01.09.2014 Views

A modified fundamental measure theory for spherical particles in ...

A modified fundamental measure theory for spherical particles in ...

A modified fundamental measure theory for spherical particles in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Chem. Phys., Vol. 119, No. 4, 22 July 2003 Spherical <strong>particles</strong> <strong>in</strong> microchannels<br />

2291<br />

V ext rk B T lnr 3 <br />

<br />

k B T dr <br />

n <br />

rr . 23<br />

For <strong>spherical</strong> <strong>particles</strong> conf<strong>in</strong>ed <strong>in</strong> microchannels, the density<br />

profiles are <strong>in</strong>variant <strong>in</strong> the z direction. The external potential<br />

due to the hard walls is equivalent to impose 0 outside of<br />

the boundaries.<br />

The chemical potential <strong>in</strong> Eq. 23 can be calculated<br />

from that correspond<strong>in</strong>g to a bulk fluid<br />

k B T ln b 3 b ,<br />

24<br />

where ( b ) is the derivative of the bulk residue Helmholtz<br />

energy density with respect to the bulk density b .<br />

For hard spheres, ( b ) is calculated from the Carnahan–<br />

Starl<strong>in</strong>g equation of state and <strong>for</strong> associat<strong>in</strong>g spheres, it is<br />

calculated from SAFT. A comparison of Eqs. 23 and 24<br />

yields the density profile <strong>in</strong> microchannels<br />

x,y b exp b b b <br />

dr <br />

<br />

rr. 25<br />

n <br />

As discussed <strong>in</strong> our previous works, 22,25 Eq. 25 can be<br />

solved numerically us<strong>in</strong>g the Picard-type iterative method.<br />

The weighted densities and the <strong>in</strong>tegrals <strong>in</strong> Eq. 25 are<br />

evaluated us<strong>in</strong>g Gauss <strong>for</strong>mulas because they are improper<br />

<strong>in</strong>tegrals.<br />

IV. RESULTS AND DISCUSSION<br />

We have per<strong>for</strong>med NVT simulations <strong>for</strong> neutral hard<br />

spheres of uni<strong>for</strong>m size conf<strong>in</strong>ed <strong>in</strong> a hard rectangular channel<br />

with fixed height h9 and length l14. The twodimensional<br />

density profiles and the chemical potentials<br />

with<strong>in</strong> the channel are calculated at the follow<strong>in</strong>g averaged<br />

reduced densities: av 3 0.42, 0.53, 0.66, 0.72, 0.78, 0.87,<br />

and 0.93. Here the averaged density with<strong>in</strong> the channel is<br />

def<strong>in</strong>ed as<br />

av <br />

N<br />

,<br />

26<br />

L•H•L z<br />

where N is the number of <strong>particles</strong> used <strong>in</strong> the simulation<br />

L(l1), H(h1), and L z is the length of the simulation<br />

box <strong>in</strong> the z direction.<br />

The reduced excess chemical potential of a hard sphere<br />

<strong>in</strong> the microchannel is related to the probability of successful<br />

<strong>in</strong>sertions p by<br />

ex k B T ln p.<br />

27<br />

In the orig<strong>in</strong>al particle-<strong>in</strong>sertion method proposed by<br />

Widom, 17 the test particle is identical to the real <strong>particles</strong>. In<br />

Table I, we present the probabilities of successful <strong>in</strong>sertion<br />

us<strong>in</strong>g Widom’s method at various average densities <strong>in</strong> the<br />

rectangular channel. Figure 1 presents the standard deviations<br />

<strong>in</strong> evaluation of these probabilities calculated from an<br />

error estimation method proposed by Flyvbjerg and<br />

Petersen. 27 Because the probability of successful <strong>in</strong>sertion is<br />

TABLE I. Monte Carlo simulation results <strong>for</strong> the probability of successful<br />

<strong>in</strong>sertion us<strong>in</strong>g Widom’s method, the excess chemical potentials (*<br />

ex av /k B T) from Widom’s method ( W<br />

*) and from the polynomial extrapolation<br />

us<strong>in</strong>g Eq. 1 (*), P the reduced R values <strong>in</strong> the polynomial fitt<strong>in</strong>g,<br />

and the reduced densities of the correspond<strong>in</strong>g bulk fluid with the same<br />

chemical potential from * P .<br />

av • 3 p W<br />

* P<br />

* R value b 3<br />

0.42 4.1210 2 3.19 3.19 1.0 0.445<br />

0.53 8.9310 3 4.72 4.72 1.0 0.560<br />

0.66 7.0910 4 7.25 7.25 1.0 0.693<br />

0.72 1.5110 4 8.80 8.80 1.0 0.754<br />

0.78 2.3310 5 10.67 10.68 1.0 0.814<br />

0.87 7.0010 7 14.17 14.19 1.0 0.901<br />

0.93 1.1010 7 16.02 15.97 0.9999 0.937<br />

extremely low at high density, the numerical efficiency of<br />

Widom’s method decl<strong>in</strong>es as the density <strong>in</strong>creases. In this<br />

work, we <strong>measure</strong> the probability of <strong>in</strong>sertion <strong>for</strong> a series of<br />

hard spheres with diameter d rang<strong>in</strong>g from 0.55 to . The<br />

excess chemical potential of the real sphere with diameter<br />

is extrapolated by best fitt<strong>in</strong>g of ex (d) us<strong>in</strong>g Eq. 1.<br />

Figure 2 shows the reduced excess chemical potential as a<br />

function of the diameter of the test<strong>in</strong>g particle at various<br />

average densities.<br />

From the excess chemical potential calculated from the<br />

particle <strong>in</strong>sertion method, we are able to determ<strong>in</strong>e the<br />

chemical potential and the density of the correspond<strong>in</strong>g bulk<br />

fluid from<br />

ex av k B T ln av ex b k B T ln b<br />

28<br />

and an expression <strong>for</strong> the excess chemical potential of the<br />

bulk fluid ex<br />

b from the Carnahan–Starl<strong>in</strong>g equation of<br />

state 28<br />

FIG. 1. The standard deviations <strong>in</strong> sampl<strong>in</strong>g the probability of successful<br />

particle <strong>in</strong>sertion us<strong>in</strong>g Widom’s method. The mean values of the <strong>in</strong>sertion<br />

probabilities are listed <strong>in</strong> Table I.<br />

Downloaded 14 Jul 2003 to 166.111.35.209. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!