09.09.2014 Views

Understanding correlations and localization in the Hubbard model ...

Understanding correlations and localization in the Hubbard model ...

Understanding correlations and localization in the Hubbard model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong><br />

<strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong><br />

from variational calculations<br />

Balázs Hetényi<br />

Institut für Theoretische Physik, Technische Universität Graz, Austria<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 1


Co-workers<br />

H. G. Evertz: Institut für <strong>the</strong>oretische Physik, TU Graz<br />

W. von der L<strong>in</strong>den: Institut für <strong>the</strong>oretische Physik, TU Graz<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 2


Outl<strong>in</strong>e<br />

Introduction: <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong>, variational wavefunctions<br />

The role of <strong>the</strong> exchange hole <strong>in</strong> <strong>the</strong> Gutzwiller approximation<br />

Comb<strong>in</strong>atorial approximation for <strong>the</strong> Baeriswyl wavefunction<br />

The question of <strong>the</strong> total position <strong>in</strong> periodic systems<br />

Implications for <strong>the</strong> <strong>the</strong>ory of polarization<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 3


The <strong>Hubbard</strong> <strong>model</strong><br />

Breakdown of b<strong>and</strong> <strong>the</strong>ory: correlation<br />

Hamiltonian:<br />

H =<br />

hopp<strong>in</strong>g H t<br />

{ }} {<br />

−t ∑<br />

{c † i,σ c j,σ + H.c.} +<br />

〈i,j〉σ<br />

<strong>in</strong>teraction H<br />

{ }} { U<br />

U ∑ n i↑ n i↓<br />

i<br />

Limit<strong>in</strong>g cases: Mott metal-<strong>in</strong>sulator transition<br />

Exact solution known <strong>in</strong> 1D via Be<strong>the</strong> ansatz (Lieb<br />

<strong>and</strong> Wu, 1968): <strong>in</strong>sulator for f<strong>in</strong>ite U.<br />

High-T c superconductivity<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 4


Variational approach<br />

Gutzwiller wavefunction (GWF):<br />

|Ψ G (γ)〉 = exp(−γ ∑ i<br />

n i↑ n i↓ )|FS〉<br />

Baeriswyl wavefunction (BWF):<br />

|Ψ B (α)〉 = exp<br />

⎧<br />

⎨<br />

⎩ −α ⎛<br />

⎝ ∑<br />

〈i,j〉σ<br />

⎞⎫<br />

⎬<br />

c † iσ c jσ + H.c. ⎠<br />

⎭ |Ψ G(γ → ∞)〉<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 5


Gutzwiller wavefunction<br />

Approximate comb<strong>in</strong>atorial solution:<br />

Br<strong>in</strong>kman-Rice transition (U c = 8|¯ǫ|)<br />

Exact solution <strong>in</strong> 1D for GWF metallic behaviour<br />

for f<strong>in</strong>ite U (Metzner <strong>and</strong> Vollhardt, 1987)<br />

GWF is metallic due to <strong>the</strong> lack of phase<br />

dependence of <strong>the</strong> projector operator (Millis <strong>and</strong><br />

Coppersmith, 1991)<br />

Antiferromagnetic <strong>correlations</strong> are well reproduced<br />

by GWF (Horst et al., 1982)<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 6


Gutzwiller approximation<br />

Br<strong>in</strong>kman-Rice transition: transition from a<br />

paramagnetic metal to a paramagnetic <strong>in</strong>sulator.<br />

The Gutzwiller approximation (GA) corresponds to<br />

<strong>the</strong> exact GWF <strong>in</strong> <strong>the</strong> ∞-D limit (Metzner <strong>and</strong><br />

Vollhardt, PRB, 1988; Kotliar <strong>and</strong> Ruckenste<strong>in</strong>, PRL<br />

1986)<br />

GA neglects explicit sp<strong>in</strong> correlation<br />

(configurational averages of <strong>the</strong> non-<strong>in</strong>teract<strong>in</strong>g<br />

reference system enter as comb<strong>in</strong>atorial factors), i.e.<br />

<strong>the</strong> exchange hole is<br />

〈FS|n iσ n jσ ′|FS〉 ≈ 1 − δ σσ ′δ ij .<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 7


Exchange hole<br />

1<br />

0,8<br />

g(r)<br />

0,6<br />

0,4<br />

0,2<br />

1D<br />

2D<br />

3D<br />

Inf<strong>in</strong>ite D<br />

0<br />

0 2 4<br />

r/lattice parameter<br />

Figure 1:<br />

Two-body density for a system of sp<strong>in</strong>less<br />

fermions of various dimensions.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 8


