11.09.2014 Views

Testing the Equivalence Principle

Testing the Equivalence Principle

Testing the Equivalence Principle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong><br />

Claus Lämmerzahl<br />

Centre for Applied Space Technology and Microgravity (ZARM),<br />

University of Bremen, 28359 Bremen, Germany<br />

DFG Research Training Group “Models of Gravity”<br />

Course “Relativistic Astrophysics and Experimental Gravitation”<br />

Tübingen, June 19, 2012<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 1 / 99


The Bremen drop tower<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 2 / 99


The Bremen drop tower<br />

Space Science<br />

Fundamental Physics<br />

Key Technologies<br />

Control systems<br />

Space technology<br />

Micro satellites<br />

Fluid mechanics<br />

Fluid dynamics<br />

Energy and propulsion<br />

Computational fluid<br />

dynamics<br />

Experimental fluid<br />

mechanics<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 3 / 99


Outline<br />

1 Introduction<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 4 / 99


Outline<br />

1 Introduction<br />

Introduction<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 5 / 99


Geometrization<br />

Introduction<br />

There are 2 aspects of geometry<br />

1 configuration space and/or internal space<br />

2 gravity = geometrization of interaction<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 6 / 99


Geometrization<br />

Introduction<br />

There are 2 aspects of geometry<br />

1 configuration space and/or internal space<br />

2 gravity = geometrization of interaction<br />

most important formula for physics (and ma<strong>the</strong>matics)<br />

m i ẍ = F<br />

model for force<br />

F = −m g ∇U U = Newton potential , ∆U =4πρ<br />

acceleration<br />

ẍ = − m g<br />

m i<br />

∇U<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 6 / 99


Introduction<br />

Observation: Universality of Free Fall<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 7 / 99


Geometrization<br />

Introduction<br />

acceleration<br />

observation<br />

a = ẍ = − m g<br />

m i<br />

∇U<br />

η = a 2 − a 1<br />

1<br />

1<br />

2<br />

2 (a 1 + a 1 ) = (<br />

mg<br />

(<br />

mg<br />

m i<br />

−<br />

)2<br />

m i<br />

(( (<br />

)1<br />

mg mg<br />

m i<br />

+<br />

m<br />

)2 i<br />

)1<br />

idealization: <strong>Equivalence</strong> <strong>Principle</strong> m g = m i<br />

⇒ path does not depend on particle ↔ geometry<br />

) ≤ 2 · 10 −13<br />

<strong>Equivalence</strong> <strong>Principle</strong> = geometrization of gravitational interaction<br />

More advanced question: Why can relativistic gravity be described by a<br />

Riemannian geometry?<br />

Answer: universality principles, <strong>Equivalence</strong> <strong>Principle</strong>s, ...<br />

Remark: Will point to usually hidden assumltions ...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 8 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Universality principles<br />

Introduction<br />

Gravity acts always and everywhere<br />

Gravity can be transformed away<br />

Gravity acts on all kinds of matter<br />

Gravity acts on all kinds of matter in <strong>the</strong> same way<br />

Gravity acts on all kinds of clocks<br />

Gravity acts on all kinds of clocks in <strong>the</strong> same way<br />

Gravity is created from all kinds of matter<br />

Gravity is created from all kinds of matter in <strong>the</strong> same way<br />

gravity ⇔ universality principles ⇔ gravity = geometry<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 9 / 99


Introduction<br />

Structure of standard physics<br />

Einstein <strong>Equivalence</strong> <strong>Principle</strong><br />

Universality<br />

of Free Fall<br />

Universality of<br />

Gravitat. Redshift<br />

Lorentz<br />

Invariance<br />

Equations of motion for matter<br />

Maxwell–equation<br />

Dirac–equation<br />

Matter determines<br />

gravity<br />

Gravity determines<br />

dynamics<br />

General Relativity<br />

Gravity = Metric<br />

Einstein–equations<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 10 / 99


The present situation<br />

Introduction<br />

All aspects of Lorentz invariance are experimentally well tested and confirmed<br />

Foundations<br />

Postulates<br />

c = const<br />

<strong>Principle</strong> of Relativity<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 11 / 99


The present situation<br />

Introduction<br />

All aspects of Lorentz invariance are experimentally well tested and confirmed<br />

Foundations<br />

Postulates<br />

c = const<br />

<strong>Principle</strong> of Relativity<br />

Tests<br />

Independence of c from<br />

velocity of <strong>the</strong> source<br />

Universality of c<br />

Isotropy of c<br />

Independence of c from<br />

velocity of <strong>the</strong> laboratory<br />

Time dilation<br />

Isotropy of physics<br />

(Hughes–Drever<br />

experiments)<br />

Independence of physics from<br />

<strong>the</strong> velocity of <strong>the</strong> laboratory<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 11 / 99


The present situation<br />

Introduction<br />

Many aspects of <strong>the</strong> Universality of Free Fall are experimentally well tested and<br />

confirmed<br />

Postulate<br />

In a gravitational field all<br />

structureless test particles fall in<br />

<strong>the</strong> same way<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 12 / 99


The present situation<br />

Introduction<br />

Many aspects of <strong>the</strong> Universality of Free Fall are experimentally well tested and<br />

confirmed<br />

Postulate<br />

In a gravitational field all<br />

structureless test particles fall in<br />

<strong>the</strong> same way<br />

Tests<br />

UFF for<br />

Neutral bulk matter<br />

Charged particles<br />

Particles with spin<br />

No test so far for<br />

Anti particles<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 12 / 99


The present situation<br />

Introduction<br />

Many aspects of <strong>the</strong> Universality of <strong>the</strong> Gravitational Redshift are experimentally<br />

well tested and confirmed<br />

Postulate<br />

In a gravitational field all clocks<br />

behave in <strong>the</strong> same way<br />

g<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 13 / 99


The present situation<br />

Introduction<br />

Many aspects of <strong>the</strong> Universality of <strong>the</strong> Gravitational Redshift are experimentally<br />

well tested and confirmed<br />

Postulate<br />

In a gravitational field all clocks<br />

behave in <strong>the</strong> same way<br />

g<br />

Tests<br />

UGR for<br />

Atomic clocks: electronic<br />

Atomic clocks: hyperfine<br />

Molecular clocks: vibrational<br />

Molecular clocks: rotational<br />

Resonators<br />

Nuclear transitions<br />

No test so far for<br />

Anti clocks<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 13 / 99


The present situation<br />

Introduction<br />

All predictions of General Relativity are experimentally well tested and confirmed<br />

Foundations<br />

The Einstein <strong>Equivalence</strong><br />

<strong>Principle</strong><br />

Universality of Free Fall<br />

Universality of Gravitational<br />

Redshift<br />

Local Lorentz Invariance<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 14 / 99


The present situation<br />

Introduction<br />

All predictions of General Relativity are experimentally well tested and confirmed<br />

Foundations<br />

The Einstein <strong>Equivalence</strong><br />

<strong>Principle</strong><br />

Universality of Free Fall<br />

Universality of Gravitational<br />

Redshift<br />

Local Lorentz Invariance<br />

Implication<br />

⇓<br />

Gravity is a metrical <strong>the</strong>ory<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 14 / 99


The present situation<br />

Introduction<br />

All predictions of General Relativity are experimentally well tested and confirmed<br />

Foundations<br />

The Einstein <strong>Equivalence</strong><br />

<strong>Principle</strong><br />

Universality of Free Fall<br />

Universality of Gravitational<br />

Redshift<br />

Local Lorentz Invariance<br />

Implication<br />

⇓<br />

Gravity is a metrical <strong>the</strong>ory<br />

⇒<br />

Predictions for metrical <strong>the</strong>ories<br />

Solar system effects<br />

Perihelion shift<br />

Gravitational redshift<br />

Deflection of light<br />

Gravitational time delay<br />

Lense–Thirring effect<br />

Schiff effect<br />

Strong gravitational fields<br />

Binary systems<br />

Black holes<br />

Gravitational waves<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 14 / 99


The present situation<br />

Introduction<br />

All predictions of General Relativity are experimentally well tested and confirmed<br />

Foundations<br />

The Einstein <strong>Equivalence</strong><br />

<strong>Principle</strong><br />

Universality of Free Fall<br />

Universality of Gravitational<br />

Redshift<br />

Local Lorentz Invariance<br />

Implication<br />

⇓<br />

Gravity is a metrical <strong>the</strong>ory<br />

⇒<br />

Predictions for metrical <strong>the</strong>ories<br />

Solar system effects<br />

Perihelion shift<br />

Gravitational redshift<br />

Deflection of light<br />

Gravitational time delay<br />

Lense–Thirring effect<br />

Schiff effect<br />

Strong gravitational fields<br />

Binary systems<br />

Black holes<br />

Gravitational waves<br />

⇓<br />

General Relativity<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 14 / 99


Outline<br />

1 Introduction<br />

A more detailed analysis<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 15 / 99


