caslav, University of Belgrade, Serbia<br />

Lay-Ekuakille, Aime, University of Lecce, Italy<br />

Lee, Jang Myung, Pusan National University, Korea South<br />

Lee, Jun Su, Amkor Technology, Inc. South Korea<br />

Lei, Hua, National Starch and Chemical Company, USA<br />

Li, Genxi, Nanj<strong>in</strong>g University, Ch<strong>in</strong>a<br />

Li, Hui, Shanghai Jiaotong University, Ch<strong>in</strong>a<br />

Li, Xian-Fang, Central South University, Ch<strong>in</strong>a<br />

Liang, Yuanchang, University of Wash<strong>in</strong>gton, USA<br />

Liawruangrath, Saisunee, Chiang Mai University, Thailand<br />

Liew, Kim Meow, City University of Hong Kong, Hong Kong<br />

L<strong>in</strong>, Hermann, National Kaohsiung University, Taiwan<br />

L<strong>in</strong>, Paul, Cleveland State University, USA<br />

L<strong>in</strong>derholm, Pontus, EPFL - Microsystems Laboratory, Switzerland<br />

Liu, Aihua, University of Oklahoma, USA<br />

Liu Changgeng, Louisiana State University, USA<br />

Liu, Cheng-Hsien, National Ts<strong>in</strong>g Hua University, Taiwan<br />

Liu, Songq<strong>in</strong>, Southeast University, Ch<strong>in</strong>a<br />

Lodeiro, Carlos, Universidade NOVA de Lisboa, Portugal<br />

Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spa<strong>in</strong><br />

Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland<br />

Ma, Zhanfang, Northeast Normal University, Ch<strong>in</strong>a<br />

Majstorovic, Vidosav, University of Belgrade, Serbia<br />

Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados,<br />

Mexico<br />

Matay, Ladislav, Slovak Academy of Sciences, Slovakia<br />

Mathur, Prafull, National Physical Laboratory, India<br />

Maurya, D.K., Institute of Materials Research and Eng<strong>in</strong>eer<strong>in</strong>g, S<strong>in</strong>gapore<br />

Mekid, Samir, University of Manchester, UK<br />

Melnyk, Ivan, Photon Control Inc., Canada<br />

Mendes, Paulo, University of M<strong>in</strong>ho, Portugal<br />

Mennell, Julie, Northumbria University, UK<br />

Mi, B<strong>in</strong>, Boston Scientific Corporation, USA<br />

M<strong>in</strong>as, Graca, University of M<strong>in</strong>ho, Portugal<br />

Moghavvemi, Mahmoud, University of Malaya, Malaysia<br />

Mohammadi, Mohammad-Reza, University of Cambridge, UK<br />

Mol<strong>in</strong>a Flores, Esteban, Benemérita Universidad Autónoma de Puebla,<br />

Mexico<br />

Moradi, Majid, University of Kerman, Iran<br />

Morello, Rosario, DIMET, University "Mediterranea" of Reggio Calabria,<br />

Italy<br />

Mounir, Ben Ali, University of Sousse, Tunisia<br />

Mukhopadhyay, Subhas, Massey University, New Zealand<br />

Neelamegam, Periasamy, Sastra Deemed University, India<br />

Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria<br />

Oberhammer, Joachim, Royal Institute of Technology, Sweden<br />

Ould Lahouc<strong>in</strong>, University of Guelma, Algeria<br />

Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India<br />

Pan, Jisheng, Institute of Materials Research & Eng<strong>in</strong>eer<strong>in</strong>g, S<strong>in</strong>gapore<br />

Park, Joon-Shik, Korea Electronics Technology Institute, Korea South<br />

Penza, Michele, ENEA C.R., Italy<br />

Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal<br />

Petsev, Dimiter, University of New Mexico, USA<br />

Pogacnik, Lea, University of Ljubljana, Slovenia<br />

Post, Michael, National Research Council, Canada<br />

Prance, Robert, University of Sussex, UK<br />

Prasad, Ambika, Gulbarga University, India<br />

Prateepasen, Asa, K<strong>in</strong>gmoungut's University of Technology, Thailand<br />

Pull<strong>in</strong>i, Daniele, Centro Ricerche FIAT, Italy<br />

Pumera, Mart<strong>in</strong>, National Institute for Materials Science, Japan<br />

Radhakrishnan, S. National Chemical Laboratory, Pune, India<br />

Rajanna, K., Indian Institute of Science, India<br />

Ramadan, Qasem, Institute of Microelectronics, S<strong>in</strong>gapore<br />

Rao, Basuthkar, Tata Inst. of Fundamental Research, India<br />

Raoof, Kosai, Joseph Fourier University of Grenoble, France<br />

Reig, Candid, University of Valencia, Spa<strong>in</strong><br />

Restivo, Maria Teresa, University of Porto, Portugal<br />

Robert, Michel, University Henri Po<strong>in</strong>care, France<br />

Rezazadeh, Ghader, Urmia University, Iran<br />

Royo, Santiago, Universitat Politecnica de Catalunya, Spa<strong>in</strong><br />

Rodriguez, Angel, Universidad Politecnica de Cataluna, Spa<strong>in</strong><br />

Rothberg, Steve, Loughborough University, UK<br />

Sadana, Ajit, University of Mississippi, USA<br />

Sadeghian Marnani, Hamed, TU Delft, The Netherlands<br />

Sandacci, Serghei, Sensor Technology Ltd., UK<br />

Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia<br />

Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India<br />

Schneider, John K., Ultra-Scan Corporation, USA<br />

Seif, Selemani, Alabama A & M University, USA<br />

Seifter, Achim, Los Alamos National Laboratory, USA<br />

Sengupta, Deepak, Advance Bio-Photonics, India<br />

Shearwood, Christopher, Nanyang Technological University, S<strong>in</strong>gapore<br />

Sh<strong>in</strong>, Kyuho, Samsung Advanced Institute of Technology, Korea<br />

Shmaliy, Yuriy, Kharkiv National University of Radio Electronics,<br />

Ukra<strong>in</strong>e<br />

Silva Girao, Pedro, Technical University of Lisbon, Portugal<br />

S<strong>in</strong>gh, V. R., National Physical Laboratory, India<br />

Slomovitz, Daniel, UTE, Uruguay<br />

Smith, Mart<strong>in</strong>, Open University, UK<br />

Soleymanpour, Ahmad, Damghan Basic Science University, Iran<br />

Somani, Prakash R., Centre for Materials for Electronics Technol., India<br />

Sr<strong>in</strong>ivas, Talabattula, Indian Institute of Science, Bangalore, India<br />

Srivastava, Arv<strong>in</strong>d K., Northwestern University, USA<br />

Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa<br />

Sumriddetchka, Sarun, National Electronics and Computer Technology<br />

Center, Thailand<br />

Sun, Chengliang, Polytechnic University, Hong-Kong<br />

Sun, Dongm<strong>in</strong>g, Jil<strong>in</strong> University, Ch<strong>in</strong>a<br />

Sun, Junhua, Beij<strong>in</strong>g University of Aeronautics and Astronautics, Ch<strong>in</strong>a<br />

Sun, Zhiqiang, Central South University, Ch<strong>in</strong>a<br />

Suri, C. Raman, Institute of Microbial Technology, India<br />

Sysoev, Victor, Saratov State Technical University, Russia<br />

Szewczyk, Roman, Industrial Research Institute for Automation and<br />

Measurement, Poland<br />

Tan, Ooi Kiang, Nanyang Technological University, S<strong>in</strong>gapore,<br />

Tang, Dianp<strong>in</strong>g, Southwest University, Ch<strong>in</strong>a<br />

Tang, Jaw-Luen, National Chung Cheng University, Taiwan<br />

Teker, Kasif, Frostburg State University, USA<br />

Thumbavanam Pad, Kartik, Carnegie Mellon University, USA<br />

Tian, Gui Yun, University of Newcastle, UK<br />

Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece<br />

Tsigara, Anna, National Hellenic Research Foundation, Greece<br />

Twomey, Karen, University College Cork, Ireland<br />

Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal<br />

Vaseashta, Ashok, Marshall University, USA<br />

Vazques, Carmen, Carlos III University <strong>in</strong> Madrid, Spa<strong>in</strong><br />

Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal<br />

Vigna, Benedetto, STMicroelectronics, Italy<br />

Vrba, Radimir, Brno University of Technology, Czech Republic<br />

Wandelt, Barbara, Technical University of Lodz, Poland<br />

Wang, Jiangp<strong>in</strong>g, Xi'an Shiyou University, Ch<strong>in</strong>a<br />

Wang, Kedong, Beihang University, Ch<strong>in</strong>a<br />

Wang, Liang, Advanced Micro Devices, USA<br />

Wang, Mi, University of Leeds, UK<br />

Wang, Sh<strong>in</strong>n-Fwu, Ch<strong>in</strong>g Yun University, Taiwan<br />

Wang, Wei-Chih, University of Wash<strong>in</strong>gton, USA<br />

Wang, Wensheng, University of Pennsylvania, USA<br />

Watson, Steven, Center for NanoSpace Technologies Inc., USA<br />

Weip<strong>in</strong>g, Yan, Dalian University of Technology, Ch<strong>in</strong>a<br />

Wells, Stephen, Southern Company Services, USA<br />

Wolkenberg, Andrzej, Institute of Electron Technology, Poland<br />

Woods, R. Clive, Louisiana State University, USA<br />

Wu, DerHo, National P<strong>in</strong>gtung University of Science and Technology,<br />

Taiwan<br />

Wu, Zhaoyang, Hunan University, Ch<strong>in</strong>a<br />

Xiu Tao, Ge, Chuzhou University, Ch<strong>in</strong>a<br />

Xu, Lisheng, The Ch<strong>in</strong>ese University of Hong Kong, Hong Kong<br />