Classification of hopp<strong>in</strong>gs<br />

〈Ψ| |Ψ〉 ∆D<br />

↑ 0 → 0 ↑ 0<br />

↑ ↓ → 0 ↑↓ +1<br />

↑↓ 0 → ↓ ↑ −1<br />

↑↓ ↓ → ↓ ↑↓ 0<br />

Allows writ<strong>in</strong>g <strong>the</strong> hopp<strong>in</strong>g term as a sum of different<br />

classes of hopp<strong>in</strong>gs:<br />

H t = H 0 t + H + t + H − t<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 9


Gutzwiller wavefunction<br />

The GWF can be solved by Monte Carlo sampl<strong>in</strong>g (Yokoyama <strong>and</strong><br />

Shiba, JPSJ, 1986).<br />

Distribution sampled:<br />

P GWF [Ω] = |Det[k;g Ω ]| 2 |Det[l;h Ω ]| 2 exp[−2γD(Ω)].<br />

Hopp<strong>in</strong>g estimator (〈Ψ|c † i↑ c j↑|Ψ〉):<br />

χ ij↑<br />

GWF (Ω) = −tDet∗ [k;g ′ ij<br />

Ω]/Det ∗ [k;g Ω ] ×<br />

exp[−γ∆D(g ′ ij<br />

Ω,g Ω ;h Ω )].<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 10


Gutzwiller approximation<br />

Two step approximation:<br />

Replace Det[k;g Ω ]| 2 <strong>and</strong> Det[l;h Ω ]| 2 by configurational<br />

averages, i.e.<br />

P GA [Ω] = exp[−2γD(Ω)],<br />

but average over configurations with one or zero particles of a<br />

particular sp<strong>in</strong> at each site (Pauli pr<strong>in</strong>ciple).<br />

Replace <strong>the</strong> hopp<strong>in</strong>g estimator with<br />

χ ij↑<br />

GA (Ω) = Aexp[−γ∆D(g′ ij<br />

Ω,g Ω ;h Ω )],<br />

<strong>and</strong> scale A so that <strong>the</strong> result is exact at U = 0.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 11


GA-X<br />

We have <strong>in</strong>vestigated implement<strong>in</strong>g <strong>the</strong> exact exchange hole <strong>in</strong>to <strong>the</strong><br />

GA.<br />

Distribution from exact GWF:<br />

P GWF [Ω] = |Det[k;g Ω ]| 2 |Det[l;h Ω ]| 2 exp[−2γD(Ω)].<br />

Hopp<strong>in</strong>g estimator from GA:<br />

χ ij↑<br />

GA (Ω) = Ãexp[−γ∆D(g′ (ij)<br />

Ω ,g Ω;h Ω )],<br />

<strong>and</strong> scale<br />

à so that <strong>the</strong> result is exact at U = 0.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 12


GA: Br<strong>in</strong>kman-Rice transition<br />

|Energy|/(t*N)<br />

1<br />

0,1<br />

0,01<br />

0,001<br />

N=36<br />

N=60<br />

N=120<br />

N=180<br />

GA (N=∞)<br />

|Hopp<strong>in</strong>g|/(t*N)<br />

1<br />

0,1<br />

0,01<br />

0 5 10 15 20<br />

U/t<br />

0 5 10 15 20<br />

U/t<br />

Figure 2: Total energy <strong>and</strong> hopp<strong>in</strong>g of <strong>the</strong> GA for different<br />

sizes <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> <strong>the</strong>rmodynamic limit.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 13


Comparison: GWF, GA, GA-X<br />

Hopp<strong>in</strong>g energy/t<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

Exact GWF<br />

GA-X<br />

GA<br />

-80<br />

0 1 2 3 4 5<br />

γ<br />

Figure 3: Comparison of <strong>the</strong> hopp<strong>in</strong>g energy for <strong>the</strong> exact<br />

GWF, GA-X, <strong>and</strong> GA calculations for 60 lattice sites.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 14


GA-X vs. GWF with ∞-sites<br />

0<br />

Energy/t<br />

-0,5<br />

-1<br />

-1,5<br />

N=12<br />

N=24<br />

N=36<br />

N=48<br />

N=60<br />

Exact<br />

|Energy|/t<br />

1<br />

0,2<br />

0,04<br />

0 5 10 15 20<br />

U/t<br />

0 5 10 15 20<br />

U/t<br />

Figure 4: Comparison of <strong>the</strong> GA-X calculations with <strong>the</strong><br />

exact solution for <strong>the</strong> GWF <strong>in</strong> <strong>the</strong> <strong>the</strong>rmodynamic limit<br />

