11.09.2014 Views

4H FLUID DYNAMICS Vector Formulae and Theorems of Vector ...

4H FLUID DYNAMICS Vector Formulae and Theorems of Vector ...

4H FLUID DYNAMICS Vector Formulae and Theorems of Vector ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>4H</strong> <strong>FLUID</strong> <strong>DYNAMICS</strong><br />

<strong>Vector</strong> <strong>Formulae</strong> <strong>and</strong> <strong>Theorems</strong> <strong>of</strong> <strong>Vector</strong> Calculus<br />

<strong>Vector</strong> <strong>Formulae</strong><br />

a × (b × c) = (a · c)b − (a · b)c<br />

∇×∇f = 0<br />

∇·(∇×F) = 0<br />

∇·(fF) = F · ∇f + f∇·F<br />

∇×(fF) = ∇f × F + f∇×F<br />

∇×(∇×F) = ∇(∇·F) − ∇ 2 F<br />

∇(F · G) = (F · ∇)G + (G · ∇)F + F × (∇×G) + G × (∇×F)<br />

∇·(F × G) = G · (∇×F) − F · (∇×G)<br />

∇×(F × G) = F(∇·G) − G(∇·F) + (G · ∇)F − (F · ∇)G<br />

If x = re r is the position vector with respect to some origin, then<br />

∇·x = 3 , ∇×x = 0 , ∇·e r = 2 r , ∇×e r = 0<br />

The Divergence Theorem <strong>and</strong> Corollaries<br />

In the following V is a volume bounded by a closed surface S,<br />

∫<br />

∫<br />

∇·F dV = F · dS<br />

V<br />

S<br />

∫<br />

∫<br />

∇f dV = f dS<br />

V<br />

S<br />

∫<br />

∫<br />

∇×F dV = dS × F<br />

V<br />

S<br />

∫<br />

(<br />

f∇ 2 g + ∇f · ∇g ) ∫<br />

dV = f∇g · dS<br />

V<br />

S<br />

∫<br />

(<br />

f∇ 2 g − g∇ 2 f ) ∫<br />

dV = (f∇g − g∇f) · dS<br />

V<br />

Stoke’s Theorem <strong>and</strong> a Corollary<br />

In the following S is an open surface bounded by the contour C,<br />

∫<br />

∮<br />

(∇×F) · dS = F · dx<br />

S<br />

C<br />

∫<br />

∮<br />

dS × ∇f = f dx<br />

S<br />

S<br />

C<br />

(Divergence theorem)<br />

(Green’s first identity)<br />

(Green’s theorem)<br />

(Stoke’s theorem)<br />

1


Common <strong>Vector</strong> Differential Quantities in Polar Coordinates<br />

Cylindrical Polars (s, φ, z)<br />

∇f = ∂f<br />

∂s e s + 1 ∂f<br />

s ∂φ e φ + ∂f<br />

∂z e z<br />

∇·F = 1 ∂<br />

s ∂s (sF s) + 1 ∂F φ<br />

s ∂φ + ∂F z<br />

∂z<br />

( 1 ∂F z<br />

∇×F =<br />

s ∂φ − ∂F ) (<br />

φ ∂Fs<br />

e s +<br />

∂z ∂z − ∂F z<br />

∂s<br />

( 1 ∂<br />

+<br />

s ∂s (sF φ) − 1 )<br />

∂F s<br />

e z<br />

s ∂φ<br />

∇ 2 f = 1 (<br />

∂<br />

s ∂f )<br />

+ 1 ∂ 2 f<br />

s ∂s ∂s s 2 ∂φ 2 + ∂2 f<br />

∂z<br />

(<br />

2<br />

∇ 2 F = ∇ 2 F s − F s<br />

+<br />

)<br />

e s<br />

)<br />

e φ<br />

s 2 − 2 ∂F φ<br />

s 2 ∂φ<br />

(<br />

∇ 2 F φ + 2 ∂F s<br />

s 2 ∂φ − F )<br />

φ<br />

s 2 e φ + ( ∇ 2 )<br />

F z ez<br />

Spherical Polars (r, θ, φ)<br />

∇f = ∂f<br />

∂r e r + 1 ∂f<br />

r ∂θ e θ + 1 ∂f<br />

r sin θ ∂φ e φ<br />

∇·F = 1 ∂<br />

r 2 ∂r (r2 F r ) + 1 ∂<br />

r sin θ ∂θ (sin θF θ) + 1 ∂F φ<br />

r sin θ ∂φ<br />

∇×F = 1 ( ∂<br />

r sin θ ∂θ (sin θF φ) − ∂F )<br />

θ<br />

e r<br />

∂φ<br />

( 1 ∂F r<br />

+<br />

r sin θ ∂φ − 1 ) (<br />

∂<br />

1<br />

r ∂r (rF ∂<br />

φ) e θ +<br />

r ∂r (rF θ) − 1 r<br />

∇ 2 f = 1 (<br />

∂<br />

r 2 r 2 ∂f )<br />

(<br />

1 ∂<br />

+<br />

∂r ∂r r 2 sin θ ∂f )<br />

1 ∂ 2 f<br />

+<br />

sin θ ∂θ ∂θ r 2 sin 2 θ ∂φ<br />

(<br />

2<br />

∇ 2 F = ∇ 2 F r − 2F )<br />

r<br />

r 2 − 2 ∂<br />

r 2 sin θ ∂θ (sin θF 2 ∂F φ<br />

θ) −<br />

r 2 e r<br />

sin θ ∂φ<br />

(<br />

+ ∇ 2 F θ + 2 ∂F r<br />

r 2 ∂θ − F θ<br />

r 2 sin 2 θ − 2 cos θ )<br />

∂F φ<br />

r 2 sin 2 e θ<br />

θ ∂φ<br />

(<br />

)<br />

+ ∇ 2 F φ +<br />

e φ<br />

2<br />

r 2 sin θ<br />

∂F r<br />

∂φ + 2 cos θ<br />

r 2 sin 2 θ<br />

∂F θ<br />

∂φ −<br />

F φ<br />

r 2 sin 2 θ<br />

)<br />

∂F r<br />

e φ<br />

∂θ<br />

2


The Navier-Stokes Equations in Cylindrical Polar Coordinates<br />

The Navier-Stokes equations in cylindrical polars (s, φ, z) are:<br />

∂u s<br />

∂t + (u·∇)u s − u2 φ<br />

s<br />

∂u φ<br />

∂t + (u·∇)u φ + u su φ<br />

s<br />

= − 1 ρ<br />

= − 1 ρs<br />

∂u z<br />

∂t + (u·∇)u z<br />

(<br />

∂p<br />

∂s + ν ∇ 2 u s − u s<br />

s 2 − 2 )<br />

∂u φ<br />

s 2 ,<br />

∂φ<br />

(<br />

∂p<br />

∂φ + ν ∇ 2 u φ − u φ<br />

s 2 + 2 )<br />

∂u s<br />

s 2 ,<br />

∂φ<br />

= − 1 ρ<br />

1 ∂<br />

s ∂s (su s) + 1 ∂u φ<br />

s ∂φ + ∂u z<br />

∂z<br />

∂p<br />

∂z + ν∇2 u z ,<br />

= 0 .<br />

where<br />

∂f<br />

u · ∇f = u s<br />

∂s + u φ ∂f<br />

s ∂φ + u ∂f<br />

z<br />

∂z .<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!