Xu, Tao, University of California, Irv<strong>in</strong>e, USA<br />

Yang, Dongfang, National Research Council, Canada<br />

Yang, Wuqiang, The University of Manchester, UK<br />

Ymeti, Aurel, University of Twente, Netherland<br />

Yong Zhao, Northeastern University, Ch<strong>in</strong>a<br />

Yu, Haihu, Wuhan University of Technology, Ch<strong>in</strong>a<br />

Yufera Garcia, Alberto, Seville University, Spa<strong>in</strong><br />

Zagnoni, Michele, University of Southampton, UK<br />

Zeni, Luigi, Second University of Naples, Italy<br />

Zhong, Haoxiang, Henan Normal University, Ch<strong>in</strong>a<br />

Zhang, M<strong>in</strong>glong, Shanghai University, Ch<strong>in</strong>a<br />

Zhang, Q<strong>in</strong>tao, University of California at Berkeley, USA<br />

Zhang, Weip<strong>in</strong>g, Shanghai Jiao Tong University, Ch<strong>in</strong>a<br />

Zhang, Wenm<strong>in</strong>g, Shanghai Jiao Tong University, Ch<strong>in</strong>a<br />

Zhou, Zhi-Gang, Ts<strong>in</strong>ghua University, Ch<strong>in</strong>a<br />

Zorzano, Luis, Universidad de La Rioja, Spa<strong>in</strong><br />

Zourob, Mohammed, University of Cambridge, UK<br />

Sensors & Transducers Journal (ISSN 1726-5479) is a peer review <strong>in</strong>ternational journal published monthly onl<strong>in</strong>e by <strong>International</strong> <strong>Frequency</strong> Sensor Association (IFSA).<br />

Available <strong>in</strong> electronic and CD-ROM. Copyright © 2007 by <strong>International</strong> <strong>Frequency</strong> Sensor Association. All rights reserved.


Sensors & Transducers Journal<br />

Contents<br />

Volume 92<br />

Issue 5<br />

May 2008<br />

www.sensorsportal.com ISSN 1726-5479<br />

Research Articles<br />

A S<strong>in</strong>gle Rod Multi-Modality Multi-Interface Level Sensor Us<strong>in</strong>g an AC Current Source<br />

Abdulgader Hwili and Wuqiang Yang………………………………………………………………………. 1<br />

A Modified Design of an Electronic Float Transducer for Measurement of Liquid Level<br />

S. C. Bera, N. Mandal and R. Sarkar ................................................................................................. 10<br />

Small-angle Sensor Based on the SPR Technology and Heterodyne Interferomery<br />

Sh<strong>in</strong>n-Fwu Wang, M<strong>in</strong>g-Hung Chiu, Lih-Horng Shyu, Rong-Seng Chang......................................... 16<br />

Study of Room Temperature H 2 S Gas Sens<strong>in</strong>g behavior of CuO-modified BSST Thick Film<br />

Resistors<br />

H. M. Baviskar, V. V. Deo, D. R. Patil, L. A. Patil ............................................................................... 24<br />

Influence of Quartz Fillers <strong>in</strong> Dielectric Composites on Electrostrictive Sensors<br />

B. Shivamurthy, Tapas Kr. Basak, M. S. Prabhuswamy, Siddaramaiah, Himanshu Tripathi,<br />

S. S. Deopa ........................................................................................................................................ 32<br />

Optical Fiber Humidity Sensor Based on Ag Nanoparticles Dispersed <strong>in</strong> Leaf Extract of<br />

Alstonia Scholaris<br />

Anu Vijayan, Madhavi V. Fuke, Prajakta Kanitkar, R. N. Karekar, R. C. Aiyer .................................. 43<br />

Gas Sens<strong>in</strong>g of Fluor<strong>in</strong>e Doped T<strong>in</strong> Oxide Th<strong>in</strong> Films Prepared by Spray Pyrolysis<br />

A. A. Yadav, E. U. Masumdar, A. V. Moholkar, K. Y. Rajpure, C. H. Bhosale................................... 55<br />

Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for<br />

Nd: YAG Laser and Detector for Chopped He-Ne Laser<br />

S. Satapathy, Puja Soni, P. K. Gupta, V. K. Dubey and K. B. R. Varma ........................................... 61<br />

Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sens<strong>in</strong>g Properties<br />

Shishk<strong>in</strong> N. Y., Cherkasov V. A., Komarov A. A., Bashkirov L. A., Bardi U., Gunko Y. K.,<br />

Taratyn Y. A........................................................................................................................................ 69<br />

A Cadmium Ion-selective Membrane Electrode Based on Strong Acidic Organic-Inorganic<br />

Composite Cation-Exchanger: Polyanil<strong>in</strong>e Ce(IV) Molybdate<br />

Syed Ashfaq Nabi, Zafar Alam and Inamudd<strong>in</strong> .................................................................................. 87<br />

Synthesis of Antimony Doped T<strong>in</strong> Oxide and its Use as Electrical Humidity Sensor<br />

B. C. Yadav, Preeti Sharma, Amit. K. Srivastava and A. K. Yadav.................................................... 99<br />

Onl<strong>in</strong>e Corrosion and Force Monitor<strong>in</strong>g for Inner Conta<strong>in</strong>ment Concrete Structures<br />

K. Kumar, C. S. Unnikrishnan Nair, H. T. Jegadish, S. Muralidharan, A. K. Parande,<br />

M. S. Karthikeyan and N. Palaniswamy ............................................................................................. 108<br />

<strong>Recent</strong> <strong>Advances</strong> <strong>in</strong> <strong>DNA</strong> <strong>Biosensor</strong><br />

Suman and Ashok Kumar................................................................................................................... 122


Magnetoelastic <strong>Biosensor</strong> Design: an Experimental Study of Sensor Response and<br />

Performance<br />

Rajesh Guntupalli, Ramji S. Lakshmanan, Jiehui Wan, Z-Y. Cheng, Vitaly J. Vodyanoy,<br />

Bryan A. Ch<strong>in</strong> ..................................................................................................................................... 134<br />

Active Bio-Sensor System, Compatible with Arm Muscle Movement or Bl<strong>in</strong>k<strong>in</strong>g Signals <strong>in</strong><br />

BCI Application<br />

Saeid Mehrkanoon, Mahmoud Moghavvemi...................................................................................... 144<br />

Authors are encouraged to submit article <strong>in</strong> MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com<br />

Please visit journal’s webpage with preparation <strong>in</strong>structions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm<br />

<strong>International</strong> <strong>Frequency</strong> Sensor Association (IFSA).


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

Sensors & Transducers<br />

ISSN 1726-5479<br />

© 2008 by IFSA<br />

http://www.sensorsportal.com<br />

<strong>Recent</strong> <strong>Advances</strong> <strong>in</strong> <strong>DNA</strong> <strong>Biosensor</strong><br />

Suman and * Ashok Kumar<br />

Department of Material and Devices, Institute of Advance Research and Studies, Amity University,<br />

Noida, India, 201303<br />

* Institute of Genomics and Integrative Biology,<br />

Mall Road, Delhi, India, 110007<br />

Tel: +91 11 27666156,<br />

E-mail: ashokigib@rediffmail.com<br />

Received: 21 March 2008 /Accepted: 20 May 2008 /Published: 26 May 2008<br />

Abstract: <strong>DNA</strong> based biosensors have recently ga<strong>in</strong>ed much importance for detection of target genes<br />

responsible for diseases, <strong>in</strong> food <strong>in</strong>dustry, environment and <strong>in</strong> agriculture. This article describes<br />

different types of <strong>DNA</strong> based biosensors, their advantages and basic pr<strong>in</strong>ciple of operat<strong>in</strong>g system. The<br />

<strong>DNA</strong> biosensors provide fast, simple, economical, sensitive and selective detection of target genes by<br />

hybridization with specific probe. Various new strategies for <strong>DNA</strong> based biosensors have described<br />

along with recent trends and challenges <strong>in</strong> development of technology. Electrochemical biosensor has<br />

more advantages due to electrochemical behaviour of the labels towards the hybridization reaction on<br />

electrode surface or <strong>in</strong> solution <strong>in</strong> the presence of redox <strong>in</strong>dicators. PCR free <strong>DNA</strong> biochip is emerg<strong>in</strong>g<br />

new tools <strong>in</strong> the field of diagnosis. Copyright © 2008 IFSA.<br />

Keywords: <strong>DNA</strong> biosensors, Optical, Electrochemical, Piezoelectric, Biochip<br />

1. Introduction<br />

<strong>Biosensor</strong>s have become very popular from last 20 years. New research and developments <strong>in</strong> the field<br />

of biosensor play important roles <strong>in</strong> daily life. In recent years, biosensors have been <strong>in</strong>creas<strong>in</strong>gly used<br />

for cont<strong>in</strong>uous monitor<strong>in</strong>g of biological and synthetic processes used <strong>in</strong> <strong>in</strong>dustrial and cl<strong>in</strong>ical<br />

chemistry. <strong>Biosensor</strong> is becom<strong>in</strong>g popular <strong>in</strong> the field of food analysis [1], bioterrorism [2-3],<br />

environmental [2-4] and <strong>in</strong> the area of human health monitor<strong>in</strong>g and diagnostics [5-7]. There is vast<br />

exponential potential of biosensors. Presently, most fasc<strong>in</strong>at<strong>in</strong>g and prospective sensors are<br />

122


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

immunosensors [8-9] based on aff<strong>in</strong>ity reactions between antibody and antigen and <strong>DNA</strong> sensors [10-<br />

16] based hybridization of complementary ss<strong>DNA</strong> oligonucleotides.<br />