Outline<br />

1 Introduction<br />

A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 16 / 99


A more detailed analysis<br />

Consequences of <strong>the</strong> UFF<br />

Implications of <strong>the</strong> UFF<br />

Trajectories<br />

Trajectory of a particle x = x(p; t)<br />

p = particle parameter (e.g. mass, charge, etc)<br />

UFF ⇒ trajectory does not depend on particle parameters x = x(t)<br />

This is already <strong>the</strong> geometrization of <strong>the</strong> gravitational interaction.<br />

But: which geometry?<br />

The set of all trajectories is a path structure,<br />

no differential equation fixed, may depend on its history<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 17 / 99


A more detailed analysis<br />

Consequences of <strong>the</strong> UFF<br />

Implications of <strong>the</strong> UFF<br />

<strong>Principle</strong> of scientific determinism<br />

future of particle determined by its past (Hille & Phillips 1957)<br />

through integral equation or differential equation of infinite order ...<br />

∫ t<br />

x(t) =x 0 + f(x(t ′ ),t ′ )dt ′<br />

t 0<br />

⇒ 0=<br />

One can in principle calculate geodesic deviation, and all that ...<br />

∞∑<br />

i=0<br />

g(x(t),t) di<br />

dt i x(t)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 18 / 99


A more detailed analysis<br />

Consequences of <strong>the</strong> UFF<br />

Implications of <strong>the</strong> UFF<br />

One needs more to arrive at our well known equations of motion ...<br />

Order of equations of notion / Cauchy problem<br />

Newton’s setup: trajectory determined through (also interacting particles)<br />

initial position x 0 = x(t 0) and<br />

initial velocity v 0 =ẋ(t 0).<br />

⇒ ordinary differential equations of second order:<br />

ẍ µ = H µ (p; x, ẋ)<br />

Here we do not consider consequences of fundamental equations of motion<br />

Radiation back reaction: differential equation of higher order<br />

Extended bodies: differential equation of higher order<br />

We are dealing with <strong>the</strong> fundamental equations of motion <strong>the</strong>mself<br />

Question: Why <strong>the</strong> fundamental equations of motion are of second order?<br />

Equivalent to questioning Newton’s second axiom<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 19 / 99


A more detailed analysis<br />

Consequences of <strong>the</strong> UFF<br />

Implications of <strong>the</strong> UFF<br />

UFF + second order<br />

equation of motion<br />

ẍ µ = H µ (x, ẋ)<br />

equation of motion does not depend on particle parameter p<br />

equation of motion is of second order<br />

this defines a curve structure<br />

Gravity cannot be transformed away:<br />

Acceleration towards <strong>the</strong> center of Earth<br />

depends on horizontal velocity<br />

Condition to be able to transform away<br />

gravity is stronger <strong>the</strong>n pure UFF.<br />

Implies several effects: G(T ), violationof<br />

UGR, ...<br />

a 1<br />

a 2<br />

v<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 20 / 99


A more detailed analysis<br />

The free fall: The notions<br />

Implications of <strong>the</strong> UFF<br />

Gravity can be transformed away<br />

∃ coordinate system ∀ particles : ẍ =0<br />

Then in an arbitrary coordinate system<br />

ẍ µ = −Γ µ ρσ(x)ẋ ρ ẋ σ<br />

autoparallel equation (without back reaction!)<br />

Need still relation between <strong>the</strong> connection Γ µ ρσ(x) and <strong>the</strong> metric g µν<br />

g µν related to LLI: LLI ⇒ exists coordinate system so that light is<br />

characterized by η µν l µ l ν =0.<br />

Defines conformal class of Riemannian metrics: [g µν ]={g ′ µν|g ′ µν = e φ g µν }.<br />

Connection established through requirement of causality.<br />

definition: reading of clock ds 2 = ∫ g µν dx µ dx ν along path of clock<br />

φ = const from UGR.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 21 / 99


Outline<br />

1 Introduction<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 22 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Description of tests of <strong>the</strong> universality principles<br />

Purpose: parametrization of deviations, comparison of different experiments<br />

Haugan formalism (Haugan, AP 1979)<br />

Ansatz: effective atomic Hamiltonian (from modified Dirac and modified Maxwell)<br />

( )<br />

H = mc 2 + 1<br />

(<br />

δ ij + δmij i<br />

p i p j + m δ ij + δm )<br />

gij<br />

U ij (x)+...<br />

2m m<br />

m<br />

with<br />

δm iij = anomalous inertial mass tensor (depends on atom and state)<br />

δm gij = anomalous gravitational mass tensor ( ” )<br />

∫ (x − x<br />

U ij ′ ) i (x − x ′ ) j ρ(x ′ )<br />

= G<br />

|x − x ′ | 3 d 3 x ′ , δ ij U ij = U<br />

for vanishing anomalous terms<br />

H = mc 2 + p2<br />

2m + mU(x)+...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 23 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Part of a larger scheme: Hierarchy of <strong>the</strong>ories<br />

Full<br />

<strong>the</strong>ory<br />

Quantum Gravity<br />

Experiment<br />

Observation<br />

Clock readout<br />

Interference fringes<br />

acceleration<br />

counting events<br />

...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 24 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Part of a larger scheme: Hierarchy of <strong>the</strong>ories<br />

Full<br />

<strong>the</strong>ory<br />

Quantum Gravity<br />

derived<br />

Effective<br />

<strong>the</strong>ory<br />

Dilaton scenarios<br />

Axion fields<br />

Torsion<br />

...<br />

Experiment<br />

Observation<br />

Clock readout<br />

Interference fringes<br />

acceleration<br />

counting events<br />

...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 24 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Part of a larger scheme: Hierarchy of <strong>the</strong>ories<br />

Full<br />

<strong>the</strong>ory<br />

Quantum Gravity<br />

derived<br />

Effective<br />

<strong>the</strong>ory<br />

Phenomenology<br />

Test <strong>the</strong>ory<br />

Experiment<br />

Observation<br />

Dilaton scenarios<br />

Axion fields<br />

Torsion<br />

...<br />

Standard Model Extension<br />

PPN formalism<br />

c 2 –formalism<br />

Robertson–Mansouri–Sexl<br />

THɛµ–formalism<br />

χ − g–formalism<br />

...<br />

Clock readout<br />

Interference fringes<br />

acceleration<br />

counting events<br />

...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 24 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Part of a larger scheme: Hierarchy of <strong>the</strong>ories<br />

Full<br />

<strong>the</strong>ory<br />

Quantum Gravity<br />

derived<br />

Effective<br />

<strong>the</strong>ory<br />

⊂<br />

Phenomenology<br />

Test <strong>the</strong>ory<br />

Experiment<br />

Observation<br />

Dilaton scenarios<br />

Axion fields<br />

Torsion<br />

...<br />

Standard Model Extension<br />

PPN formalism<br />

c 2 –formalism<br />

Robertson–Mansouri–Sexl<br />

THɛµ–formalism<br />

χ − g–formalism<br />

...<br />

Clock readout<br />

Interference fringes<br />

acceleration<br />

counting events<br />

...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 24 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Part of a larger scheme: Hierarchy of <strong>the</strong>ories<br />

Full<br />

<strong>the</strong>ory<br />

Quantum Gravity<br />

derived<br />

Test <strong>the</strong>ories<br />

mediate between<br />

experiment and full <strong>the</strong>ory<br />

Effective<br />

<strong>the</strong>ory<br />

⊂<br />

Phenomenology<br />

Test <strong>the</strong>ory<br />

Experiment<br />

Observation<br />

Dilaton scenarios<br />

Axion fields<br />

Torsion<br />

...<br />

Standard Model Extension<br />

PPN formalism<br />

c 2 –formalism<br />

Robertson–Mansouri–Sexl<br />

THɛµ–formalism<br />

χ − g–formalism<br />

...<br />

Clock readout<br />

Interference fringes<br />

acceleration<br />

counting events<br />

...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 24 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Description of tests of <strong>the</strong> universality principles<br />