(Metzner <strong>and</strong> Vollhardt, PRL, 1990).<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 15


Hopp<strong>in</strong>g for GA-X<br />

1<br />

|Hopp<strong>in</strong>g energy|/(N*t)<br />

0,1<br />

0,01<br />

N=36<br />

N=48<br />

N=60<br />

0 5 10 15 20<br />

U/t<br />

Figure 5: Comparison of <strong>the</strong> hopp<strong>in</strong>g energy based on<br />

GA-X calculations for 36, 48, <strong>and</strong> 60 lattice sites.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 16


Antiferromagnetism<br />

0,03<br />

0,02<br />

Exact GWF<br />

GA-X<br />

GA<br />

<br />

0,01<br />

0<br />

0 5 10 15 20<br />

U/t<br />

Figure 6: Comparison of <strong>the</strong> average of <strong>the</strong> square of <strong>the</strong><br />

staggered magnetism for GWF,GA-X,GA.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 17


Questions<br />

We know that<br />

<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensions <strong>the</strong> exact GWF <strong>and</strong> <strong>the</strong> GA co<strong>in</strong>cide.<br />

<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimensions <strong>the</strong> exchange hole implicit <strong>in</strong> <strong>the</strong> GA is<br />

exact.<br />

We found <strong>in</strong> that<br />

<strong>in</strong> 1D implement<strong>in</strong>g <strong>the</strong> exact hole <strong>in</strong>to <strong>the</strong> GA results <strong>in</strong><br />

quantitative agreement with <strong>the</strong> exact GWF results.<br />

Question: can one generalize this conclusion?<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 18


Uses of <strong>the</strong> GA<br />

Time-dependent GA (Seibold <strong>and</strong> Lorenzana,<br />

(2001))<br />

Multi-orbital <strong>Hubbard</strong> <strong>model</strong> (Bünemann et al. )<br />

Vary<strong>in</strong>g particle number (Edegger et al. 2005)<br />

Resonat<strong>in</strong>g valence bond method (Fazekas <strong>and</strong><br />

Anderson, 1974)<br />

...applied to high-T c (Anderson et al. (2003))<br />

GA was <strong>the</strong> first <strong>in</strong>f<strong>in</strong>ite dimensional solution which<br />

<strong>in</strong>spired <strong>the</strong> DMFT method<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 19


GA applied to BWF<br />

Assumption:<br />

In <strong>the</strong> U = ∞ state <strong>the</strong> momentum states are evenly<br />