In general, biosensor is small device employ<strong>in</strong>g biological recognition properties for a selective<br />

bioanalysis. Such devices rely on the <strong>in</strong>timate coupl<strong>in</strong>g of a biological recognition element with a<br />

physical transducer to convert the biological signals <strong>in</strong>to an electrical signal or other signals,<br />

proportional to the concentration of analytes [17]. <strong>Biosensor</strong>s elim<strong>in</strong>ate the need of the sample<br />

preparation and hence offer great promise for several on-site analytical applications of rapid and lowcost<br />

measurements.<br />

A basic biosensor assembly <strong>in</strong>cludes a receptor, transducer and processor. The sens<strong>in</strong>g elements may<br />

be whole cells, antibodies, enzymes or nucleic acids form<strong>in</strong>g a recognition layer that is <strong>in</strong>tegrated with<br />

transducer via immobilization by adsorption, cross-l<strong>in</strong>k<strong>in</strong>g or covalent b<strong>in</strong>d<strong>in</strong>g. The transducers are<br />

based upon the parameters of measurement. It may be amperometric (current measurement at constant<br />

potential) [18], potentiometric (potential measurement at constant current) [19], piezoelectric<br />

(measurement of changes <strong>in</strong> mass) [20], thermal (measurement of changes <strong>in</strong> temperature) [21] or<br />

optical (detect changes <strong>in</strong> transmission of light) [22]. The usual analytical techniques require a number<br />

of steps, much labor, time and expensive <strong>in</strong>struments whereas biosensors are quick, simple,<br />

economical and may be used <strong>in</strong> small hospitals and laboratories of remote areas where sophisticated<br />

<strong>in</strong>strument facilities are not available.<br />

2. <strong>DNA</strong> <strong>Biosensor</strong><br />

The detection of specific <strong>DNA</strong> sequence is of significance <strong>in</strong> many areas <strong>in</strong>clud<strong>in</strong>g cl<strong>in</strong>ical,<br />

environmental and food analysis [7, 23, 24]. The analysis of gene sequences and the study of gene<br />

polymorphisms play a fundamental role <strong>in</strong> rapid detection of genetic mutations, offer<strong>in</strong>g the possibility<br />

of perform<strong>in</strong>g reliable diagnosis even before any symptoms of a disease appear. In environmental and<br />

food areas the detection of specific <strong>DNA</strong> sequences can be used for the detection of genetically<br />

modified organism (GMO) or pathogenic bacteria.<br />

<strong>DNA</strong> biosensors and gene chips are of major <strong>in</strong>terest due to their tremendous promise for obta<strong>in</strong><strong>in</strong>g<br />

sequence-specific <strong>in</strong>formation <strong>in</strong> a faster, simpler and cheaper manner compared to the traditional<br />

hybridization [25, 26].<strong>Recent</strong> advances <strong>in</strong> develop<strong>in</strong>g such devices opens a new opportunities for <strong>DNA</strong><br />

diagnostics. <strong>DNA</strong> biosensors, based on nucleic acid recognition processes, are rapidly be<strong>in</strong>g developed<br />

towards the assay of rapid, simple and economical test<strong>in</strong>g of genetic and <strong>in</strong>fectious diseases. Unlike<br />

enzyme or antibodies, nucleic acid recognition layers can be readily synthesized and regenerated for<br />

multiple use. <strong>DNA</strong> sensors can be made by immobiliz<strong>in</strong>g s<strong>in</strong>gle stranded (ss) <strong>DNA</strong> probes on different<br />

electrodes us<strong>in</strong>g electroactive <strong>in</strong>dicators to measure the hybridization between <strong>DNA</strong> probes and their<br />

complementary <strong>DNA</strong> strands [27-29].<br />

The current method for the identification of specific <strong>DNA</strong> sequence <strong>in</strong> biological samples are based on<br />

isolation of double stranded (ds) genomic <strong>DNA</strong> and further polymerase cha<strong>in</strong> reaction (PCR) to<br />

amplify the target sequence of <strong>DNA</strong>. The PCR products can be subjected to electrophoresis or may be<br />

adsorbed onto a suitable membrane and exposed to a solution conta<strong>in</strong><strong>in</strong>g <strong>DNA</strong> probe (Southern Blot).<br />

The <strong>DNA</strong> probe is either chemically or enzymatically labeled with radioactive material,<br />

chemilumnophore or ligands such as biot<strong>in</strong> etc as the nucleic acid itself has not able to provide any<br />

signal. <strong>Recent</strong> advances <strong>in</strong> the field of biomolecular techniques can be used to fabricate new<br />

generation m<strong>in</strong>iaturized biosensor. The Table 1 summarized the advantage and disadvantages of<br />

different types of <strong>DNA</strong> biosensors:<br />

123


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

Table 1. Advantage and disadvantage of different types of <strong>DNA</strong> based biosensors.<br />

1. Optical<br />

a Fiber optics<br />

Type Pr<strong>in</strong>ciple Advantage Disadvantages<br />

Evanescent wave based,<br />

allows measurement of<br />

b<strong>in</strong>d<strong>in</strong>g at the fiber<br />

surface<br />

Remote <strong>in</strong>-situ<br />

measurement, <strong>in</strong>herent<br />

sensitivity of optical<br />

approaches<br />

Costly equipment<br />

and not portable,<br />

b. Laser <strong>in</strong>terferometry<br />

2. Electrochemical<br />

a. Conductometric<br />

b. Potentiometric<br />

c. Amperometric<br />

3.Piezoelectric<br />

4. Colorimetric/Strip<br />

5. <strong>DNA</strong> biochip<br />

Planar waveguides have<br />

evanescent field<br />

responsible to change <strong>in</strong><br />

<strong>in</strong>dex of refraction<br />

Change <strong>in</strong> conductance<br />

Electric potential<br />

Oxidation/reduction<br />

Quartz crystals oscillation<br />

at def<strong>in</strong>ed frequency,<br />

b<strong>in</strong>d<strong>in</strong>g of an analyte to it<br />

changes the mass of<br />

crystal hence oscillation<br />

frequency<br />

Color development<br />

Array based<br />

Highly sensitive, detect<br />

up to 1 cell<br />

Fast, low cost<br />

High sensitive, fast<br />

Not required any<br />

<strong>in</strong>struments<br />

Instrument required<br />

Susceptibility to<br />

turbidity <strong>in</strong>terference<br />

Highly buffered<br />

solution may<br />

<strong>in</strong>terfere<br />

Sensitivity level up<br />

to 1 cell have not<br />

demonstrated<br />

Not quantitative<br />

Quantitative<br />

3. Optical <strong>DNA</strong> <strong>Biosensor</strong>s<br />

Optical methods are the most frequently used <strong>in</strong> detection of analytes. The simplest detection units are<br />

spectrophotometer and fluorometers, which can be used for spectroscopic or fluorescence detection.<br />

S<strong>in</strong>ce nucleic acids do not have <strong>in</strong>tr<strong>in</strong>sic properties that are functional <strong>in</strong> direct detection, many of the<br />

nucleic acid-based assays, especially optical setups, require a label for detection. The choice of label is<br />

based on stability, sensitivity and its convenience.<br />

<strong>DNA</strong> optical biosensors are based on a fiber optic to transducer the emission signal of a fluorescent<br />

label. Fiber optics are devices that carry light from one place to another by a series of <strong>in</strong>ternal<br />

<strong>in</strong>flections. The operation of fiber-optic <strong>DNA</strong> biosensors <strong>in</strong>volves placement of an ss<strong>DNA</strong> probe at the<br />

end of the fiber and monitor<strong>in</strong>g the fluorescent changes result<strong>in</strong>g from the association of a fluorescent<br />

<strong>in</strong>dicator with the double-stranded (ds) <strong>DNA</strong> hybrid [30-31]. The first <strong>DNA</strong> optical biosensor,<br />

developed by Krull and coworkers us<strong>in</strong>g fluorescent <strong>in</strong>dicator ethidium bromide [30, 32].Watts group<br />

developed a fiber-optic <strong>DNA</strong> sensor array for the simultaneous detection of multiple <strong>DNA</strong> sequences<br />

[33].The hybridization of fluorescent labeled complementary olgonucleotides was monitored by<br />

observ<strong>in</strong>g the <strong>in</strong>crease <strong>in</strong> fluorescence. A different optical transduction, based on evanescent wave<br />

devices, can offer real-time label-free optical detection of <strong>DNA</strong> hybridization. The different types of<br />

optical biosensors are as follows:<br />

124


3.1. Molecular Beacons (MBs)<br />

Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

MBs are oligonucleotides with a stem-and-loop structure, labeled with a fluorophore at one end and a<br />

quencher on the other end of the stem that become fluorescent upon hybridization. In addition to their<br />

direct monitor<strong>in</strong>g capability, MB probes offer high sensitivity and specificity. A biot<strong>in</strong>ylated molecular<br />

beacon probe was developed to prepare a <strong>DNA</strong> biosensor us<strong>in</strong>g a bridge structure. MB was<br />

biot<strong>in</strong>ylated at quencher site of the stem and l<strong>in</strong>ked on a biot<strong>in</strong>ylated glass through strepatavid<strong>in</strong>,<br />

which acted as bridge between MB and glass matrix. The fluorescence change was measured by<br />

confirmation change of MB <strong>in</strong> the presence of complementary target <strong>DNA</strong> [34, 35].<br />

3.2. Surface Plasmon Resonance (SPR)<br />

Surface plasmon resonance (SPR) is an quantum optical-electrical phenomenon aris<strong>in</strong>g from the<br />

<strong>in</strong>teraction of light with metal surface. Under specific conditions the energy carried by photons of light<br />

is transferred to packets of electrons (photons) on a metal surface. Energy transfer occurs only at<br />

specific resonance wavelength of light [33].<br />

These biosensors are based on monitor<strong>in</strong>g changes <strong>in</strong> surface optical properties (change <strong>in</strong> resonance<br />

angle due to change <strong>in</strong> the <strong>in</strong>terfacial refractive <strong>in</strong>dex) result<strong>in</strong>g from the surface b<strong>in</strong>d<strong>in</strong>g reaction.<br />