Universality of Free Fall<br />

Canonical equations<br />

a i = δ ij ∂ j U(x)+ δmij i<br />

m ∂ jU(x)+δ ij δm gkl<br />

m<br />

∂ jU kl (x)<br />

For diagonal mass tensors δm iij = δm i δ ij , δm gij = δm g δ ij :<br />

a i = δ ij m g<br />

m i<br />

∂ j U<br />

Comparison of acceleration of two different particles: Eötvös coefficient<br />

η = a 2 − a 1<br />

1<br />

2 (a 2 + a 1 ) = (m g/m i ) 2<br />

− (m g /m i )<br />

( 1<br />

)<br />

1 (mg /m i ) 2<br />

+(m g /m i ) 1<br />

2<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 25 / 99


Tests of UFF<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

1 Tests with bulk matter<br />

Method Grav field Accuracy Experiment<br />

Torsion pendulum Sun η ≤ 2 · 10 −13 Adelberger 2006<br />

2 Tests with quantum matter<br />

Method Grav field Accuracy Experiment<br />

Atom interferometry Earth η ≤ 10 −9 Chu, Peters 1999<br />

3 Gravitational self energy<br />

Method Grav field Accuracy Experiment<br />

Torsion pendulum and LLR Sun η ≤ 1.3 · 10 −3 Baessler et al 1999<br />

4Chargedparticles<br />

Method Grav field Accuracy Experiment<br />

Free fall of electron Earth η ≤ 10 −1 Witteborn & Fairbank 1967<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 26 / 99


Tests of UFF<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

3 Gravitational self energy<br />

Method Grav field Accuracy Experiment<br />

Torsion pendulum and LLR Sun η ≤ 1.3 · 10 −3 Baessler et al 1999<br />

4Chargedparticles<br />

Method Grav field Accuracy Experiment<br />

Free fall of electron Earth η ≤ 10 −1 Witteborn & Fairbank 1967<br />

5 Particles with spin<br />

Method Grav field Accuracy Experiment<br />

Weighting polarized bodies Earth η ≤ 10 −8 Hsie et al 1989<br />

6Anti–particles<br />

Method Grav field Accuracy Experiment<br />

Free fall of anti–Hydrogen Earth η ≤ 10 −3 − 10 −5 (estimate)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 26 / 99


A more detailed analysis<br />

Universality of Free Fall in space<br />

Operational foundation of Riemannian structures<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 27 / 99


A more detailed analysis<br />

MICROSCOPE: The Mission<br />

Operational foundation of Riemannian structures<br />

French space mission with participation of<br />

CNES, ESA, ZARM and PTB<br />

Mission goal: Test of <strong>Equivalence</strong><br />

<strong>Principle</strong> with an accurary of η =10 −15<br />

Mission overview:<br />

Micro-satellite of CNES Myriade series<br />

Drag–free satellite<br />

Sun–synchronous orbit<br />

Altitude about 800 km<br />

Mission lifetime of 1 year<br />

Payload:<br />

Two high–precision capacitive differential<br />

accelerometers<br />

Science sensor: Ti and Pt test mass<br />

Reference sensor: two Pt test masses<br />

Test of accelerometers at ZARM drop<br />

tower<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 28 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Description of tests of <strong>the</strong> universality principles<br />

Universality of kinetic and Gravitational Redshift<br />

frequency comparison<br />

( (<br />

ν 2<br />

= ν0 (2)<br />

2 ∆δm<br />

iij<br />

ν 1 ν1<br />

0 1+<br />

m (2)<br />

)<br />

− ∆δm(1) iij<br />

m (1)<br />

} {{ }<br />

frequency ratio depends on velocity<br />

v i v j +<br />

( )<br />

(2) ∆δm gij<br />

− ∆δm(1) gij<br />

U ij (x)<br />

m (2) m (1)<br />

} {{ }<br />

frequency ratio depends on position<br />

1st term: singles out a certain frame of reference ⇒ violation of Local<br />

Lorentz invariance<br />

2nd term: singles out a certain position ⇒ violation of Local Position<br />

invariance ⇔ violation of Universality of Gravitational Redshift<br />

for diagonal anomalous mass terms<br />

ν<br />

(<br />

2<br />

= ν0 2<br />

ν 1 ν1<br />

0<br />

1+(α clock 2 − α clock 1 )v 2<br />

} {{ }<br />

violation of LLI, MS<br />

)<br />

+(β clock 2 − β clock 1 ) U(x)<br />

} {{ }<br />

violation of UGR = LPI<br />

)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 29 / 99


Redshift tests<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Tests of <strong>the</strong> Universality of Kinematical Redshift<br />

no real comparison experiment exists: all experiment just test <strong>the</strong> kinematical<br />

redshift and look for deviations of |α − 1|<br />

Method Accuracy Experiment<br />

Doppler shift 1 · 10 −2 Ives & Stilwell 1938<br />

2–photon spectroscopy 1.4 · 10 −6 Riies et al, PRL 1988<br />

saturation spectroscopy 8 · 10 −8 Saathoff et al, PRL 2003<br />

Tests of <strong>the</strong> Universality of Gravitational Redshift<br />

Comparison Accuracy Experiment<br />

Cs – Resonator 2 · 10 −2 Turneaure & Stein 1987<br />

Mg – Cs (fine structure) 7 · 10 −4 Godone et al 1995<br />

Resonator – I 2 (electronic) 4 · 10 −2 Braxmaier et al, PRL 2002<br />

Cs – H-Maser (hf) 2.5 · 10 −5 Bauch et al, PRD 2002<br />

Cs – Hg 5 · 10 −6 Fortier et al, PRL 2007<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 30 / 99


Clocks<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Atomic clocks<br />

Based on principal transitions<br />

Based on fine structure<br />

Based on hyperfine transitions<br />

Molecular clocks<br />

Based on rotational<br />

transitions<br />

Based in vibrational<br />

transitions<br />

Light clocks<br />

Gravitational clocks<br />

Planetary motion<br />

Binary systems<br />

Rotation<br />

Earth<br />

Pulsars<br />

Decay of particles<br />

All based on different physical principles, laws.<br />

Clock tests are tests of <strong>the</strong> coupling of interaction fields (Maxwell, weak,<br />

strong) to gravity.<br />

Clocks of different nature exhibit a different dependence on fundamental<br />

constants.<br />

UGR ↔ time– and space–dependence of fundamental constants.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 31 / 99


More tests: LLI<br />

A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Universality of velocity of light<br />

is a postulate of SR<br />

The meaning of <strong>the</strong> universality: c does not depend on<br />

<strong>the</strong> velocity of <strong>the</strong> source ⇒ uniqueness of c<br />

its frequency<br />

its polarization<br />

<strong>the</strong> direction of propagation<br />

Compatibility with o<strong>the</strong>r particles<br />

For all particles <strong>the</strong> velocity of light is <strong>the</strong> limiting velocity<br />

c = c + = c − = c ν = v max<br />

p<br />

= v max<br />

e<br />

= v grav<br />

Implication: c is universal and can, thus, be interpreted as geometry<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 32 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Independence of c from <strong>the</strong> velocity of <strong>the</strong> source<br />

normal<br />

v<br />

orbital plane<br />

ψ<br />

R<br />

r<br />

Earth<br />

Description and result (Brecher, PRL 1977)<br />

Model c ′ = c + κv<br />

Time of flight consideration: May happen<br />

Reversal of chronological order (one light ray may overtake <strong>the</strong> o<strong>the</strong>r)<br />

Multiple images<br />

...<br />

Result |κ| ≤10 −11<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 33 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Independence of c from <strong>the</strong> velocity of <strong>the</strong> source<br />

γ<br />

π 0<br />

v =0<br />

γ<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 34 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Independence of c from <strong>the</strong> velocity of <strong>the</strong> source<br />

γ<br />

π 0<br />

v =0<br />

γ<br />

proton source<br />

p<br />

detector detector<br />

L<br />

π 0 γ<br />

v<br />

Be–target<br />

clock<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 34 / 99


A more detailed analysis<br />

Operational foundation of Riemannian structures<br />

Independence of c from <strong>the</strong> velocity of <strong>the</strong> source<br />

γ<br />

π 0<br />

v =0<br />

γ<br />

proton source<br />

p<br />

detector detector<br />

L<br />

π 0 γ<br />

v<br />

Be–target<br />

clock<br />

Description and result (Alväger et al 1964)<br />

Model c ′ = c + κv<br />

Result |κ| ≤10 −6 at v =0.99975 c<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 34 / 99