distributed, but o<strong>the</strong>rwise uncorrelated<br />

Comb<strong>in</strong>atorial approximation:<br />

Include configurations with only one particle <strong>in</strong> each<br />

momentum state kσ <strong>and</strong> assume probability<br />

P GA−B [Γ] = exp[−2α ∑ k Γ l Γ<br />

(ǫ kΓ + ǫ lΓ )].<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 20


GA applied to BWF: hopp<strong>in</strong>g<br />

〈 ∑<br />

k<br />

ǫ k ñ k,σ<br />

〉<br />

≈<br />

∑<br />

Γ P GA−B[Γ]{ ∑ k Γ ,l Γ<br />

(ǫ kΓ + ǫ lΓ )}<br />

∑<br />

Γ P ,<br />

GA−B[Γ]<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 21


GA applied to BWF: <strong>in</strong>teraction<br />

Rewrite hopp<strong>in</strong>g <strong>in</strong> k space<br />

(<br />

∑<br />

n i↑ n i↓ = 1 ∑<br />

ñ k↑ ñ k<br />

L<br />

′ ↓ − ∑<br />

k,k ′<br />

i<br />

kk ′ q≠0<br />

˜c † k↑˜c† k ′ ↓˜c k+q↑˜c k ′ −q↓<br />

)<br />

.<br />

〈<br />

〉<br />

˜c † k↑˜c† k ↓˜c k+q↑˜c ′ k ′ −q↓<br />

=<br />

B<br />

∑ ′′<br />

Γ P GA−B[Γ]{e −α(ǫ k Γ<br />

+ǫ k ′ −ǫ Γ kΓ +q Γ<br />

−ǫ k ′ Γ −q ) Γ }<br />

∑<br />

Γ P ,<br />

GA−B[Γ]<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 22


GA-GWF vs. GA-BWF<br />

GA-GWF<br />

GA-BWF<br />

Space sampled: r-space k-space<br />

Configurations: one particle per rσ one particle per kσ<br />

Distribution: e −2γD(Ω) e −2α P k Γ l Γ<br />

(ǫ(k Γ )+ǫ(l Γ ))<br />

Hopp<strong>in</strong>g:<br />

Ae −γ∆D(g′ ij<br />

Ω ,g Ω;h Ω )<br />

∑k Γ l Γ<br />

(ǫ kΓ + ǫ lΓ )<br />

Interaction: UD(Ω) Be −α(ǫ k Γ<br />

+ǫ k ′ Γ<br />

−ǫ kΓ +q Γ<br />

−ǫ k ′ Γ −q Γ<br />

)<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 23


12 site system<br />

0<br />

K<strong>in</strong>etic energy<br />

-5<br />

-10<br />

-15<br />

-20<br />

Double occ.<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Exact<br />

Approx.<br />

0<br />

0 1 2 3<br />

α<br />

Figure 7: Exact <strong>and</strong> GA-B k<strong>in</strong>etic <strong>and</strong> <strong>in</strong>teraction energies<br />

for a 12 site system as a function of <strong>the</strong> variational<br />

parameter.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 24


Energy of GA-B<br />

0<br />

-0.1<br />

U=4.5<br />

U=4.05<br />

U=3.5<br />

Energy/t<br />

-0.2<br />

-0.3<br />

-0.4<br />

0 1 2 3 4 5<br />

α<br />

Figure 8: Energy as a function of <strong>the</strong> variational parameter<br />

for different values of <strong>the</strong> <strong>in</strong>teraction strength.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 25


Energy of GA-B<br />

Energy/t<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

GA<br />

Exact Gutzwiller<br />

Exact (Lieb & Wu)<br />

GA-B<br />

0 2 4 6 8 10 12 14 16 18 20<br />

U/t<br />

Figure 9: Energy as a function of <strong>the</strong> <strong>in</strong>teraction strength.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 26


Localization<br />

U 2<br />

0.667<br />

0.666<br />

0.665<br />

0.664<br />

0.663<br />

0.662<br />

L=120<br />

L=160<br />

0.25<br />

U/t<br />

0 5 10 15 20<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

5 10<br />

U/t<br />

15 20<br />

D<br />

Figure 10: Second order B<strong>in</strong>der cumulant <strong>and</strong> double occupation<br />

as a function of <strong>in</strong>teraction strength.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 27


Metal-<strong>in</strong>sulator transition<br />

GA-GWF<br />

GA-BWF<br />

Order: cont<strong>in</strong>uous discont<strong>in</strong>uous<br />

Metallic state: D ≤ 0.25 D = 0.25<br />

Insulator: D = 0 D ≥ 0<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 28


Questions<br />

Characteristics of <strong>the</strong> exchange hole <strong>in</strong> k-space<br />

Solution for D = ∞?<br />

Comb<strong>in</strong>ed GA type approximation for <strong>the</strong><br />

Baeriswyl-Gutzwiller wavefunction?<br />

Lattice quantum Monte Carlo method for <strong>the</strong> BWF<br />

(Yokoyama <strong>and</strong> Shiba type)?<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 29


Localization: criterion for <strong>in</strong>sulator<br />

W. Kohn, Theory of <strong>the</strong> Insulat<strong>in</strong>g State, Phys. Rev.<br />

133 A171 (1964).<br />

Metallicity <strong>and</strong> <strong>in</strong>sulat<strong>in</strong>g behavior can be<br />

dist<strong>in</strong>guished by <strong>the</strong> extent of <strong>localization</strong> <strong>in</strong> <strong>the</strong><br />

system <strong>in</strong> <strong>the</strong> many-body configuration space<br />

How do we quantify <strong>the</strong> extent of <strong>localization</strong> <strong>in</strong><br />

practical situations?<br />

Most often periodic boundary conditions are<br />

used.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 30


Position operator <strong>in</strong> periodic systems<br />

In a periodic system <strong>the</strong> position operator x ill-def<strong>in</strong>ed:<br />

The space on which x is def<strong>in</strong>ed is not <strong>the</strong> same as<br />

<strong>the</strong> space on which a periodic wavefunction φ(x) is<br />

def<strong>in</strong>ed. ∫<br />

dxφ(x) 2 x 2 = ∞<br />

even if φ(x) is normalizable.<br />

For s<strong>in</strong>gle particle states one solution (Blount, 1962)<br />

is to write <strong>the</strong> wave-function as a l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of Bloch functions <strong>and</strong> obta<strong>in</strong> an equivalent<br />

operator:<br />

xf n = i ∂ f n + ∑ <strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> χ nn <strong>in</strong> <strong>the</strong><br />

′f<strong>Hubbard</strong> n ′. <strong>model</strong> from variational calculations – p. 31