Such devices thus comb<strong>in</strong>e the simplicity of SPR with the sensitivity of wave guid<strong>in</strong>g devices. The<br />

resonance conditions are <strong>in</strong>fluenced by the material adsorbed onto the th<strong>in</strong> metal film. A l<strong>in</strong>ear<br />

relationship is found between resonance energy and mass concentration of molecules such as prote<strong>in</strong>s,<br />

sugars and <strong>DNA</strong>. The SPR signal which is expressed <strong>in</strong> resonance units is therefore a measure of mass<br />

concentration at the sensor chip surface [36-38].It has been reported that alkane thiol modified<br />

oligonucleotide can be immobilized onto gold surface to detect <strong>DNA</strong> hybridization us<strong>in</strong>g SPR based<br />

detection <strong>in</strong> agro food <strong>in</strong>dustry [39].<br />

3.3. Quantum–Dot<br />

An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FREET) can detect<br />

very low concentration of <strong>DNA</strong> and do not require separation of unhybridized <strong>DNA</strong>. Such type of<br />

technique is based on quantum-dots (QDs) which are l<strong>in</strong>ked to specific <strong>DNA</strong> probes to capture target<br />

<strong>DNA</strong>. The target <strong>DNA</strong> strand b<strong>in</strong>ds to a fluorescent-dye (fluorophore) labeled reporter strand and thus<br />

form<strong>in</strong>g FREET donor-acceptor assembly. Quantum dot also functions as to concentrate the signal by<br />

conf<strong>in</strong><strong>in</strong>g several targets at nanoscale doma<strong>in</strong>. Unbound <strong>DNA</strong> strand produce no fluorescence but on<br />

bid<strong>in</strong>g of even small amount of target <strong>DNA</strong> (≤ 50 copies) may produce very strong FREET signal.<br />

Several FREET based <strong>DNA</strong> probes (molecular beacons and TaqMan probes) whose fluorescence<br />

signals change as a result of hybridization or enzymatic reactions have been developed for separation<br />

free (unhybridized <strong>DNA</strong> strand) detection of target <strong>DNA</strong> [40-43].<br />

<strong>DNA</strong> nanosensor consists of two target specific <strong>DNA</strong> probes i.e. reporter and capture probe. The<br />

reporter probe is labeled with fluorophore whereas capture probe is labeled with biot<strong>in</strong> which b<strong>in</strong>ds<br />

with streptavid<strong>in</strong> conjugated with QD. The QD functions as target concentrator as well as FREET<br />

energy donor. When target <strong>DNA</strong> is present <strong>in</strong> solution, it becomes sandwiched by reporter and capture<br />

probes. Several sandwiched hybrids are then captured by a s<strong>in</strong>gle QD through biot<strong>in</strong>-streptavid<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g and concentrate at nanoscale doma<strong>in</strong> [44]. The fluorophore acceptor and QD donor close<br />

proximity caus<strong>in</strong>g fluorescence from acceptor by means of FREET on illum<strong>in</strong>ation of the donor. The<br />

detection of acceptor emission <strong>in</strong>dicates the presence of target <strong>DNA</strong>. The unhybridized probe do not<br />

participate <strong>in</strong> FREET and do not give fluorescence, therefore, it is not necessary to remove. The CdSe-<br />

125


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

ZnS core-shell nanocrystal can be used as donor and Cy5 (fluorophore) as acceptor for development of<br />

QD based <strong>DNA</strong> nanosensor [44].<br />

The fluorescent dyes used as the standard labels for this type of optical biosensors are very expensive<br />

and it can rapidly photo-bleach (the dye is photochemically converted to a non-fluorescent compound).<br />

An alternative to the fluorescence detection used <strong>in</strong> many systems is chemilum<strong>in</strong>escence format, which<br />

overcomes the use of fluorescent dyes.<br />

4. Electrochemical <strong>DNA</strong> <strong>Biosensor</strong>s<br />

Electrochemical devices are very useful for sequence-specific biosens<strong>in</strong>g of <strong>DNA</strong>. The m<strong>in</strong>iaturization<br />

of devices and advanced technology make them excellent tool for <strong>DNA</strong> diagnostics. Electrochemical<br />

detection of <strong>DNA</strong> hybridization usually <strong>in</strong>volves monitor<strong>in</strong>g a current at fixed potential. Electrical<br />

modes were developed for detection of both label-free and labeled objects [45-57]. The immobilization<br />

of the nucleic acid probe onto the transducer surface plays an important role <strong>in</strong> the overall performance<br />

of <strong>DNA</strong> biosensors and gene chips [58-60].<br />

The immobilization step requires a well-def<strong>in</strong>ed probe orientation and accessible to the target for<br />

hybridization. Depend<strong>in</strong>g upon the nature of the physical transducer, various methods can be used for<br />

attach<strong>in</strong>g the <strong>DNA</strong> probe to the solid surface such as the use of thiolated <strong>DNA</strong> probe for self<br />

assembled monolayers (SEM) onto gold transducers by covalent l<strong>in</strong>kage to the gold surface via<br />

functional alkanethiol-based monolayers. The other method of attachment of <strong>DNA</strong> probe is to<br />

biot<strong>in</strong>ylate <strong>DNA</strong> probe and attachment through biot<strong>in</strong>-avid<strong>in</strong> <strong>in</strong>teraction on electrode surface [45-47,<br />

61]. The avid<strong>in</strong> modified polyanil<strong>in</strong>e electrochemically deposited onto a Pt disc electrode for direct<br />

detection of E. Coli by immobiliz<strong>in</strong>g a 5’ biot<strong>in</strong> labeled probe us<strong>in</strong>g a differential pulse voltametric<br />

technique <strong>in</strong> the presence of methylene blue as a <strong>DNA</strong> hybridization <strong>in</strong>dicator [14, 46]. Similarly,<br />

electrochemical <strong>DNA</strong> biosensor based on polypyrrole-polyv<strong>in</strong>yl sulfonate coated onto Pt disc<br />

electrode was also fabricated us<strong>in</strong>g biot<strong>in</strong>-avid<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g [47].<br />

The discovery of carbon nanotubes (CNTs) <strong>in</strong> <strong>DNA</strong> analysis plays an important role by development<br />

of electrochemical <strong>DNA</strong> biosensor. CNT not only enables immobilization of <strong>DNA</strong> molecules but also<br />

used as powerful amplifier to amplify signal transduction of hybridization. CNT also works as novel<br />

<strong>in</strong>dicator of hybridization. The application of arrayed CNT <strong>in</strong>to <strong>DNA</strong> chip require small amount of<br />

sample and development of CNT based biosensor play major role on <strong>DNA</strong> based diagnostics <strong>in</strong><br />

hospitals or at home [62].<br />

The knowledge of peptide nucleic acid (PNA) has opened a new research area of <strong>DNA</strong> biosensors.<br />

PNA is a <strong>DNA</strong> mimic <strong>in</strong> which the sugar phosphate backbone is replaced with a pseudopeptide. The<br />

unique structural, hybridization and recognition features of solution-phase PNA can be readily<br />

extrapolated onto transducer surfaces <strong>in</strong> connection with the design of highly-selective <strong>DNA</strong><br />

biosensors. Such use of surface-conf<strong>in</strong>ed PNA recognition layers imparts remarkable sequence<br />

specificity onto <strong>DNA</strong> biosensors <strong>in</strong>clud<strong>in</strong>g detection of s<strong>in</strong>gle-base mismatches [60].<br />

The hybridization is commonly detected by the <strong>in</strong>crease <strong>in</strong> current signal due to redox <strong>in</strong>dicator (that<br />

recognizes the <strong>DNA</strong> duplex) or from other hybridization-<strong>in</strong>duced changes <strong>in</strong> electrochemical<br />

parameters (e.g. conductivity or capacitance). New redox <strong>in</strong>dicators, offer<strong>in</strong>g greater discrim<strong>in</strong>ation<br />

between s<strong>in</strong>gle strand (ss) and ds<strong>DNA</strong> [27, 29, 48, 49, 51, 52, 63]. The use of an <strong>in</strong>tercalator<br />

ferrocenyl naphthalene diimide that b<strong>in</strong>ds to the <strong>DNA</strong> hybrid more tightly than usual <strong>in</strong>tercalators and<br />

displays small aff<strong>in</strong>ity to the s<strong>in</strong>gle-stranded probe [64]. The electrochemical <strong>DNA</strong> biosensor may be<br />

labeled based and lebeled free.<br />

126


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

4.1. Label Based or Indirect Detection<br />

In label based electrochemical biosensor specific organic dyes, metal complexes or enzymes are used<br />

for hybridization detection. The use of enzyme labeled probe offers great promise for electrochemical<br />

detection of <strong>DNA</strong> hybridization [28]. On addition of substrate to the enzyme modified electrode<br />

surface, the electrochemical activity of the product simplifies the detection of hybridization [54].<br />

Redox- active molecules such as daunomyc<strong>in</strong>, methylene blue which is <strong>in</strong>serted between the ds<strong>DNA</strong><br />

and gives signal which can be used for hybridization detection [54, 65]. Redox-active molecules based<br />

two commercialized <strong>DNA</strong> chips have been <strong>in</strong>troduced <strong>in</strong> molecular diagnosis market <strong>in</strong> the trade name<br />

of eSensor TM produced by Motorola Life sciences [25], Inc. and Genlyser TM by Toshiba [26].<br />

4.2. Label Free or Direct Detection<br />

Contrary to <strong>in</strong>direct detection techniques, where label<strong>in</strong>g is a requirement to translate the hybridization<br />

event <strong>in</strong>to a signal, <strong>in</strong> direct detection techniques, a target molecule or any other object from the<br />

system does not need to be labeled [55, 54].Although label-dependent methods achieve the highest<br />

sensitivities, elim<strong>in</strong>at<strong>in</strong>g the label<strong>in</strong>g steps simplifies the readout, the speed and ease of nucleic acid<br />

assays.<br />

In a label-free method the immobilized probe recognizes a complementary sequence if the target is<br />

present <strong>in</strong> the sample. Next, the transducer converts the biological <strong>in</strong>teraction <strong>in</strong>to a measurable signal,<br />

proportional to the degree of hybridization that is to the amount of target molecule <strong>in</strong> the sample.<br />