A more detailed analysis<br />

Tests of <strong>the</strong> universality of c<br />

Operational foundation of Riemannian structures<br />

t<br />

δt<br />

c − δc<br />

c<br />

Polarization / dispersion of light<br />

Method: Comparison of arrival times of<br />

light with different polarization /<br />

different frequency from distant galaxies<br />

l<br />

x<br />

Result<br />

Carrol, Field and Jackiw 1992, Kauffmann and Haugan 1995, Kostelecky and<br />

Ma<strong>the</strong>ws 2002<br />

∣ ∣ ∣∣∣ c + − c − ∣∣∣<br />

≤ 10 −32<br />

c +<br />

Schafer 1999, Biller 1999 ∣ ∣ ∣∣∣ c ν − c ν ′ ∣∣∣<br />

≤ 6 · 10 −21<br />

c ν<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 35 / 99


A more detailed analysis<br />

Tests of <strong>the</strong> universality of c<br />

Operational foundation of Riemannian structures<br />

Velocity of neutrinos<br />

Method: Comparison of arrival times of photons and neutrinos from supernova<br />

SN1987a<br />

Result<br />

Longo 1987, Stodolsky 1988<br />

Limiting velocity of protons<br />

c − v ν<br />

∣ c<br />

∣ ≤ 10−8<br />

Result<br />

Coleman and Glashow 1998<br />

∣<br />

v max<br />

p<br />

− c<br />

c ∣ ≤ 10−21<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 36 / 99


A more detailed analysis<br />

Tests of <strong>the</strong> universality of c<br />

Operational foundation of Riemannian structures<br />

Limiting velocity of electrons<br />

deflector<br />

e source<br />

e −<br />

accelerator<br />

γ<br />

e −<br />

target<br />

L<br />

e − γ<br />

p detector<br />

e detector<br />

Result<br />

Giurogossian et al, PRD 1965<br />

∣<br />

v max<br />

e<br />

− c<br />

c ∣ ≤ 10−6<br />

O<strong>the</strong>r tests by Brown et al, PRD 1963, Alspector et al, PRL 1976, Kalbfleisch et<br />

al, PRL 1976 with result of same order of accuracy<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 37 / 99


Outline<br />

1 Introduction<br />

More degrees of freedom<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 38 / 99


Spin<br />

More degrees of freedom<br />

What is spin?<br />

Avectorattachedto<strong>the</strong>particle,additionalparameter<br />

In standard <strong>the</strong>ory from ordinary coupling (Mathiesson–Papapetrou–Dixon<br />

formalism): a µ = λ C R µ νρσv ν S ρσ ⇒ violation of UFF at <strong>the</strong> order<br />

10 −20 m/s 2 ,beyondexperiment<br />

general ansatz for dynamics of spin D u S =ΩS<br />

Spin equation of motion valid for all spins: Ω does not depend on spin →<br />

geometry ⇒ torsion T (Audretsch & C.L. QCG 1987)<br />

Coupling of orbital angular momentum: Consistency with ordinary minimal<br />

coupling to metric Ni, PRL 2010<br />

as WKB from field equations for higher spin particles: D u S = f(T )S:<br />

effective equations do not fulfill universality (Spinosa 1982, ...)<br />

underlying equations of motion do fulfill universality<br />

underlying action principle fulfills universality<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 39 / 99


More degrees of freedom<br />

The gravitomagnetic field<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 40 / 99


The Schiff–effect<br />

More degrees of freedom<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 41 / 99


UFF and spin<br />

More degrees of freedom<br />

Anomalous coupling<br />

Speculations: violation P , C, andT symmetry in gravitational fields (Leitner<br />

&Okubo1964, Moody & Wilczek, PRD 1974) suggest<br />

V (r) =U(r)[1+A 1 (σ 1 ± σ 2 ) · ̂r + A 2 (σ 1 × σ 2 ) · ̂r] ,<br />

One body (e.g., <strong>the</strong> Earth) is unpolarized →<br />

V (r) =U(r)(1+Aσ · ̂r) .<br />

Hyperfine splittings of H ground state: A p ≤ 10 −11 , A e ≤ 10 −7<br />

Hari Dass 1976, 1977, includesvelocityof<strong>the</strong>particles<br />

[<br />

V (r) =U 0 (r) 1+A 1 σ · ̂r + A 2 σ · v (<br />

c + A 3̂r · σ × v )]<br />

c<br />

still CPT–invariant<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 42 / 99


UFF and charge<br />

More degrees of freedom<br />

Standard <strong>the</strong>ory<br />

In standard <strong>the</strong>ory from ordinary coupling (deWitt & Brehme, AP 1968)<br />

a µ = αλ C R µ νv ν ∼ 10 −35 m/s 2<br />

Anomalous coupling<br />

Anomalous coupling (Dittus, C.L., Selig, GRG 2004)<br />

H = p2<br />

p2<br />

+ mU(x)+κeU(x) =<br />

(1+κ<br />

2m 2m + m e )<br />

U(x) .<br />

m<br />

Charge dependent anomalous gravitational mass<br />

Can be generalized to charge dependent anomalous inertial mass (e.g.<br />

Rohrlich 2000)<br />

⇒ Charge dependent Eötvös factor<br />

It is possible to choose κ’s such that for neutral composite matter UFF is<br />

fulfilled while for isolated charges UFF is violated<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 43 / 99


Outline<br />

1 Introduction<br />

The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 44 / 99


Outline<br />

1 Introduction<br />

The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 45 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

The general phase shift<br />

Interference experiments<br />

mirror 1<br />

analyzer<br />

∇U<br />

I<br />

II<br />

h<br />

source<br />

beam<br />

splitter<br />

l<br />

mirror 2<br />

wave functions at analyzer<br />

(<br />

ϕ I (x) = exp − 1 2<br />

(<br />

ϕ II (x) = exp − 1 2<br />

∫ x<br />

)<br />

θds<br />

x<br />

∫<br />

0<br />

x<br />

)<br />

θds<br />

x 0<br />

(<br />

exp −i<br />

(<br />

exp −i<br />

∫ x<br />

p µ dx µ )<br />

a 0<br />

x<br />

∫<br />

0<br />

x<br />

p µ dx µ )<br />

a 0<br />

x 0<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 46 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

The general phase shift<br />

Interference experiments<br />

The intensity<br />

Intensity of <strong>the</strong> two interfering wave functions at one port of <strong>the</strong> analyzer<br />

I = |ϕ I + ϕ II | 2<br />

= |ϕ I | 2 + |ϕ II | 2 +2Re (ϕ ∗ I ϕ II )<br />

= 2(1+cos∆φ) |a 0 | 2 ,<br />

with phase shift<br />

∮<br />

∆φ =<br />

p<br />

integration along classical trajectory<br />

attenuation factor ∫ x θds does not play any role<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 47 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiment<br />

Interference experiments<br />

Schrödinger equation<br />

quasiclassical limit<br />

i ∂ψ<br />

∂t = − 2<br />

∆ψ + mUψ<br />

2m<br />

const. = E = p2<br />

2m + mU<br />

<strong>the</strong>n one obtains phase shift for U = gh + O(h 2 ) (Colella & Overhauser, PRL<br />

1974)<br />

δφ = mglh<br />

v<br />

depends on mass −→ <strong>Equivalence</strong> <strong>Principle</strong>?<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 48 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

On <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong><br />

Interference experiments<br />

Model<br />

Schrödinger equation in gravitational<br />

field<br />

i ∂ψ<br />

∂t = − 2<br />

∆φ + mUψ<br />

2m<br />

Phase shift<br />

For pure gravitational acceleration<br />

atom interferom. (Bordé 1989)<br />

δφ = k · g T 2<br />

neutron interf. (CL, GRG 1996)<br />

δφ = C · g T 2<br />

Discussion<br />

Exact quantum result<br />

UFF exactly fulfilled<br />

Does not depend on <br />

comes in by introducing<br />

classical notions<br />

height = h = v zT = k m T<br />

length = l = v 0T<br />

<strong>the</strong>n<br />

δφ = k z gT 2 = mghl<br />

v 0<br />

classical notions are operationally<br />

not realized<br />

δφ = k z gT 2 contains experimentally<br />

given quantities only<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 49 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

On <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong><br />

Interference experiments<br />

Model<br />

Schrödinger equation in gravitational<br />

field<br />

i ∂ψ<br />

∂t = − 2<br />

2m i<br />

∆φ + m g Uψ<br />

Phase shift<br />

For pure gravitational acceleration<br />

atom interferom. (Bordé 1989)<br />

δφ = m g<br />

m i<br />

k · g T 2<br />

neutron interf. (CL, GRG 1996)<br />

δφ = C · g T 2<br />

Discussion<br />

Exact quantum result<br />

UFF exactly fulfilled<br />

Does not depend on <br />

comes in by introducing<br />

classical notions<br />

height = h = v zT = k m T<br />

length = l = v 0T<br />

<strong>the</strong>n<br />

δφ = k z gT 2 = mghl<br />

v 0<br />

classical notions are operationally<br />

not realized<br />

δφ = k z gT 2 contains experimentally<br />

given quantities only<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 49 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