Position operator <strong>in</strong> periodic systems<br />

Resta (1998) suggests evaluat<strong>in</strong>g<br />

〈<br />

Z L = exp<br />

(i 2π )〉<br />

L x<br />

.<br />

<strong>and</strong> <strong>the</strong>n obta<strong>in</strong> <strong>the</strong> expectation value of <strong>the</strong> position<br />

operator as<br />

<strong>and</strong> <strong>the</strong> spread as<br />

〈x〉 = L 2π Im lnZ L,<br />

〈x 2 〉 − 〈x〉 2 ≈ −<br />

( L<br />

2π<br />

) 2<br />

ln|Z L |.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 32


Position operator <strong>in</strong> periodic systems<br />

Compound momentum space shift operator U:<br />

(<br />

Uc jσ = exp i 2πx )<br />

j<br />

c jσ U.<br />

L<br />

Total position operator can be def<strong>in</strong>ed as:<br />

X =<br />

∑L−1<br />

m=1<br />

( 1<br />

2 + U m<br />

e −i2πm L − 1<br />

)<br />

.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 33


Position operator <strong>in</strong> periodic systems<br />

Operator X is a many-body operator satisfy<strong>in</strong>g three<br />

conditions:<br />

X is Hermitian<br />

X is <strong>the</strong> generator of compound momentum shifts:<br />

(<br />

U = exp i 2πX )<br />

L<br />

The time derivative of X corresponds to <strong>the</strong> total<br />

current:<br />

Ẋ = i[H, X] = −it ∑<br />

(c † iσ c jσ − c † jσ c iσ).<br />

〈i,j〉σ<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 34


Calculations<br />

Br<strong>in</strong>kman-Rice<br />

Metallic Gutzwiller:<br />

|Ψ G 〉 = exp (−α ∑ i n i↑n i↓ ) |FS〉<br />

Insulat<strong>in</strong>g Gutzwiller:<br />

|Ψ G 〉 = exp (−α ∑ i n i↑n i↓ ) |AFM〉<br />

Quantities calculated:<br />

χ 4 = √ 〈X 4 〉 − 〈X 2 〉 2 /L 2<br />

U 4 = 1 − 〈X4 〉<br />

3〈X 2 〉 2<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 35


Br<strong>in</strong>kman-Rice<br />

0.3<br />

0.2<br />

L=60<br />

L=120<br />

L=180<br />

χ 4<br />

0.1<br />

0<br />

0 5 10 15 20<br />

U/t<br />

Figure 11: χ 4 as a function of <strong>the</strong> variational parameter γ<br />

for <strong>the</strong> Gutzwiller approximation (Br<strong>in</strong>kman-Rice transition).<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 36


Metallic Gutzwiller<br />

0.4<br />

χ 4<br />

0.3<br />

0.2<br />

U 4<br />

0.65<br />

0.6<br />

0.55<br />

0.1<br />

L=36<br />

L=48<br />

L=60<br />

L=72<br />

0 2 4 6<br />

γ<br />

0<br />

0 2 4 6 8<br />

γ<br />

Figure 12: χ 4 <strong>and</strong> U 4 as a function of <strong>the</strong> variational parameter<br />

γ for a metallic wavefunction.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 37


Insulat<strong>in</strong>g Gutzwiller<br />

χ 4<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

L=36<br />

L=48<br />

L=60<br />

L=72<br />

U 4<br />

0.67<br />

0.66<br />

0.65<br />

0.64<br />

0.63<br />

0.62<br />

0 2 4<br />

γ<br />

0 2 4<br />

γ<br />

Figure 13: χ 4 <strong>and</strong> U 4 as a function of <strong>the</strong> variational parameter<br />

γ for an <strong>in</strong>sulat<strong>in</strong>g wavefunction.<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 38


Conclusions<br />

Metallicity <strong>and</strong> antiferromagnetism are <strong>in</strong>troduced<br />

<strong>in</strong>to <strong>the</strong> Gutzwiller approximation via <strong>the</strong> exchange<br />

hole.<br />

Approximation scheme gives metal-<strong>in</strong>sulator<br />

transition for <strong>the</strong> Baeriswyl wavefunction.<br />

Total position operator (for a many body system)<br />

can be derived such that all of its moments can be<br />

evaluated<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 39


Acknowledgments<br />

FWF<br />

HPC-Europa2 Grant<br />

<strong>Underst<strong>and</strong><strong>in</strong>g</strong> <strong>correlations</strong> <strong>and</strong> <strong>localization</strong> <strong>in</strong> <strong>the</strong> <strong>Hubbard</strong> <strong>model</strong> from variational calculations – p. 40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!