Label-free strategies reduce analysis times and cost. They are also free from unfavorable effects from<br />

the labels, such as its <strong>in</strong>stability and steric h<strong>in</strong>drances.<br />

<strong>Recent</strong>ly, a new label-free electrochemical detection technique has been developed which is faster and<br />

simpler [14, 15, 45, 47, 53]. It is possible to exploit changes <strong>in</strong> the <strong>in</strong>tr<strong>in</strong>sic electroactivity of <strong>DNA</strong><br />

(guan<strong>in</strong>e oxidation peak of hybridization). To overcome the limitations of the probe sequences<br />

(absence of G), guan<strong>in</strong>es <strong>in</strong> the probe sequence were substituted by <strong>in</strong>os<strong>in</strong>e residues (pair<strong>in</strong>g with C)<br />

and the hybridization was detected through the target <strong>DNA</strong> guan<strong>in</strong>e signal [15, 53].Changes <strong>in</strong> the<br />

guan<strong>in</strong>e oxidation, and of other <strong>in</strong>tr<strong>in</strong>sic <strong>DNA</strong> redox signals, have thus been used for detect<strong>in</strong>g<br />

chemical and physical damage. A greatly amplified guan<strong>in</strong>e signal, and hence hybridization response,<br />

was obta<strong>in</strong>ed by us<strong>in</strong>g the Ru(bpy) 3 redox mediator. Direct, label-free, electrical detection of <strong>DNA</strong><br />

hybridization has also been accomplished by monitor<strong>in</strong>g changes <strong>in</strong> the conductivity of conduct<strong>in</strong>g<br />

polymer molecular <strong>in</strong>terfaces (<strong>DNA</strong>-modified polypyrrole films). Eventually, it would be possible to<br />

elim<strong>in</strong>ate these polymeric <strong>in</strong>terfaces and to exploit different rates of electron-transfer through ss <strong>DNA</strong><br />

and ds <strong>DNA</strong> for prob<strong>in</strong>g hybridization (<strong>in</strong>clud<strong>in</strong>g mutation detection via the perturbation <strong>in</strong> charge<br />

transfer through <strong>DNA</strong>).<br />

5. Piezoelectric <strong>DNA</strong> <strong>Biosensor</strong><br />

Piezoelectric <strong>DNA</strong> biosensor is based on quartz crystal that oscillate at a def<strong>in</strong>ed frequency when an<br />

oscillat<strong>in</strong>g voltage is applied, allow<strong>in</strong>g high sensitivity. Piezoelectric method has recently emerged as<br />

most attractive due to their simplicity, cost, sensitivity and real time label-free detection [20, 55, 66,<br />

67]. The quartz crystal microbalance (QCM) is an extremely sensitive mass-measur<strong>in</strong>g device that<br />

allows dynamic monitor<strong>in</strong>g of hybridization events. QCM hybridization biosensors consist of an<br />

oscillat<strong>in</strong>g crystal with the <strong>DNA</strong> probe immobilized on its surface. The <strong>in</strong>creased mass, associated<br />

with the hybridization reaction, results <strong>in</strong> a decrease of the oscillat<strong>in</strong>g frequency. A highly-sensitive<br />

microgravimetric device was developed for detect<strong>in</strong>g the TaySachs genetic disorder. QCM transducers<br />

127


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

have been used for <strong>in</strong>vestigat<strong>in</strong>g other <strong>DNA</strong> <strong>in</strong>teractions, <strong>in</strong>clud<strong>in</strong>g real-time detection of prote<strong>in</strong>-<br />

<strong>DNA</strong> b<strong>in</strong>d<strong>in</strong>g or monitor<strong>in</strong>g of enzymatic cleavage reactions.<br />

Oligonucleotide QCM sensor for the microalgae Alexandrium m<strong>in</strong>utum was developed by<br />

immobiliz<strong>in</strong>g probe complementary strand of a partial sequence of the gene encod<strong>in</strong>g microalgae that<br />

produces neurotox<strong>in</strong>s responsible for paralytic shellfish poison<strong>in</strong>g on European and Asian coasts [68].<br />

After hybridization <strong>in</strong> situ by us<strong>in</strong>g a 27 MHz quartz crystal microbalance the frequency changes<br />

under controlled hydrodynamic conditions. The hybridization ratio between hybridized complementary<br />

<strong>DNA</strong> and immobilized <strong>DNA</strong> probe was 47%. Piezoelectric biosensor was also developed for<br />

Salmonella typhimurium [69].<br />

Genomic <strong>DNA</strong> of E.coli hybridizes with the same rate constant on the QCM biosensor as <strong>in</strong><br />

homogeneous solution. A high hybridization rate was obta<strong>in</strong>ed when nucleic acids are hybridized <strong>in</strong> a<br />

th<strong>in</strong> film, micro volume reaction on a non porous surface [70]. A <strong>DNA</strong> piezoelectric sensor was also<br />

developed for detection of genetically modified organisms (GMO) by immobiliz<strong>in</strong>g <strong>DNA</strong> probe on the<br />

sensor surface of a QCM device and hybridization of probe with target <strong>DNA</strong> was monitored <strong>in</strong><br />

solution. The above technique is sensitive and specific for detection of GMO and provides a useful<br />

tool for screen<strong>in</strong>g and analysis of food [71].<br />

A piezoelectric sensor for determ<strong>in</strong>ation of genetically modified soybean Roundup Ready (RR<br />

soybean) by immobiliz<strong>in</strong>g probes related to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)<br />

gene onto gold piezoelectrodes. The hybridization reaction of probe and target <strong>DNA</strong> (non amplified by<br />

PCR) was monitored <strong>in</strong> solution. The piezoelectric sensor can be used for genetically modified RR<br />

soybean without amplification [72]. A coupl<strong>in</strong>g of <strong>DNA</strong> piezoelectric biosensor and PCR to detect a<br />

po<strong>in</strong>t mutation <strong>in</strong> a human gene (apolipoprote<strong>in</strong>-E polymorphism) was established by immobiliz<strong>in</strong>g<br />

biot<strong>in</strong>ylated probe on the streptavid<strong>in</strong> coated gold surface of a quartz crystal. The hybridization of<br />

probes with complementary, non complementary and mismatched <strong>DNA</strong> of synthetic as well as<br />

amplified PCR samples from human blood <strong>DNA</strong> was carried out and the device was able to dist<strong>in</strong>guish<br />

polymorphism [65].<br />

6. Colorimetric or Strip type <strong>DNA</strong> Sensor<br />

A novel nanoparticle based colorimetric detection offers great promise for direct detection of <strong>DNA</strong><br />

hybridization [73-75]. In this case, a distance change, occurred from the hybridization event, results <strong>in</strong><br />

changes of the optical properties of the aggregated functional gold nanoparticles. The dry-reagent strip<br />

type biosensor has been developed for visual detection of double stranded <strong>DNA</strong> with<strong>in</strong> a short time<br />

[76]. Oligo nucleotide conjugated gold nanoparticle is used as probe for detection of target <strong>DNA</strong><br />

through hybridization. The advantage of this type of biosensors is not requir<strong>in</strong>g any <strong>in</strong>struments,<br />

multiple <strong>in</strong>cubation and wash<strong>in</strong>g steps as performed <strong>in</strong> most assays. Gold nanoparticle reporters with<br />

oligo (dT) attached to their surface form <strong>in</strong>tegral part of the strip. Biot<strong>in</strong>ylated PCR products are<br />

hybridized with poly (dA) tailed oligo and applied on the strip and immersed <strong>in</strong> the appropriate buffer.<br />

As the buffer migrates upward, it rehydrates the nanoparticles that are l<strong>in</strong>ked through target <strong>DNA</strong><br />

through poly (dA/dT) hybridization. The hybrid is then captured by immobilized strepatavid<strong>in</strong> <strong>in</strong> the<br />

test zone of the strip and generate red band. Another, red band is formed by hybridization <strong>in</strong> the<br />

control zone of the strip to <strong>in</strong>dicate proper test performance [76]. The test is 8-10 times more sensitive<br />

than ethidium bromide <strong>in</strong> agarose gel electrophoresis. The detection limit is as low as 2 fmol of<br />

amplified <strong>DNA</strong> products.<br />

128


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

7. <strong>DNA</strong> Biochip<br />

Microarrays, <strong>DNA</strong> arrays, gene chips or biochips are same term<strong>in</strong>ology often be<strong>in</strong>g <strong>in</strong>termixed to<br />

describe analysis of complex <strong>DNA</strong> samples and expression of genes [59, 60, 77, 78, 79, 80]. The most<br />

attractive features of these devices are the m<strong>in</strong>iaturization, speed and accuracy. Accord<strong>in</strong>gly, this <strong>DNA</strong><br />

microchip technology offers an enormous potential for rapid multiplex analysis of nucleic acid<br />

samples, <strong>in</strong>clud<strong>in</strong>g the diagnosis of genetic diseases, detection of <strong>in</strong>fectious agents, measurements of<br />

differential gene expression, drug screen<strong>in</strong>g or forensic analysis. Such use of <strong>DNA</strong> microarrays is thus<br />

revolutioniz<strong>in</strong>g many aspects of genetic analysis.<br />

The biochips are fabricated from glass, silicon or plastic supports, and comprise thousands of<br />