On <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong><br />

Interference experiments<br />

can be used for an operational definition of <strong>the</strong> equivalence principle in <strong>the</strong><br />

quantum domain, even in curved space–time (C.L., GRG 1996)<br />

it can be shown that this operational definition is equivalent to <strong>the</strong>minimal<br />

coupling procedure (C.L., APP 1997)<br />

minimal coupling ←→ geometry<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 50 / 99


Outline<br />

1 Introduction<br />

The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Accelerated frames<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 51 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Accelerated frames<br />

Quantum mechanics in accelerated frame<br />

Schrödinger equation in accelerated frame<br />

i ∂ψ<br />

∂t = − 2<br />

∆ψ − mg · xψ<br />

2m<br />

Transformation<br />

x → ξ = x+ 1 2 gt2 and ψ(z,t) → ϕ(ξ,t)=ψ(x+ 1 2 gt2 ,t)exp<br />

(ig · xt + i )<br />

3 g2 t 3<br />

free Schrödinger<br />

i ∂ϕ<br />

∂t = − 2<br />

2m ∆ϕ<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 52 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Accelerated frames<br />

Quantum mechanics in accelerated frame<br />

Schrödinger equation in accelerated frame<br />

i ∂ψ<br />

∂t = − 2<br />

2m ∆ψ − mg · xψ + g|ψ|2 ψ<br />

Transformation<br />

x → ξ = x+ 1 2 gt2 and ψ(z,t) → ϕ(ξ,t)=ψ(x+ 1 2 gt2 ,t)exp<br />

(ig · xt + i )<br />

3 g2 t 3<br />

free Schrödinger<br />

i ∂ϕ<br />

∂t = − 2<br />

2m ∆ϕ + g|ϕ|2 ϕ<br />

Also holds for nonlinear Schrödinger equation with arbitrary nonlinearity<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 52 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Accelerated frames<br />

Quantum mechanics in accelerated frame<br />

Schrödinger equation in accelerated frame<br />

i ∂ψ<br />

∂t = − 2<br />

2m ∆ψ − mg · xψ + g|ψ|2 ψ<br />

Transformation<br />

x → ξ = x+ 1 2 gt2 and ψ(z,t) → ϕ(ξ,t)=ψ(x+ 1 2 gt2 ,t)exp<br />

(ig · xt + i )<br />

3 g2 t 3<br />

free Schrödinger<br />

i ∂ϕ<br />

∂t = − 2<br />

2m ∆ϕ + g|ϕ|2 ϕ<br />

Also holds for nonlinear Schrödinger equation with arbitrary nonlinearity<br />

Gravity can be transformed away ⇒<br />

equivalence principle for <strong>the</strong> GPE, solitons in <strong>the</strong> sense of <strong>the</strong> Einstein elevator<br />

(Chen & Liu, PRL 1976)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 52 / 99


Outline<br />

1 Introduction<br />

The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 53 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

The basic equations<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

The model<br />

Klein–Gordon equation<br />

g µν D µ D ν ϕ + m 2 ϕ =0, D = ∂ + { ··· }<br />

Fluctuating metric<br />

g µν = η µν + h µν , |h µν |≪1<br />

noise<br />

〈h µν (x)〉 st = γ µν , δ ρσ 〈h µρ (x)h νσ (x)〉 st = σ 2 µν<br />

small amplitude of fluctuations<br />

frequency might be large, wavelength might be small<br />

〈·〉 st = averaging over a space–time volume<br />

we do not require <strong>the</strong> h µν to obey a wave equation<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 54 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

The basic equations<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

Approximations<br />

Weak field up to second order ˜h µν = h µρ h ρ<br />

ν<br />

Relativistic approximation of metric and quantum field (á la Kiefer & Singh,<br />

PRD 1994)<br />

Hψ = −( (3) g) 1 2 ( )<br />

4<br />

2m ∆ cov ( (3) g) − 1 4 ψ<br />

′<br />

+ m 2<br />

− 1 {<br />

}<br />

i∂ i ,h i0 i0<br />

(1) − ˜h (1) ψ<br />

2<br />

manifest hermitean w.r.t. flat scalar product<br />

only second order terms do not vanish by averaging<br />

Dirac equation<br />

(˜h00<br />

)<br />

(0) − h00 (0) ψ<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 55 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Short wavelength<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

Spatial average<br />

spatial average<br />

〈Aψ〉 s (x) := 1<br />

V x<br />

∫<br />

short wavelength of fluctuations: V small<br />

spatial average of Schrödinger equation<br />

with α(x) =〈˜h ij − h ij 〉 s (x)<br />

V x<br />

A(y)ψ(y)d 3 y<br />

H = 1 (<br />

δ ij + α ij (x) ) p i p j + α 0<br />

2m<br />

α ij (x): small variation w.r.t. x, fluctuations w.r.t. t.<br />

decompose α ij (x) =˜α ij (x)+γ ij (x) with 〈γ ij 〉 t =0<br />

˜α ij (x) acts like an anomalous inertial mass tensor<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 56 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Space–time fluctuations<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

Fluctuation model<br />

α ij ↔ spectral noise density of fluctuations<br />

particular model:<br />

˜α ij (x) = 1 ∫<br />

V ˜hij (x,t)d 3 x= 1 ∫<br />

x V x<br />

V x<br />

model: power law spectral noise density<br />

1/V x<br />

(S 2 (k,t)) ij d 3 k<br />

(S 2 (k,t)) ij =(S 2 0n) ij |k| n integration<br />

=⇒ α ij (x) =(S 2 0n) ij λ −(6+n)<br />

p<br />

with dim(S 2 0n) ij =length 3+ n 2<br />

V x ∼ λ 3 p<br />

λ p = invariant length scale of quantum object = λ Compton<br />

λ p = de Broglie wave length<br />

λ p = geometric extension l p of quantum object (Bohr radius of atom)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 57 / 99


The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Space–time fluctuations<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

Fluctuation model<br />

assumption: S 0n ∼ l 3+ n 2<br />

Planck ,<strong>the</strong>n<br />

α ij (x) ∼<br />

effective Hamiltonian<br />

(<br />

H = 1 δ ij +<br />

2m<br />

(<br />

lPlanck<br />

l p<br />

) β<br />

a ij (x) , β =6+n, a ij (x) =O(1)<br />

(<br />

lPlanck<br />

l p<br />

) β<br />

a ij (x)<br />

)<br />

p i p j = 1 (<br />

)<br />

δ ij + δmij (x)<br />

p i p j<br />

2m m<br />

δm ij = anomalous inertial mass tensor, depends on particle<br />

δm ij leads to violation of Universality of Free Fall<br />

β = 1 2<br />

↔ random walk<br />

β = 2 3<br />

↔ holographic noise<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 58 / 99


Result<br />

The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

Result<br />

metric fluctuations ⇒ anomalous inertial mass → apparent violation of UFF<br />

alternative route for violation of UFF and LLI<br />

need of quantum tests<br />

Example<br />

for Cesium and Hydrogen and geometric extension of atoms<br />

η β=1 =10 −20 , η β=2/3 =10 −15 , η β=1/2 =10 −12<br />

accuracy 10 −15 is planned for <strong>the</strong> next years<br />

(Göklü & C.L. CQG 2008)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 59 / 99


Outline<br />

1 Introduction<br />

Order of equations of motion<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 60 / 99


Order of equations of motion<br />

Order of equation of motion?<br />

Usual framework<br />

L = L(t, x, ẋ)<br />

⇒<br />

Most important equation in physics!<br />

d<br />

p = F (t, x, ẋ) with p = mẋ<br />

dt<br />

More general equations?<br />

p = mẋ is a constitutive law. Can be more general (as is many cases)<br />

p = f(ẋ, ẍ, ... x,...)<br />

Then equations of motion of higher order<br />

Influence of external fluctuations (e.g. space–time fluctuations, gravitational<br />

wave background, Göklü, C.L., Camacho & Macias, CQG 2009): generalized<br />

Langevin equation with extra force term<br />

∫ t<br />

0<br />

C(t − t ′ )ẋ(t ′ )dt ′<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 61 / 99


Order of equations of motion<br />

Order of equation of motion?<br />

Generalized framework<br />

Our specific model<br />

L = L(t, x, ẋ, ẍ)<br />

⇒<br />

d 2<br />

...<br />

(ɛẍ) =F (t, x, ẋ, ẍ, x)<br />

dt2 Gauge procedure in order to invent structure of interactions<br />

L(t, x, ẋ, ẍ) =L 0 (t, x, ẋ, ẍ) −q 0 A a ẋ a<br />

} {{ }<br />

+ q 1 A ab ẋ a ẋ b<br />

} {{ }<br />

1st order gauge fields 2nd order gauge fields<br />

with (Pais–Uhlenbeck oscillator)<br />

L 0 (t, x, ẋ, ẍ) =− ɛ 2ẍ2 + m 2 ẋ2<br />

dimɛ =kgs 2<br />

ɛ QG ∼ m Planck t 2 Planck ∼ 10−95 kg s 2 ɛ Ce ∼ m Ce t 2 Ce ∼ 10−71 kg s 2<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 62 / 99


Order of equations of motion<br />

Equation of motion<br />

simplest case: constant electric field<br />

ɛ ....<br />

x +mẍ = qE 0<br />

solution in 1D with initial conditions x(0) = 0, ẋ(0) = 0, ẍ(0) = 0, and ... x (0) = 0<br />

x(t) = q ( 1<br />

m E 0<br />

2 t2 + ɛ )<br />

m (cos (ωt) − 1) small deviation<br />

ẋ(t) = q ( √ ) ɛ<br />

m E 0 t −<br />

m sin (ωt) small deviation<br />

ẍ(t) = q m E 0 (1 − cos (ωt))<br />

O(1) deviation<br />

...<br />

x (t) = q √ m<br />

m E 0<br />

ɛ<br />

sin (ωt) ω<br />

= √ m<br />

ɛ<br />

large deviation<br />

zitterbewegung<br />

Limit ɛ → 0 exists for x and ẋ, notfor ... x<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 63 / 99


Search for ɛ<br />

Order of equations of motion<br />

Accelerated flight<br />

Flight through accelerator<br />

〈ẋ(L)〉−ẋ 0<br />

= ɛ<br />

ẋ 0 4m<br />

Ion interferometric measurement of acceleration<br />

phase shift<br />

− +<br />

ẋ 2 0<br />

∆φ = A(ω)k · ẍ(ω)T 2<br />

L<br />

with transfer function<br />

A(ω) = sin2 (ωt)<br />

ω 2<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 64 / 99


Search for ɛ<br />

Order of equations of motion<br />

Electronic devices<br />

Zitterbewegung of a charged particle induces voltage noise<br />

1<br />

2 C〈U 2 〉 t = m〈ẋ 2 〉 = 1 ( q<br />

) 2<br />

2 ɛ m E 0<br />

R<br />

C<br />

I<br />

General estimate: ɛ ≤ 10 −50 kg s 2 .<br />

Applies to mirrors in gw interferometers?<br />

Adding a small higher derivative term is a ma<strong>the</strong>matical method toanalyze<br />

differential equations.<br />

C.L. & Rademaker 2009<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 65 / 99


Outline<br />

1 Introduction<br />

* Existence of inertial systems<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 66 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Motivation<br />

generic generalization of GR<br />

leads to deformed light cones and mass shells<br />

has been discussed within Quantum Gravity (Jacobson, Liberati & Mattingly)<br />

Very Special Relativity (Cohen & Glashow)<br />

Metric geometries<br />

Euclidean distance<br />

Riemannian distance<br />

dl 2 = δ ij dx i dx j<br />

dl 2 = g ij (x)dx i dx j<br />

by coordinate transformation it can be brought locally into Euclidean form<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 67 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Finsler space<br />

Finsler length function<br />

dl 2 = F (x, dx) ,<br />

F(x, λdx) =λ 2 F (x, dx)<br />

Finsler metric tensor f µν (x, dx) is defined as<br />

dl 2 = g µν (x, dx)dx µ dx ν , where g µν (x, y) = 1 ∂ 2 F (x k ,y m )<br />

2 ∂y µ ∂y ν<br />

Light cones<br />

Light cone defined by<br />

ds 2 = dt 2 − dl 2<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 68 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Euclidean light cone Riemannian light cone Finslerian light cone<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 69 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Euclidean light cone Riemannian light cone Finslerian light cone<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 69 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Euclidean light cone Riemannian light cone Finslerian light cone<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 69 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Geodesics<br />

∫<br />

δ ds =0 ⇒ 0= d2 x µ<br />

ds 2 + { ρσ µ } (x, ẋ) dxρ<br />

ds<br />

with<br />

dx σ<br />

ds<br />

{ µ<br />

ρσ } (x, ẋ) =g µν (x, ẋ)(∂ ρ g σν (x, ẋ)+∂ σ g ρν (x, ẋ) − ∂ ν g ρσ (x, ẋ))<br />

Main characteristics of geodesic motion<br />

Geodesic equation fulfills Universality of Free Fall<br />

{ ρσ µ } (x, ẋ) cannot be transformed to zero ∀ẋ<br />

⇒ gravity cannot be transformed away locally<br />

⇔ Einstein’s elevator does not hold: if for one particle we have force–free<br />

motion, o<strong>the</strong>r freely falling particles experience a fictitious force<br />

⇒ fictitious forces cannot be transformed away<br />

⇔ <strong>the</strong>re is no inertial system<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 70 / 99


* Existence of inertial systems<br />

Finsler geometry<br />

Possible effects<br />

Radial acceleration different from horizontal acceleration<br />

¨r = G 1(r)M r 3<br />

r 2 T 2 = G 2(r)M<br />

4π 2<br />

Condition to be able to transform away<br />

gravity is stronger than pure UFF.<br />

Acceleration toward <strong>the</strong> Earth depends on<br />

horizontal velocity.<br />

Formalism may host <strong>the</strong> Pioneer anomaly<br />

(escape orbits behave different as bound<br />

orbits)<br />

Speculation: violation of UGR, G = G(T )<br />

C.L. & Perlick 2012<br />

a 1<br />

a 2<br />

v<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 71 / 99


* Existence of inertial systems<br />

Parametrizing deviations from Riemann/Minkowski<br />

Special case: “power law” metrics<br />

dl 2 =(g µ1µ 2...µ 2n<br />

(x)dx µ1 dx µ2 ···dx µ2n ) 1 r<br />

Deviation from Riemann/Minkowksi<br />

dl 2r = ( )<br />

g µ1µ 2 ···g µ2r−1µ 2r<br />

+ φ µ1...µ 2r dx<br />

µ1<br />

···dx µ2r<br />

Gives anisotropic light propagation (C.L., Lorek & Dittus, GRG 2009)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 72 / 99


* Existence of inertial systems<br />

Quantum mechanics in Finsler space<br />

Finslerian Hamilton operator<br />

H = H(p) with H(λp) =λ 2 H(p)<br />

“Power–law” ansatz (non–local operator)<br />

Simplest case: quartic metric<br />

Deviation from standard case<br />

H = 1 (<br />

g<br />

i 1...i 2r<br />

) 1<br />

r<br />

∂ i1 ···∂ i2r<br />

2m<br />

H = 1 (<br />

g ijkl ) 1<br />

2<br />

∂ i ∂ j ∂ k ∂ l<br />

2m<br />

H = − 1 (<br />

∆ 2 + φ ijkl ) 1<br />

2<br />

∂ i ∂ j ∂ k ∂ l<br />

2m<br />

= − 1<br />

√<br />

2m ∆ 1+ φijkl ∂ i ∂ j ∂ k ∂ l<br />

∆ 2<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 73 / 99


* Existence of inertial systems<br />

Quantum mechanics in Finsler space<br />

H = − 1 (1+<br />

2m ∆ 1 φ ijkl )<br />

∂ i ∂ j ∂ k ∂ l<br />

2 ∆ 2<br />

Hughes–Drever: H tot = H + σ · B<br />

Atomic interferometry, atom–photon interaction<br />

δφ ∼ H(p + k) − H(p) = k2<br />

2m + 1 (<br />

)<br />

δ il + φijkl p j p k<br />

m p 2 p i k l<br />

modified Doppler term: gives different Doppler term while rotating <strong>the</strong> whole<br />

apparatus (even in Finsler light still propagates on straight lines, anisotropy –<br />

deformed mass shell)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 74 / 99


Outline<br />

1 Introduction<br />

Creation of <strong>the</strong> gravitational field<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 75 / 99


Outline<br />

1 Introduction<br />

Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 76 / 99


Creation of <strong>the</strong> gravitational field<br />

Test of Newton potential I<br />

Newton potential<br />

(1+αe −r/λ)<br />

U = GM r<br />

long range limits<br />

short range limits<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 77 / 99


Creation of <strong>the</strong> gravitational field<br />

Test of Newton potential II<br />

Newton potential<br />

Kostelecky framework (Kostelecky, PRD 2005): anisotropy of Newtonian potential<br />