10-100 µm reaction zones onto which <strong>in</strong>dividual oligonucleotides have been deposited. This results <strong>in</strong><br />

high densities (up to 10 6 sites/cm 2 ) <strong>in</strong> connection with typical 1-2 cm 2 -size chips. The exact number of<br />

probes varies <strong>in</strong> accordance with the application. The actual construction of gene chips <strong>in</strong>volves the<br />

immobilization or synthesis of an array of <strong>DNA</strong> probes on a solid support. High-density <strong>DNA</strong> arrays<br />

often require the use of physical delivery (e.g. microjet deposition technology), <strong>in</strong>volv<strong>in</strong>g the<br />

dispension of picoliter volumes onto discrete locations on the chip. It is essential to activate the surface<br />

for a covalent attachment of the oligonucleotide probes.<br />

Successful implementation of <strong>DNA</strong> chip technology requires development of methods for fabricat<strong>in</strong>g<br />

the probe arrays, detect<strong>in</strong>g the target hybridization, algorithms for analyz<strong>in</strong>g the data, and<br />

reconstruct<strong>in</strong>g the target sequence. Such array technology thus <strong>in</strong>tegrates molecular biology, advanced<br />

microfabrication / micromach<strong>in</strong><strong>in</strong>g technologies, surface chemistry, analytical chemistry, software,<br />

robotics and automation. The automation of gene chip systems greatly facilitates their production and<br />

accelerates their operation, while elim<strong>in</strong>at<strong>in</strong>g human errors. The detection of the <strong>DNA</strong> hybridization<br />

(at the <strong>in</strong>dividual spots) relies on the signal generated by the b<strong>in</strong>d<strong>in</strong>g event. The most common<br />

application of <strong>DNA</strong>/oligonucleotide microarray is gene expression analysis. In this technique, RNA<br />

isolated from two samples are labeled with two different fluorochromes (generally the green cyan<strong>in</strong>e 3<br />

and the red cyan<strong>in</strong>e 5 (Cy3, Cy5)) before be<strong>in</strong>g hybridised to a microarray consist<strong>in</strong>g of large numbers<br />

of c<strong>DNA</strong>s / oligonucleotides orderly arranged onto a glass microscope slide. After hybridization under<br />

str<strong>in</strong>gent conditions, a scanner records, after excitation of the two fluorochromes at given wavelengths,<br />

the <strong>in</strong>tensity of the fluorescence emission signals that is proportional to transcript levels <strong>in</strong> the<br />

biological samples. The microarray data are analyzed us<strong>in</strong>g specific software that enables cluster<strong>in</strong>g of<br />

genes with similar expression patterns, assum<strong>in</strong>g that they share common biological functions.<br />

8. Conclusions and Future Prospects<br />

From the first discovery of electrochemistry of nucleic acids by Palecek at the end of the 1950’s [81],<br />

huge progress can be observed, particularly at the development of electrochemical <strong>DNA</strong> biosensors<br />

based on the nucleic acid as biorecognition element. Different types of electrodes immobilized with<br />

specific probes can be used to detect the presence of complementary target sequence by hybridization<br />

technique. Besides the different immobilization methods, electroactive hybridization <strong>in</strong>dicators (metal<br />

complexes, daunomyc<strong>in</strong>, methylene blue, etc.) and different conduct<strong>in</strong>g polymer based nanocomposites<br />

are also used for development of electrochemical biosensors.<br />

SPR, Quantum-Dot and piezoelectric biosensors are the emerg<strong>in</strong>g area of molecular diagnosis. The<br />

Intelligent Opto sensors <strong>in</strong>terfac<strong>in</strong>g based on universal frequency-to-digital converter has opened new<br />

opportunities for development of <strong>DNA</strong> biosensors [82]. Some success has been achieved <strong>in</strong> the<br />

commercialization of optical fiber sensors. However, they still suffer from competition with other<br />

mature sensor technologies and new ideas are be<strong>in</strong>g cont<strong>in</strong>uously developed and tested not only for the<br />

traditional measurands but also for new applications [83-84].<br />

129


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

The use of <strong>DNA</strong> biostrip and biochip technologies elim<strong>in</strong>ates the role of PCR. Future biosensors will<br />

require the development of new reliable devices or the improvement of the exist<strong>in</strong>g ones <strong>in</strong> order to<br />

allow superior transduction, amplification, process<strong>in</strong>g, and conversion of the biological signals.<br />

Efficient biosensors will not necessarily function as a stand-alone detector, but will form an <strong>in</strong>tegral<br />

part of an analytical system. Compact and portable devices will constitute another future area of<br />

<strong>in</strong>tensive multidiscipl<strong>in</strong>ary sensor research. Further, <strong>in</strong>crease of <strong>in</strong>terest to <strong>DNA</strong> based sensors can be<br />

expected <strong>in</strong> near future together with a commercial production of these devices and their wide use.<br />

However, basic research is still necessary to improve the sensor technologies, sens<strong>in</strong>g strategies as<br />

well as analytical <strong>in</strong>strumentations and procedures.<br />

Acknowledgment<br />

The author is thankful to Department of Science and Technology, M<strong>in</strong>istry of Science and<br />

Technology, Govt. of India, Delhi for fund<strong>in</strong>g project on <strong>DNA</strong> based biosensor to IGIB.<br />

References<br />

[1]. R. Eden-Firstenberg, B. J. Schaertel, <strong>Biosensor</strong> <strong>in</strong> the food <strong>in</strong>dustry: Present and Future, J. of Food<br />

Protection, 51, 1988, pp. 811-820.<br />

[2]. D. L<strong>in</strong>dner, Lab as a chip, 1, 2001, pp. 15-19.<br />

[3]. F. M. Burkle, Measures of effectiveness <strong>in</strong> large scale bioterrorism events, Prehosp Disast. Med., 18, 2003,<br />

pp. 258-262.<br />

[4]. M. Mase<strong>in</strong>i, Aff<strong>in</strong>ity electrochemical biosensors for pollution control, Pure Appl. Chem., 73, 2001,<br />

pp. 23-30.<br />

[5]. B. D. Malhotra, A. Chaube, <strong>Biosensor</strong>s for cl<strong>in</strong>ical diagnostics <strong>in</strong>dustry, Sensor Actuators B, 91, 2003,<br />

pp. 117-126.<br />

[6]. B. Annelies, B. Dirk, L. Michel, Cl<strong>in</strong>ical and analytical performance of the Accu-chek <strong>in</strong>form po<strong>in</strong>t-of-care<br />

glucose water, Po<strong>in</strong> of Care, 4, 2005, pp. 36-40.<br />

[7]. V. Anjum, C. S. Pundir, <strong>Biosensor</strong>s: Future analytical tools, Sensors and Transducers, 76, 2007,<br />

pp. 937-944.<br />

[8]. R. Blonder, S. Levi, G. Tao, I. Ben-Dov, J. Willner, Development of amperometric and microgravimetric<br />

immunosensors and reversible immunosensors us<strong>in</strong>g antigen and photoisomerizable antigen monolayer<br />

electrodes, J. Am. Chem. Soc., 119, 1997, pp. 467- 478.<br />

[9]. R. Blonder, I. BenDov, A. Dagana, I. Willner, E. Zisman, Photochemically activated electrodes:<br />

application <strong>in</strong> design of reversible immunosensors and antibody patterned <strong>in</strong>terfaces, Biosens. Bioelectron.,<br />

12, 1997, pp. 627-644.<br />

[10]. T. G. Prummond, Electrochemical <strong>DNA</strong> Sensors, Nature Biotechnol, 21, 2003, pp. 1192-1199.<br />

[11]. R. M. Umek, Electronic detection of nucleic acids, J. Mol. Diagnostics, 3, 2001, pp. 74-84.<br />

[12]. Z. Junhui, C. Hong, Y. Ruifu, <strong>DNA</strong> based biosensors, Biotech. Advanc., 15, 1997, pp. 43-58.<br />

[13]. K. Arora, S. Chand, B. D. Malhotra, <strong>Recent</strong> developments <strong>in</strong> biomolecular electronics techniques for food<br />

pathogens, Anal. Chim Acta, 568, 2006, pp. 259-274.<br />

[14]. K. Arora, N. Prabhakar, S. Chand, B. D. Malhotra, Ultrasensitive <strong>DNA</strong> hybridization biosensor based on<br />

polyanil<strong>in</strong>e, Biosens. Bioelectronics, 23, 2007, pp. 613-620.<br />

[15]. N. Prabhakar, K. Arora, S. P. S<strong>in</strong>gh, M. K. Pandey, H. S<strong>in</strong>gh, B. D. Malhotra, Polypyrrole-polyv<strong>in</strong>yl<br />

sulphonate film based disposable nucleic acid biosensor, Anal. Chim Acta, 589, 2007, pp. 6-13.<br />

[16]. D. Berdat, A. Mar<strong>in</strong>, F. Herrera, M. A. M. Gijs, <strong>DNA</strong> biosensors us<strong>in</strong>g fluorescence microscopy and<br />

impedance spectroscopy, Sensors Actuators, 118, 2006, pp. 53-59.<br />

[17]. S. K. Sharma, N. Sehgal, A. Kumar, Biomolecules for development of biosensors and their application,<br />

Curr. Appl. Phys., 3, 2003, pp. 307-316.<br />

[18]. K. C. Ho, C. Y. Cheu, H. C. Hsu, L. C. Cheu, S. C. Shiesh, X. Z. L<strong>in</strong>, Amperometric detection of morph<strong>in</strong>e<br />

at a prussian blue modified <strong>in</strong>dium t<strong>in</strong> oxide electrode, Biosens. Bioelectron., 20, 2004, pp. 3-8.<br />

[19]. J. Wang, D. K Xu, A. N. Kawde, R. Polsky, Metal nanoparticle-based electrochemical stripp<strong>in</strong>g<br />

potentiometric detection of <strong>DNA</strong> hybridization, Anal. Chem., 73, 2001, pp. 5576–5581.<br />

130


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

[20]. R. L. Bunde, E. J Jarvi, J. J. Rosentreter, Piezoelectric quartz crystal biosensors, Talanta, 46(6), 1998,<br />

pp. 1223-1236.<br />

[21]. B. Xie, M<strong>in</strong>i/micro thermal biosensors and other related devices for biochemical / Cl<strong>in</strong>ical monitor<strong>in</strong>g,<br />