Experiments<br />

Result<br />

U = MG<br />

r<br />

(1+ ri c ij r j<br />

r 2 )<br />

Atomic interferometry (Müller et al, PRL 2007)<br />

LLR (Battat, Chandler & Stubbs, PRL 2007)<br />

|c ij |≤10 −5 ...10 −9<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 78 / 99


Outline<br />

1 Introduction<br />

Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 79 / 99


actio = reactio ?<br />

Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 80 / 99


Creation of <strong>the</strong> gravitational field<br />

Active and passive mass<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Gravitationally bound two–body<br />

system (Bondi, RMP 1957)<br />

m 1i ẍ 1 = m 1p m 2a<br />

x 2 − x 1<br />

|x 2 − x 1 | 3<br />

m 2i ẍ 2 = m 2p m 1a<br />

x 1 − x 2<br />

|x 1 − x 2 | 3<br />

center–of–mass and relative<br />

coordinate<br />

X := m 1i<br />

x 1 + m 2i<br />

x 2<br />

M i M i<br />

x := x 2 − x 1<br />

M i = m 1i + m 2i = total inertial<br />

mass. Then<br />

m 1i<br />

m 1a<br />

m 1p<br />

F<br />

x 1<br />

x 2<br />

O<br />

F<br />

m 2i<br />

m 2a<br />

m 2p<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 81 / 99


Creation of <strong>the</strong> gravitational field<br />

Active and passive mass<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Decoupled dynamics of relative coordinate<br />

Ẍ = m 1pm 2p<br />

M i<br />

C 21<br />

x<br />

|x| 3 with C 21 = m 2a<br />

m 2p<br />

− m 1a<br />

m 1p<br />

ẍ = − m (<br />

)<br />

1pm 2p m 1a m 2a<br />

m 1i + m 2i<br />

m 1i m 2i m 1p m 2p<br />

x<br />

|x| 3<br />

C 21 =0: ratio of <strong>the</strong> active and passive masses are equal for both particles<br />

C 21 ≠0: ⇒ self–acceleration of center of mass<br />

Interpretation<br />

Ẍ ≠0 ⇔ C 12 ≠0 ⇔<br />

Violation of law of reciprocal action or of actio = reactio for gravity<br />

The gravitational field created by masses of same weight depends on its<br />

composition. Has <strong>the</strong> same status as <strong>the</strong> Weak <strong>Equivalence</strong> <strong>Principle</strong>.<br />

Requires experimental tests ...<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 82 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Experiment testing m ga = m gp<br />

Measurement of relative acceleration<br />

Step 1: Take two masses with m pg1 = m pg2 (equal weight)<br />

Step 2: Test active equality of <strong>the</strong>se two masses with torsion balance<br />

Experimental setup: Torsion balance with equal passive masses reacting on m ag1<br />

and m ag2<br />

No effect has been seen: C 12 ≤ 5 · 10 −5 (Kreuzer, PR 1868)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 83 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Experiment testing m ga = m gp<br />

Measurement of relative acceleration<br />

Step 1: Take two masses with m pg1 = m pg2 (equal weight)<br />

Step 2: Test active equality of <strong>the</strong>se two masses with torsion balance<br />

Experimental setup: Torsion balance with equal passive masses reacting on m ag1<br />

and m ag2<br />

No effect has been seen: C 12 ≤ 5 · 10 −5 (Kreuzer, PR 1868)<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 83 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Experiment testing m ga = m gp<br />

geometric<br />

center<br />

Measurement of center–of–mass<br />

acceleration<br />

Earth<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 84 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Experiment testing m ga = m gp<br />

Measurement of center–of–mass<br />

acceleration<br />

geometric<br />

center<br />

s<br />

center of<br />

mass<br />

14 ◦<br />

ŝ<br />

Earth<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 84 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Experiment testing m ga = m gp<br />

Measurement of center–of–mass<br />

acceleration<br />

geometric<br />

center<br />

F self M M rEM<br />

2 s ρ<br />

= C Al−Fe<br />

s<br />

F EM M ⊕ r<br />

center of<br />

M<br />

2 r M ∆ρŝ<br />

mass<br />

Effect of tangential part: increase of<br />

orbital angular velocity<br />

14 ◦<br />

ŝ<br />

∆ω<br />

ω<br />

=6π F self<br />

F EM<br />

sin 14 ◦ per month<br />

From LLR ∆ω<br />

ω<br />

≤ 10−12 per month<br />

⇒<br />

C Al−Fe ≤ 7 · 10 −13<br />

Earth<br />

Bartlett & van Buren, PRL 1986<br />

significant improvement with new<br />

LLR data and moon orbiter data<br />

possible<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 84 / 99


Creation of <strong>the</strong> gravitational field<br />

The Universality of <strong>the</strong> Gravitational Field<br />

Active and passive charges: Dynamics<br />

C.L., Macias, Müller, PRA 2007<br />

Dynamics of two electrically bound particles (E = external electric field)<br />

Similar phenomena<br />

m 1i ẍ 1 = q 1p q 2a<br />

x 2 − x 1<br />

|x 2 − x 1 | 3 + q 1pE(x 1 )<br />

m 2i ẍ 2 = q 2p q 1a<br />

x 1 − x 2<br />

|x 1 − x 2 | 3 + q 2pE(x 2 )<br />

New feature: Active and passive neutrality (actively neutral system can react<br />

on external em field – passivley neutral systems can create an em field)<br />

Very good neutrality measurements ⇒ C 12 ≤ 10 −21<br />

O<strong>the</strong>r approach through fine structure constant for H and He +<br />

Also: active and passive magnetic moment<br />

Theory: no Hamiltonian for total system, only for relative motion<br />

One should do dedicated experiments!<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 85 / 99


Outline<br />

1 Introduction<br />

Fur<strong>the</strong>r issues<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 86 / 99


Outline<br />

1 Introduction<br />

Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 87 / 99


Newton’s axioms<br />

Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

1 Existence of absolute time<br />

2 Existence of inertial systems<br />

violated by Finsler space–time or, more generally, by nonlinear connections<br />

3 Force free motion in inertial systems: uniform and straight<br />

cannot hold for all particles in Finsler space–time or with nonlinear<br />

connections<br />

4 Motion with force<br />

d<br />

(mv) =F (x, v)<br />

dt<br />

Higher order? Defines <strong>the</strong> notion of force.<br />

5 Law of reciprocal actions<br />

(actio = reactio)<br />

6 Linear superposition of forces<br />

is not really fundamental<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 88 / 99


Outline<br />

1 Introduction<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 89 / 99


Light<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom L1<br />

1 For a particle trajectory P<br />

through p and a nearby event q<br />

<strong>the</strong>re are two light rays<br />

connecting P and q.<br />

2 For a parametrization t of P ,<br />

<strong>the</strong> function g p : q ↦→<br />

1<br />

2 (t(p 2) − t(p))(t(p 1 ) − t(p)) in<br />

U p is C 2 .<br />

Axiom L2<br />

1 The set of all light rays divides<br />

T p (M ) into two connected<br />

components.<br />

2 The set of all light rays consists<br />

of two connected components.<br />

Ehlers, Pirani and Schild 1972<br />

t<br />

p 2<br />

L<br />

p<br />

L<br />

p 1<br />

P<br />

q<br />

U p V p<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 90 / 99


Light<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Consequences<br />

Define g(p, q) = 1 2 (t(p 2) − t(p))(t(p 1 ) − t(p))<br />

Exists 2nd rank tensor<br />

g µν symmetric<br />

g µν =lim<br />

q→p<br />

det g µν ≠0non singular tensor<br />

g(l, l) =0for l = light ray l µ = g µν k ν<br />

∃S : k ∼ dS<br />

l fulfills <strong>the</strong> geodesic equation D l l =0<br />

∂<br />

∂q µ<br />

∂<br />

g(p, q)<br />

∂qν Result<br />

g µν is a space–time metric.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 91 / 99


Particles<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Freely falling particles<br />

1 All particles fall along <strong>the</strong> same path<br />

2 The path is uniquely given by its initial position and initial velocity<br />

3 ∀p ∈ M ∃ coordinate system so that ∀ freely falling particles<br />

Consequence<br />

Equation of motion for particles<br />

d 2 x µ (t)<br />

dt 2<br />

d 2 x(τ)<br />

dτ 2 ∣ ∣∣∣p<br />

=0<br />

+Π µ ρσ(x) dxρ<br />

dt<br />

Projective structure = equivalence class<br />

dx σ<br />

dt<br />

= α dxµ (t)<br />

dt<br />

[<br />

Π<br />

µ<br />

ρσ<br />

]<br />

:=<br />

{<br />

¯Πµ ρσ | ¯Π µ ρσ =Π µ ρσ + B (ρ δ µ σ)}<br />

.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 92 / 99


Particles<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Freely falling particles<br />