TRAC, 19, 2000, pp. 340-347.<br />

[22]. M. Mebravar, Fiber optic biosensors: Trends and advances, Anal Sci., 16, 2000, pp. 677-692.<br />

[23]. D. Ivniski, I. A. Hamid, P. Atanasov, E. Wilk<strong>in</strong>s, <strong>Biosensor</strong>s for detection of pathogenic bacteria, Biosens.<br />

Bioelectron., 14, 1999, pp. 559-624.<br />

[24]. H. Berney, J. West, E. Haefele, J. Alderman, W. Lane, J. K. Coll<strong>in</strong>s, <strong>DNA</strong> diagnostic biosensor<br />

development, characterization and performance, Sens. Actuators B, 68, 2000, pp. 100-108.<br />

[25]. Motorola Life Sciences Inc. (www.motorola.com/Lifesciences).<br />

[26]. Toshiba Corporation (www.dna-chip.toshiba.co.jp/eng/).<br />

[27]. A. Erdem, K. Kesman, B. Mesie, U. S. Akarea, M. Osoz, Novel hybridization <strong>in</strong>dicator methylene blue for<br />

the electrochemical detection of short <strong>DNA</strong> sequence related to Hepatitis B Virus, Anal. Chim. Acta, 423,<br />

2000, pp. 139-149.<br />

[28]. C. N. Campbell, D. Gal, N. Cristler, C. Banditrat and A. Heller, Enzyme amplified amperometric sandwich<br />

test for RNA and <strong>DNA</strong>, Anal Chem., 74, 2002, pp. 158-162.<br />

[29]. Millan, K. M. and Mikkelsen, S. R., Sequence selection biosensor for <strong>DNA</strong> based on electroactive<br />

hybridization <strong>in</strong>dicators, Anal. Chem., 65, 1993, pp. 2317-2324.<br />

[30]. Piunno, P. A. E., Krull, U. J., Hudson, R. H. E, Damha, M. J. and Cohen, H., Fiber optic biosensor for<br />

fluorometric detection of <strong>DNA</strong> hybridization, Anal. Chim. Acta, 288, 1994, pp. 205-214.<br />

[31]. Piunno, P. A. E., Krull, U. J., Hudson, R. H. E, Damha, M. J., Cohen, H., Fiber optic <strong>DNA</strong> sensor for<br />

fluorometric nucleic acid determ<strong>in</strong>ation, Anal. Chem., 67, 1995, pp. 2635-2643.<br />

[32]. Haughland, R. P., Molecular Probes: Handbook of fluorescent probes and research chemicals, 1992, 5 th ed<br />

Molecular Probes.<br />

[33]. Watts, H. J., Yeung, D., Parkes, H., Real time detection and quantification of <strong>DNA</strong> hybridization by an<br />

optical biosensor, Anal. Chem., 67, 1995, pp. 4283-4289.<br />

[34]. Weihong, J. L. Wang, K., Xiao, D., Yang, X., He, X., Tang, Z., Ultrasensitive optical <strong>DNA</strong> biosensor<br />

based on surface immobilization of molecular beacon by a bridge structure, Anal. Sci., 17, 2001,<br />

pp. 1149-1153.<br />

[35]. J. Li, W. Tan, K. Wang, D. Xiao, X. Yang, X. He, . Tang, Ultrasensitive optical <strong>DNA</strong> biosensor based on<br />

surface immobilization of molecular beacon by a bridge structure, Anal. Sci., 17, 2001, pp. 1149-1153.<br />

[36]. A. D. Taylar, Q. Yu., S. Chen, J. Homola, S. Jiang, Comparison of E. Coli, 157:H7 preparation methods<br />

used for detection with surface resonance sensor, Sens. Actuators. B, 107, 2005, pp. 202-208.<br />

[37]. R. Wang, S. Tombelli, M. M<strong>in</strong>unni, M. Michelia, Spiriti, M. Masc<strong>in</strong>i, Immobilization of <strong>DNA</strong> probes for<br />

the development of SPR- based sens<strong>in</strong>g, Biosens. Bioelectron. 20, 2004, pp. 967-974.<br />

[38]. F. Yu, D. Yao, W. Knoll, Oligonucleotide hybridization studied by a surface plasmon diffraction sensor<br />

(SPDS), Nucl. Acid . Res., 32, 9, 2004, pp 1-7.<br />

[39]. Rella, R., Spadavecchia, J. Manera, M. G., Sciliano, P., Sant<strong>in</strong>o, A., Mita, G, Biosens. Bioelectron., 20,<br />

2004, pp. 1140-1148.<br />

[40]. N. C. Cady, A. D. Strickland, C. A. Batt, Optimized l<strong>in</strong>kage and quench<strong>in</strong>g strategies for quantum dot<br />

molecular beacons, Mol. Cell. Probes, 21, 2007, pp. 116-124.<br />

[41]. Han, X. Gao, J. Z. Su, S. Nie, Quantum-dot tagged microbeads for multiplexed optical cod<strong>in</strong>g of<br />

biomolecules, Nature Publish<strong>in</strong>g Group, 19, 2001, pp. 631-635.<br />

[42]. X. Liu, W. Farmerie, S. Schuster, W. Tan, Molecular beacons for <strong>DNA</strong> biosensors with micrometer to<br />

submicrometer dimensions, Anal. Biochem., 283, 2000, pp. 56-63.<br />

[43]. Hansen, J. Wang, A. N. Kawde, Y. Xiang, V. Gothelf, G. Coll<strong>in</strong>s, Quantum dot aptamer based<br />

ultrasensitive multi analyte electrochemical biosensor, J. Am. Chem. Soc., 128, 7, 2006, pp. 2228-2229.<br />

[44]. Chun-Yang Zhang, Hs<strong>in</strong>-Chih Yeh, M. T. Kuroki, Tza-Huei Wang, S<strong>in</strong>gle quantum-dot-based <strong>DNA</strong><br />

nanosensor, Nature Materials, 4, 2005, pp. 826-830.<br />

[45]. N. Prabhakar, K. Arora, S. P. S<strong>in</strong>gh, H. S<strong>in</strong>gh, B. D. Malhotra, <strong>DNA</strong> entrapped polypyrrole-polyv<strong>in</strong>yl<br />

sulfonate film for application to electrochemical biosensor, Anal. Biochem., 366, 2007, pp. 71-79.<br />

[46]. K. Arora, N. Prabhakar, S. Chand, B. D. Malhotra, Escherichia coli Genosensor Based on Polyanil<strong>in</strong>e,<br />

Anal. Chem., 79, 2007, pp. 6152-6158.<br />

[47]. K. Arora, N. Prabhakar, S. Chand, B. D. Malhotra, Immobilization of s<strong>in</strong>gle stranded <strong>DNA</strong> probe onto<br />

polypyrrole-polyv<strong>in</strong>yl sulfonate for application to <strong>DNA</strong> hybridization biosensor, Sensors Actuators B, 126,<br />

2007, pp. 655-663.<br />

131


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

[48]. H. C. M. Yau, H. L. Chan, M. Yang, Electrochemical properties of <strong>DNA</strong>-<strong>in</strong>tercalat<strong>in</strong>g doxorubic<strong>in</strong> and<br />

methylene blue on n-hexadecyl mercaptan-doped 5’-thiol-labeled <strong>DNA</strong>-modified gold electrodes,<br />

<strong>Biosensor</strong>s Bioelectronics, 18, 2003, pp. 873-879.<br />

[49]. J. Gu, X. Lu, H. Ju, <strong>DNA</strong> Sensor for recognition of native yeast <strong>DNA</strong> sequence with methylene blue as an<br />

electrochemical hybridization <strong>in</strong>dicator, Electroanalysis, 14, 13, 2002, pp. 949-953.<br />

[50]. R. R. K. Reddy, A. Chadha, E. Bhattacharya, Porous silicon based potentiometric triglyceride biosensor,<br />

Biosens. Bioelectron., 16, 2001, pp. 313-317.<br />

[51]. P. Kara, K. Kerman, D. Ozkan, B. Meric, A. Erdem, Z. Ozkan, M. Ozsoz, Electrochemical genosensor for<br />

the detection of <strong>in</strong>teraction between methylene blue and <strong>DNA</strong>, Electrochem. Commun., 4, 2002,<br />

pp. 705-709.<br />

[52]. A. Erdem, K. Kerman, B. Meric, M. Ozsoz, Methylene blue as a novel electrochemical hybridization<br />

<strong>in</strong>dicator, Electroanalysis, 13, 3, 2001, pp. 219-223.<br />

[53]. K. Arora, B. D. Malhotra, Applications of conduct<strong>in</strong>g polymer based <strong>DNA</strong> biosensors, Appl. Phys., <strong>in</strong> the<br />

21 st century, 2008, pp. 1-20.<br />

[54]. Kerman, M. Kobayashi, E. Tamiya, <strong>Recent</strong> trends <strong>in</strong> electrochemical <strong>DNA</strong> biosensor technology, Meas.<br />

Sci. Technol., 15, 2004, pp. 1-11.<br />

[55]. F. Lucarelli, S. Tombelli, M. M<strong>in</strong>unni, G. Marrazza, M. Masc<strong>in</strong>i, Electrochemical and peizoelectric <strong>DNA</strong><br />

biosensor for hybridization detection, Anal Chim Acta, 609, 2008, pp. 139-159.<br />

[56]. G. Cheng, J. Zhao, Y. Tu, P. He, Y. Fang, A sensitive <strong>DNA</strong> electrochemical biosensor based on magnetite<br />

with a glassy carbon electrode modified by multi-walled carbon nanotubes <strong>in</strong> polypyrrole, Anal Chim Acta,<br />

533, 2005, pp. 11-16.<br />

[57]. M. Masc<strong>in</strong>i, I. Palchetti, G. Murazza, <strong>DNA</strong> electrochemical biosensor, Fresenius J. Anal Chem., 369, 2001,<br />

pp. 15-22.<br />

[58]. L. A. Chrisey, G. U. Lee, C. E. O. Ferrall, Covalent attachment of synthetic <strong>DNA</strong> to self-assembled<br />

monolayer films, Nucl. Acids Res., 24, 15, 1996, pp. 3031-3039.<br />

[59]. R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetal, I. Karube, Biosens. Biochips, John Willey & Sons,<br />

2007.<br />

[60]. J. Wang, From <strong>DNA</strong> biosensors to gene chips, Nucl . Acid. Res., 28, 16, 2008, pp. 3011-3016.<br />

[61]. G. Marrazza, I. Ch<strong>in</strong>ella, M. Masc<strong>in</strong>i, Disposable <strong>DNA</strong> electrochemical sensor for hybridization detection,<br />

Biosens. Bioelectron., 14, 1999, pp. 43-51.<br />

[62]. H. P<strong>in</strong>gang, X, Y<strong>in</strong>g, F. Yuzhi, Application of carbon nanotubes <strong>in</strong> electrochemical <strong>DNA</strong> biosensor<br />

(Review), Microchim Acta, 152, 2006, pp. 175-186.<br />

[63]. W. Yang, M. Ozsoz, D. B. Hibbert, J. J. Good<strong>in</strong>g, Evidence for the direct <strong>in</strong>teraction between methylene<br />

blue and guan<strong>in</strong>e bases us<strong>in</strong>g <strong>DNA</strong>-modified carbon paste electrodes, Electroanalysis, 14, 18, 2002,<br />

pp. 1299-1302.<br />

[64]. K. Yanmashita, M. Takagi, H. Kondo, S. Takenaka, Electrochemical detection of nucleic base mismatches<br />

with ferrocenyl naphthalene diimide, Anal. Biochem., 306, 2, 2002, pp. 188-196.<br />

[65]. S. Tombelli, M. Masc<strong>in</strong>i, L. Bracc<strong>in</strong>i, M. Anich<strong>in</strong>i, A. P. F. Turner, Coupl<strong>in</strong>g of a <strong>DNA</strong> piezoelectric<br />

biosensor and polymerase cha<strong>in</strong> reaction to detect apolipoprote<strong>in</strong>- E polymorphisms, Biosens. Bioelectron.,<br />

15, 2000, pp. 363-370.<br />

[66]. M. Lazerges, H. Perrot, N. Zeghib, E. Anto<strong>in</strong>e, C. Compere, In situ QCM <strong>DNA</strong> biosensor probe<br />

modification, Sens. Actuators B, 120, 2006, pp. 329-337.<br />

[67]. A. Kumar, <strong>Biosensor</strong>s based on piezoelectric crystal detectors: Theory and applications, JOM, 52, 10,<br />

2000, pp. 1-10.<br />

[68]. M. Lazerges, H. Perrot, E. Anto<strong>in</strong>e, A. Defonta<strong>in</strong>e, C. Compere, Oligonucleotide quartz Crystal<br />

microbalance sensor for the microalgae Alexandrium m<strong>in</strong>utum (D<strong>in</strong>ophyceae), Biosens. Bioelectron., 21,<br />

2006, pp. 1355-1358.<br />

[69]. M. Ye, S. V. Letcher, A. G. Rand, Piezoelectric biosensor for detection of Salmonella typhimurium, J.<br />

Food Sci., 62, 5, 1997, pp. 1067-76.<br />

[70]. R. B. Towery, N. C. Fawcett, P. Zhang, J. A. Evans, Genomic <strong>DNA</strong> hybridizes with the same rate constant<br />

on the QCM biosensor as <strong>in</strong> homogeneous solution, Biosens. Bioelectron., 16, 2001, pp. 1-8.<br />

[71]. I. Mannelli, M. M<strong>in</strong>unni, S. Tombelli, M. Masc<strong>in</strong>i, Quartz crystal microbalance (QCM) aff<strong>in</strong>ity biosensor<br />

for genetically modified organisms (GMOs) detection, Biosens. Bioelectron., 18, 2003, pp. 129-140.<br />

[72]. M. Stobiecka, J. M. Ciesla, B. Janowska, B. Tudek, H. Radecka, Piezoelectric sensors for determ<strong>in</strong>ation of<br />

genetically modified soybean roundup ready <strong>in</strong> samples not amplified by PCR, Sensors, 7, 2007,<br />

pp. 1462-1459.<br />

132


Sensors & Transducers Journal, Vol. 92, Issue 5, May 2008, pp. 122-133<br />

[73]. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirk<strong>in</strong>, R. L. Lets<strong>in</strong>ger, One-pot colorimetric<br />

differentiation of polynucleotides with s<strong>in</strong>gle base imperfections us<strong>in</strong>g gold nanoparticle probes, J. Am.<br />

Chem. Soc., 120, 1998, pp. 1959-1964.<br />

[74]. Juewen Liu, Yi Lu, Calorimetric biosensors based on <strong>DNA</strong>zyme-assembled gold nanoparticles, Fluores.,<br />

14, 4, 2004, pp. 343-354.<br />

[75]. K. Sato, K. Hosokawa, M. Maeda, Colorimetric biosensor based on <strong>DNA</strong> nanoparticle conjugates, Anal.<br />

Sci., 23, 2007, pp. 17-20.<br />

[76]. K. Glynou, P. C. Loannou, T. K. Christopoulos, V. Syriopoulou, Oligonucleotide-functionalized gold<br />

nanoparticles as probes <strong>in</strong> a dry-reagent strip biosensor for <strong>DNA</strong> analysis by hybridization, Anal Chem., 75,<br />

2003, pp. 4155-4160.<br />

[77]. T. A. Taton, C. A. Mirk<strong>in</strong>, R. L. Lets<strong>in</strong>ger, Scanometric <strong>DNA</strong> array detection with nanoparticle probes,<br />

Science, 289, 2000, pp. 1757-1760.<br />

[78]. M. Ramsay, <strong>DNA</strong> chip: state-of-the art, Nat. Biotechnol., 16, 1998, pp. 40-44.<br />

[79]. C. Peter, M. Meusel, F. Grawe, A. Katerkamp, K. Cammann, Optical <strong>DNA</strong>-sensor chip for real time<br />

detection of hybridization events, Fresenius J. Anal. Chem., 371, 2001, pp. 120-127.<br />

[80]. J. A. Ferguson, T. C. Boles, C. P. Adams, D. R. Walt, A fiber-optic <strong>DNA</strong> biosensor microarray for the<br />

analysis of gene expression, Nat. Biotech., 14, 1996, pp. 1681-1684.<br />

[81]. E. Palecek, Oscillographic polarography of highly polymerized deoxyribonucleic acid, Nature, 188, 1960,<br />

pp. 656-657.<br />

[82]. S. Y. Yurish, Intelligent Opto sensors <strong>in</strong>terfac<strong>in</strong>g based on universal frequency-to-digital converter, Sens.<br />

Transducers Journal, 56, 6, 2005, pp. 326-334.<br />

[83]. B. Nazario, An Introduction to Fiber-Optic Sensors, Sensors Magaz<strong>in</strong>e, December 2001.<br />

[84]. L. Byoungho, Review of the present status of optical fiber sensors, Optical Fiber Technology, 9(2), 2003,<br />

pp. 57-79.<br />

___________________<br />

2008 Copyright ©, <strong>International</strong> <strong>Frequency</strong> Sensor Association (IFSA). All rights reserved.<br />

(http://www.sensorsportal.com)<br />

133


Sensors & Transducers Journal<br />

Guide for Contributors<br />

Aims and Scope<br />

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology<br />

of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and<br />

application specific papers, short notes, letters to Editor and sensors related books reviews as well as<br />

academic, practical and commercial <strong>in</strong>formation of <strong>in</strong>terest to its readership. Because it is an open access, peer<br />

review <strong>in</strong>ternational journal, papers rapidly published <strong>in</strong> Sensors & Transducers Journal will receive a very high<br />

publicity. The journal is published monthly as twelve issues per annual by <strong>International</strong> <strong>Frequency</strong> Association<br />

(IFSA). In additional, some special sponsored and conference issues published annually.<br />

Topics Covered<br />

Contributions are <strong>in</strong>vited on all aspects of research, development and application of the science and technology<br />

of sensors, transducers and sensor <strong>in</strong>strumentations. Topics <strong>in</strong>clude, but are not restricted to:<br />

• Physical, chemical and biosensors;<br />

• Digital, frequency, period, duty-cycle, time <strong>in</strong>terval, PWM, pulse number output sensors and transducers;<br />

• Theory, pr<strong>in</strong>ciples, effects, design, standardization and model<strong>in</strong>g;<br />

• Smart sensors and systems;<br />

• Sensor <strong>in</strong>strumentation;<br />

• Virtual <strong>in</strong>struments;<br />

• Sensors <strong>in</strong>terfaces, buses and networks;<br />

• Signal process<strong>in</strong>g;<br />

• <strong>Frequency</strong> (period, duty-cycle)-to-digital converters, ADC;<br />

• Technologies and materials;<br />

• Nanosensors;<br />

• Microsystems;<br />

• Applications.<br />

Submission of papers<br />

Articles should be written <strong>in</strong> English. Authors are <strong>in</strong>vited to submit by e-mail editor@sensorsportal.com 6-14<br />

pages article (<strong>in</strong>clud<strong>in</strong>g abstract, illustrations (color or grayscale), photos and references) <strong>in</strong> both: MS Word<br />

(doc) and Acrobat (pdf) formats. Detailed preparation <strong>in</strong>structions, paper example and template of manuscript<br />

are available from the journal’s webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors<br />

must follow the <strong>in</strong>structions strictly when submitt<strong>in</strong>g their manuscripts.<br />

Advertis<strong>in</strong>g Information<br />

Advertis<strong>in</strong>g orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit:<br />

http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2008.pdf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!