1 All particles fall along <strong>the</strong> same path<br />

2 The path is uniquely given by its initial position and initial velocity<br />

3 ∀p ∈ M ∃ coordinate system so that ∀ freely falling particles<br />

Consequence<br />

Equation of motion for particles<br />

d 2 x µ (t)<br />

dt 2<br />

d 2 x(τ)<br />

dτ 2 ∣ ∣∣∣p<br />

=0<br />

+Π µ ρσ(x) dxρ<br />

dt<br />

Projective structure = equivalence class<br />

dx σ<br />

dt<br />

= α dxµ (t)<br />

dt<br />

[<br />

Π<br />

µ<br />

ρσ<br />

]<br />

:=<br />

{<br />

¯Πµ ρσ | ¯Π µ ρσ =Π µ ρσ + B (ρ δ µ σ)}<br />

.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 92 / 99


Compatibility<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom C: Compatibility<br />

No particle is faster than light<br />

The velocity of particles can be arbitrarily close to <strong>the</strong> velocity of light<br />

Consequence<br />

Particles move in a Weylian space–time<br />

0= d2 x µ<br />

ds 2<br />

Property of D:<br />

dx ρ dx σ<br />

+Γµ ρσ<br />

ds ds<br />

with Γ µ ρσ = { ρσ µ } + 1 (<br />

δ<br />

µ<br />

2 ρ a σ + δ σa µ ρ − g ρσ g µν )<br />

a ν<br />

D µ g ρσ = a µ g ρσ<br />

It is possible to build light clocks: transport of time unit<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 93 / 99


Riemannian structure<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom: 2nd clock effect<br />

There is no second clock effect (implied by UGR).<br />

Consequence<br />

Particles move in a Riemannian space–time<br />

0= d2 x µ<br />

ds 2<br />

dx ρ dx σ<br />

+Γµ ρσ<br />

ds ds<br />

with Γ µ ρσ = { µ<br />

ρσ } ,<br />

ds 2 = g µν dx µ dx ν<br />

Properties of particles and light rays define <strong>the</strong> space–time.<br />

More precise: space–time structures (modulo reparametrizations and<br />

projective transformations)<br />

What can be questioned<br />

Condition g p is C 2 .Relaxingthisleadstodirection–dependenceofmetric.<br />

Cauchy problem → higher order equations of motion<br />

Gravity can be transformed away → non–linear connections<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 94 / 99


Riemannian structure<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom: 2nd clock effect<br />

There is no second clock effect (implied by UGR).<br />

Consequence<br />

Particles move in a Riemannian space–time<br />

0= d2 x µ<br />

ds 2<br />

dx ρ dx σ<br />

+Γµ ρσ<br />

ds ds<br />

with Γ µ ρσ = { µ<br />

ρσ } ,<br />

ds 2 = g µν dx µ dx ν<br />

Properties of particles and light rays define <strong>the</strong> space–time.<br />

More precise: space–time structures (modulo reparametrizations and<br />

projective transformations)<br />

What can be questioned<br />

Condition g p is C 2 .Relaxingthisleadstodirection–dependence of metric.<br />

Cauchy problem → higher order equations of motion<br />

Gravity can be transformed away → non–linear connections<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 94 / 99


Riemannian structure<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom: 2nd clock effect<br />

There is no second clock effect (implied by UGR).<br />

Consequence<br />

Particles move in a Riemannian space–time<br />

0= d2 x µ<br />

ds 2<br />

dx ρ dx σ<br />

+Γµ ρσ<br />

ds ds<br />

with Γ µ ρσ = { µ<br />

ρσ } ,<br />

ds 2 = g µν dx µ dx ν<br />

Properties of particles and light rays define <strong>the</strong> space–time.<br />

More precise: space–time structures (modulo reparametrizations and<br />

projective transformations)<br />

What can be questioned<br />

Condition g p is C 2 .Relaxingthisleadstodirection–dependence of metric.<br />

Cauchy problem → higher order equations of motion<br />

Gravity can be transformed away → non–linear connections<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 94 / 99


Riemannian structure<br />

Fur<strong>the</strong>r issues * Operational foundation of Riemannian structures 1<br />

Axiom: 2nd clock effect<br />

There is no second clock effect (implied by UGR).<br />

Consequence<br />

Particles move in a Riemannian space–time<br />

0= d2 x µ<br />

ds 2<br />

dx ρ dx σ<br />

+Γµ ρσ<br />

ds ds<br />

with Γ µ ρσ = { µ<br />

ρσ } ,<br />

ds 2 = g µν dx µ dx ν<br />

Properties of particles and light rays define <strong>the</strong> space–time.<br />

More precise: space–time structures (modulo reparametrizations and<br />

projective transformations)<br />

What can be questioned<br />

Condition g p is C 2 .Relaxingthisleadstodirection–dependence of metric.<br />

Cauchy problem → higher order equations of motion<br />

Gravity can be transformed away → non–linear connections<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 94 / 99


Outline<br />

1 Introduction<br />

Summary<br />

2 A more detailed analysis<br />

Implications of <strong>the</strong> UFF<br />

Operational foundation of Riemannian structures<br />

3 More degrees of freedom<br />

4 The <strong>Equivalence</strong> <strong>Principle</strong> in <strong>the</strong> quantum domain<br />

Interference experiments<br />

Accelerated frames<br />

Apparent violations of <strong>the</strong> Universality of Free Fall<br />

5 Order of equations of motion<br />

6 * Existence of inertial systems<br />

7 Creation of <strong>the</strong> gravitational field<br />

Newton potential<br />

The Universality of <strong>the</strong> Gravitational Field<br />

8 Fur<strong>the</strong>r issues<br />

Relation to Newton’s axioms<br />

* Operational foundation of Riemannian structures 1<br />

9 Summary<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 95 / 99


Main <strong>the</strong>me<br />

Summary<br />

Test particles<br />

Gravity and its structure can only be explored through <strong>the</strong> motion<br />

of test particles<br />

Orbits and clocks<br />

Massive particles and light<br />

quantum fields<br />

What is gravity depends on <strong>the</strong> structure of <strong>the</strong> equation of motion<br />

Existence of inertial systems<br />

Order of differential equation<br />

Dependence on particle parameters<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 96 / 99


Summary<br />

Summary<br />

What determines gravity?<br />

GR = UFF + CP + LLI + UGR + Newton potential + UGF + ...<br />

scheme not complete as far as Einstein’s equations are concerned<br />

part of it can be interpreted as test of Newton’s axioms: IS + CP + UGF<br />

fundamental violation of principle vs. apparent violation of principle<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 97 / 99


Summary<br />

Summary<br />

All fundamental postulates have to be tested as good as possible<br />

UFF, UGR, and LLI are questioned from quantum gravity<br />

Fur<strong>the</strong>r motivation for tests: Observational and <strong>the</strong>oretical hints from<br />

quantum gravity and from gravity at large distances<br />

Small accelerations: Hints from unexplained observations (dark matter)<br />

Finsler: from quantum gravity (Jacobson, Liberati & Mattingly, PRD 2004)<br />

Higher order equations of motion from, e.g., loop quantum gravity (Alfaro,<br />

Morales–Tecotl & Urrutia, PRL 2000, PRD 2000, Horavagravity),or<br />

correlated influence from space–time fluctuations (Göklü, C.L., Camacho &<br />

Macias, CQG 2009)<br />

No model until now (cannot be derived from, e.g., string <strong>the</strong>ory) for active ≠<br />

passive mass / charge.<br />

This is a symmetry of physics which unfortunately is not yet well analyzed.<br />

But may be of interest for discussing quantization procedure.<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 98 / 99


Summary<br />

Summary<br />

Thank you!<br />

Thanks to<br />

H. Dittus<br />

E. Göklü<br />

D. Lorek<br />

A. Macias<br />

Z. Marijewic<br />

H. Müller<br />

V. Perlick<br />

P. Rademaker<br />

DLR<br />

DFG<br />

Center of Excellence QUEST<br />

C. Lämmerzahl (ZARM, Bremen) <strong>Testing</strong> <strong>the</strong> <strong>Equivalence</strong> <strong>Principle</strong> Tübingen, June 19, 2012 99 / 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!